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Assume that q is a prime power and m ≥ 2 is a positive integer. Cyclic codes over
Fq2m of length n = q2m−1

ρ
with ρ | (q − 1), and constacyclic codes over Fq2m of length

n = q2m−1
ρ

with ρ | (q + 1) are considered in this paper, respectively. Two classes of
quantum codes are derived from the images of these codes by the Hermitian construction.
Compared with the previously known quantum codes, the quantum codes in our scheme
have better parameters.
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1 Introduction
The research of quantum information science based on quantum mechanics originated in the
1970s and attracted extensive attention until the mid-1990s. In the process of quantum infor-
mation processing, the interaction between the quantum system and the external environment
is inevitable, which leads to the serious attenuation of the coherence of the quantum system
and finally degenerates from the coherent superposition state to the mixed state, resulting in
quantum decoherence. Research shows that quantum codes can not only protect the stored
quantum information, but also realize fault-tolerant quantum gate operation, fault-tolerant
quantum state preparation and fault-tolerant quantum measurement, so that quantum in-
formation processing can be carried out reliably in noisy environment. After Calderbank et
al.[1] gave the connection between quantum codes and classical codes, the research of quantum
codes has made rapidly progress. A number of binary quantum codes with good parameters
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were constructed from classical self-orthogonal codes over F2 or F4 (see[2, 3, 4] and the refer-
ences therein). Non-binary quantum codes also attracted scholars’ attention due to the fact
that they can be used in the realization of fault-tolerant quantum computation, and lots of
non-binary quantum codes were obtained (see [5, 6, 7, 8, 9, 10, 11] and the references therein).

Let q be a prime power. A linear code C of length n with dimension k and minimum
distance d over Fq, denoted as [n, k, d]q, is a k-dimensional subspace of Fn

q . A q-ary quantum
code of length n with size K is a K-dimensional subspace of a qn-dimensional Hilbert space
(Cq)⊗n ∼= Cqn . If a quantum code has minimum distance d, then it can correct up to bd−1

2 c
quantum errors. Let k = logqK. We use [[n, k, d]]q to denote a q-ary quantun code of length
n with size qk and minimum distance d. The parameters of an [n, k, d]q linear code and an
[[n, k, d]]q quantum code must satisfy the following well-known bound, respectively.

Theorem 1: [12](Singleton bound) A linear code with parameters [n, k, d]q must satisfy

k ≤ n− d+ 1.

Theorem 2: [13](Quantum Singleton bound) A quantum code with parameters [[n, k, d]]q
must satisfy

k ≤ n− 2d+ 2.

If these bounds are achieved, it is called a maximum-distance-separable (MDS) code and a
quantum maximum-distance-separable (MDS) code, respectively. Constacyclic codes, which
contain the well-known classes of cyclic codes and negacyclic codes, have good algebraic struc-
tural properties. They are naturally considered to construct quantum codes. Kai and Zhu [14]
constructed two classes of new quantum MDS codes using negacyclic codes. Subsequently,
Kai et al. [15] gave a necessary and sufficient condition for constacyclic codes to be Hermitian
self-orthogonal and constructed some quantum MDS codes through the Hermitian construc-
tion. After that, quantum codes with good parameters, especically, quantum MDS codes
have been derived from constacyclic codes([16, 17, 18, 19, 20, 21, 22, 23, 24] and the refer-
ences therein). In recent years, the images of constacyclic codes also have been used to the
construction of quantum codes. Grassl et al.[25] constructed some quantum codes with good
parameters from the binary images of Reed-Solomon codes over F2k using the concatenated
method. Tangataj and McLaughlin[26] obtained some new quantum codes with good parame-
ters from Hermitian self-orthogonal codes, which can be seen as the images of cyclic codes over
F4m . Sundeep and Tangataj[27] generalized the results of [26], and got the self-orthogonality
of q-ary images of qm-ary codes. Some new quantum codes were also constructed from the
images of cyclic codes over F4m . Recently, Kai et al.[28] gave a sufficient condition for the
q2-ary images of constacyclic codes over Fq2m to be Hermitian self-orthogonal and two classes
of quantum codes were constructed. Very recently, Zhu et al.[29] derived three classes of
quantum codes from the q2-ary images of cyclic codes over Fq2m .

Going on the line of the above work, we study the images of cyclic codes over Fq2m of length
q2m−1

ρ with ρ | (q − 1), and the images of constacyclic codes over Fq2m of length q2m−1
ρ with
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ρ | (q+1), respectively. New quantum codes with better parameters are constructed through
the images of these codes. The paper is organized as follows: In Sect.2, some background
and basic results about constacyclic codes and quantum codes are reviewed. In Sect.3, the
maximum nonzero set to make the images of constacyclic codes (including cyclic codes) to
be Hermitian self-orthogonal is determined. New quantum codes are constructed. Compared
with the ones available in the literature, these quantum codes have better parameters. Section
4 gives a conclusion.

2 Preliminaries
Throughout this paper, let Fq2 be the finite field with q2 elements, where q is a prime power.
A q2-ary linear code C of length n with dimension k, denoted by [n, k]q2 , is a linear subspace
of Fn

q2 with dimension k. The number of nonzero components of c ∈ C is said to be the
weight wt(c) of the codeword c. The minimum nonzero weight of all codewords in C is said
to be the minimum distance of C, which is denoted by d(C). An [n, k]q2 linear code with
minimum distance d is denoted by [n, k, d]q2 . Let F∗

q2 be the multiplicative group of Fq2 .
Suppose that η ∈ F∗

q2 , a linear code C of length n over Fq2 is called an η-constacyclic code
if for each codeword c = (c0, c1, . . . , cn−1) ∈ C, then (ηcn−1, c0, . . . , cn−2) ∈ C. As we know,
the case η = 1 is the so-called cyclic code and η = −1 yields the negacyclic code. Generally,
each codeword c = (c0, c1, . . . , cn−1) ∈ C is identified with its polymonial representation
c(x) = c0+c1x+ · · ·+cn−1x

n−1. An η-constacyclic code C over Fq2 of length n can be viewed
as a principal ideal 〈g(x)〉 in the quotient ring Fq2 [x]/〈xn − η〉, where g(x) is a monic factor
of xn − η. The polynomial g(x) is called the generator polynomial of C, and the polynomial
h(x) = (xn − η)/g(x) is referred to as the parity-check polynomial of C. The dimension k of
C is k = n− deg(g(x)) = deg(h(x)).

Assume that p is the characteristic of Fq2 , then p is a prime. Suppose that n and p are
coprime, i.e., gcd(n, p)=1, so the polynomial xn − η over Fq2 does not have repeated roots.
Let η ∈ F∗

q2 with order r, then η is called a primitive r-th root of unity. Let the multiplicative
order of q2 modulo nr be m, i.e., ordnr(q2) = m, then there is a primitive rn-th root of unity
α in Fq2m such that αn = η. Let ξ = αr, so ξ is a primitive n-th root of unity. Then the roots
of xn − η are αξi = α1+ri, where 0 ≤ i ≤ n− 1. Hence,

xn − η =

n−1∏
i=0

(x− α1+ri).

For each s ∈ Ω = {1 + ri | 0 ≤ i ≤ n − 1}, the q2-cyclotomic coset modulo nr containing s,
denoted by Cq2 [s, nr], is defined as

Cq2 [s, nr] = {sq2l(mod nr) | 0 ≤ l ≤ ms − 1},

where ms is the smallest positive integer such that sq2ms ≡ s (mod nr).
The zero set Z of the η-constacyclic code C = 〈g(x)〉 is defined as

Z = {j ∈ Ω | g(αj) = 0},

which is a union of some q2-cyclotomic cosets, and the nonzero set T is defined as

T = Ω \ Z = {j ∈ Ω | h(αj) = 0}.
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It is well-known that the minimum distance of C obeys the following bound.

Theorem 3: [15, 30](Constacyclic BCH bound) Suppose that gcd(n, q) = 1. Let C be an
η-constacyclic code of length n over Fq2 . If there exist integers b and δ such that the generator
polynomial of C has elements {α1+rj |b ≤ j ≤ b+δ−2} as its zeros, then the minimum distance
of C is at least δ.

For two vectors u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) belong to Fn
q2 , their

Hermitian inner product is defined as

〈u,v〉h = u0v
q
0 + u1v

q
1 + · · ·+ un−1v

q
n−1.

The Hermitian dual code of an [n, k]q2 linear code C is a linear code with dimension n − k

and is defined by
C⊥h = {u ∈ Fn

q2 |〈u,v〉h = 0, for all v ∈ C}.

If C ⊆ C⊥h , then an [n, k]q2 linear code is said to be Hermitian self-orthogonal.
The following theorem presents a connection between quantum codes and classical linear

codes.

Theorem 4: [5](Hermitian Construction) Suppose that C is an [n, k, d]q2 linear code with
C ⊆ C⊥h , then there exists an [[n, n− 2k,≥ d]]q quantum code.

As we know, Fq2m can be viewed as a vector space over Fq2 . Let

A = {α0, α1, . . . , αm−1}

be a basis of Fq2m over Fq2 . For any χ = (x0, x1, . . . , xn−1) ∈ Fn
q2m , each entry of χ can be

expressed as xi =
∑m−1

j=0 xijαj , where xij ∈ Fq2 . Defining a map

LA : Fn
q2m 7−→ Fnm

q2

LA(x0, x1, . . . , xn−1) = (x00, . . . , xn−1,0, x0,1, . . . , xn−1,1, x0,m−1, . . . , xn−1,m−1)

Assume that D is an [n, k, d] linear code over Fq2m . Let the q2-ary image of D with respect
to the basis A be LA(D) = {LA(d) | d ∈ D}. Then LA(D) is an [mn, km,≥ d] linear code
over Fq2 .

Lemma 5:[28] Assume that A = {α0, α1, . . . , αm−1} is a basis of Fq2m over Fq2 , and B =

{β0, β1, . . . , βm−1} is its Hermitian dual basis. Let D be an [n, k, d] linear code over Fq2m and
D⊥h be the Hermitian dual code of D. If m is odd, then LA(D)⊥h = LB(D⊥h). If m is even,
then LA(D)⊥h = LB(D⊥h)q.

Assume that η ∈ F∗
q2 , and its order is r. Note that F∗

q2 is a subgroup of F∗
q2m . Hence,

η ∈ F∗
q2m and has order r. An η-constacyclic code D = 〈g̃(x)〉 of length n over Fq2m is an

ideal in Fq2m [x]/〈xn − η〉. The zero set of D is

Z2m = {j ∈ Ω | g̃(αj) = 0},
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which is a union of some q2m-cyclotomic cosets modulo nr, and the nonzero set of D is

T2m = {j ∈ Ω | h̃(αj) = 0},

where h̃(x) = (xn − η)/g̃(x). Let r | (q + 1). There is a sufficient condition for LA(D) to be
Hermitian self-orthogonal.

Lemma 6:[28] Let D be an η-constacyclic code in Fq2m [x]/〈xn − η〉 with nonzero set T2m, If
(1+ ri)q2l+1+(1+ rj) 6≡ 0 (mod nr) for any 1+ ri, 1+ rj ∈ T2m and any nonnegative integer
l. Then LA(D) ⊆ LA(D)⊥h .

Remark 7: If r = 1, i.e., D is a cyclic code, then the above sufficient condition is becoming
aq2l+1 + b 6≡ 0 (mod n) for any a, b ∈ T2m and any nonnegative integer l.

Finally, we give the following famous result, which will be used in the sequel.

Theorem 8:[31] If there exists an [[n, k, d]] quantum code over Fq, then there is an [[n+1, k, d]]

quantum code over Fq.

3 New quantum codes
In this section, some new quantum codes with better parameters than the known ones are
derived from cyclic MDS codes and constacyclic MDS codes over Fq2m , respectively.

3.1 Construction I

Let n = q2m−1
ρ , where ρ | (q − 1), q is a prime power, and m ≥ 2 is a positive integer. We

first consider the cyclic codes of length n over Fq2m , It is obvious that n is coprime to q2m

and all the q2m-cyclotomic cosets modulo n are given by Cq2m [i, n] = {i}, for 0 ≤ i ≤ n− 1.
Define

Θmax =


q3−q2+q−1

ρ − 1, m = 2,
qm+1−q2

ρ , m = 2k ≥ 4,
qm−ρ−1

ρ , m = 2k + 1 ≥ 3.

(1)

Lemma 9: Let n = q2m−1
ρ , where ρ | (q − 1), q is a prime power, and m ≥ 2 is a positive

integer. If D is the cyclic code of length n over Fq2m with nonzero set T2m =
∪θ

i=1 Cq2m [i, n],
where 1 ≤ θ ≤ Θmax, then LA(D) ⊆ LA(D)⊥h .

Proof: According to Lemma 6, we only need to proof that for any x, y ∈ T2m,

xq2l+1 + y 6≡ 0 (mod n).

Assume that there exist x, y ∈ T2m such that

xq2l+1 + y ≡ 0 (mod n),
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where 0 ≤ l ≤ 2m− 1. Observe that

x+ yq2(2m−l−1)+1 ≡ 0 (mod n),

hence, when m ≤ l ≤ 2m− 1, we have 0 ≤ 2m− l− 1 ≤ m− 1, so we only seek contradictions
for the case 0 ≤ l ≤ m− 1. Let T ∗

2m =
∪θ

i=1 Cq2m [i, n], where 1 ≤ θ ≤ Θ∗.

(i) If m = 2, then l = 0, 1.
If l = 0, then we have

q + 1 ≤ xq + y ≤ (
q3 − q2 + q − 1

ρ
− 1)(q + 1) <

q4 − 1

ρ
= n,

which is a contradiction.
If l = 1, then we have

q + 1 ≤ x+ yq ≤ (
q3 − q2 + q − 1

ρ
− 1)(q + 1) <

q4 − 1

ρ
= n,

which is also a contradiction.
Moreover, if Θ∗ = Θmax + 1, then there exist x = y = q3−q2+q−1

ρ ∈ T ∗
2m such that

xq + y =
q3 − q2 + q − 1

ρ
(q + 1) ≡ 0 (mod n).

(ii) m = 2k ≥ 4:
If 0 ≤ l ≤ m−2

2 , then

q + 1 ≤ xq2l+1 + y ≤ qm+1 − q2

ρ
(qm−1 + 1) =

q2m − q2

ρ
< n.

This is a contradiction.
If m

2 ≤ l ≤ m − 1, note that q2m ≡ 1(mod n), the above congruence is equivalent to
x+ yq2(m−l−1)+1 ≡ 0 (mod n). One can easily get 0 ≤ m− l− 1 ≤ m−2

2 , so we can get
a contradiction similar to the above case.
Moreover, if Θ∗ = Θmax + 1, one can take x = Θ∗ = qm+1−q2

ρ + 1 and l = m−2
2 , then

−qm−1(
qm+1 − q2

ρ
+ 1) ≡ qm+1 − ρqm−1 − 1

ρ
(mod n).

Namely, there exist x = Θ∗, y = qm+1−ρqm−1−1
ρ ∈ T ∗

2m and l = m−2
2 such that

xq2l+1 + y ≡ 0 (mod n).

(iii) m = 2k + 1 ≥ 3:
If 0 ≤ l ≤ m−1

2 , then

q + 1 ≤ xq2l+1 + y ≤ (
qm − 1

ρ
− 1)(qm + 1) < n.

It is a contradiction.
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If m+1
2 ≤ l ≤ m− 1, then 0 ≤ m− l − 1 ≤ m−3

2 . One can get

q + 1 ≤ x+ yq2(m−l−1)+1 ≤ (
qm − 1

ρ
− 1)(qm−2 + 1) < n.

It is also a contradiction.
Moreover, if Θ∗ = Θmax + 1, then there exist x = y = qm−1

ρ ∈ T ∗
2m, and l = m−1

2 such
that

xq2l+1 + y =
qm − 1

ρ
qm +

qm − 1

ρ
=

q2m − 1

ρ
≡ 0 (mod n).

Theorem 10: Let n = q2m−1
ρ , where ρ | (q − 1), q is a prime power and m ≥ 2 is a positive

integer. Then there exists a q-ary quantum code with parameters [[mn,mn− 2mθ,≥ θ + 1]],
where 1 ≤ θ ≤ Θmax.

Proof: Let D be the cyclic code over Fq2m of length n with nonzero set

T2m =

θ∪
i=1

Cq2m [i, n],

where 1 ≤ θ ≤ Θmax. By Lemma 9, we have LA(D) ⊆ LA(D)⊥h . The zero set of D is

Z2m = Cq2m [0, n]
∪ n−1∪

i=θ+1

Cq2m [i, n].

It can be easily obtained that the zero set Z2m has n−θ consecutive roots αθ+1, . . . , αn−1, αn,
where α is a primitive n-th root of unity. By Theorem 3, we have d ≥ n− θ+1 and according
to Theorem 1, d ≤ n− θ + 1. Hence, D is an [n, θ, n− θ + 1] MDS code over Fq2m , and D⊥h

is also an MDS code, which has parameters [n, n− θ, θ + 1]q2m . By Lemma 5, the minimum
distance of LA(D)⊥h is d∗ ≥ θ + 1. It follows from LA(D) ⊆ LA(D)⊥h that LA(D) has
parameters [mn,mθ,≥ θ + 1]q2 . According to Theorem 4, there exists a q-ary quantum code
with parameters [[mn,mn− 2mθ,≥ θ + 1]].

Remark 11: If ρ = 1, then n = q2m − 1, quantum codes of length mn had been constructed
in [29]. It can be easily seen that our results coincide with theirs within such case. Therefore,
our results can be seen as a generalization of theirs.

Example 12: Let q = 4 and m = 2, then ρ can be 1 and 3. Hence, n = 255, Θmax = 50

and n = 85, Θmax = 16, respectively. According to Theorem 10, there exist quantum codes
of lengths 510 and 170 over F4. By Theorem 8, we can also get quantum codes of lengths 511

and 171. The quantum codes obtained here have larger code rate than the quantum twisted
codes shown in [32]. The results are listed in Table 1.
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Table 1. Code comparison

New quantum codes Lengthened codes Quantum twisted codes in [32]

[[170, 162,≥ 3]]4 [[171, 162,≥ 3]]4 [[171, 160, 3]]4
[[170, 158,≥ 4]]4 [[171, 158,≥ 4]]4 [[171, 151, 4]]4
[[170, 154,≥ 5]]4 [[171, 154,≥ 5]]4 [[171, 142, 5]]4
[[170, 150,≥ 6]]4 [[171, 150,≥ 6]]4 [[171, 133, 6]]4
[[170, 146,≥ 7]]4 [[171, 146,≥ 7]]4 −−
[[170, 142,≥ 8]]4 [[171, 142,≥ 8]]4 [[171, 124, 8]]4
[[170, 138,≥ 9]]4 [[171, 138,≥ 9]]4 [[171, 102, 9]]4
[[170, 134,≥ 10]]4 [[171, 134,≥ 10]]4 [[171, 115, 10]]4
[[170, 130,≥ 11]]4 [[171, 130,≥ 11]]4 [[171, 106, 11]]4
[[170, 126,≥ 12]]4 [[171, 126,≥ 12]]4 [[171, 97, 12]]4
[[170, 122,≥ 13]]4 [[171, 122,≥ 13]]4 −−
[[170, 118,≥ 14]]4 [[171, 118,≥ 14]]4 [[171, 88, 14]]4
[[170, 114,≥ 15]]4 [[171, 114,≥ 15]]4 [[171, 79, 15]]4
[[170, 110,≥ 16]]4 [[171, 110,≥ 16]]4 [[171, 70, 16]]4
[[170, 106,≥ 17]]4 −− −−
[[510, 502,≥ 3]]4 [[511, 502,≥ 3]]4 [[511, 499, 3]]4
[[510, 498,≥ 4]]4 [[511, 498,≥ 4]]4 [[511, 490, 4]]4
[[510, 494,≥ 5]]4 [[511, 494,≥ 5]]4 [[511, 484, 5]]4
[[510, 490,≥ 6]]4 [[511, 490,≥ 6]]4 [[511, 472, 6]]4
[[510, 486,≥ 7]]4 [[511, 486,≥ 7]]4 [[511, 466, 7]]4
[[510, 482,≥ 8]]4 [[511, 482,≥ 8]]4 [[511, 454, 8]]4
[[510, 478,≥ 9]]4 [[511, 478,≥ 9]]4 [[511, 457, 9]]4
[[510, 474,≥ 10]]4 [[511, 474,≥ 10]]4 [[511, 448, 10]]4
[[510, 470,≥ 11]]4 [[511, 470,≥ 11]]4 [[511, 439, 11]]4
[[510, 466,≥ 12]]4 [[511, 466,≥ 12]]4 [[511, 427, 12]]4
[[510, 462,≥ 13]]4 [[511, 462,≥ 13]]4 [[511, 430, 13]]4
[[510, 458,≥ 14]]4 [[511, 458,≥ 14]]4 [[511, 421, 14]]4
· · · · · · · · ·
[[510, 406,≥ 27]]4 [[511, 406,≥ 27]]4 [[511, 331, 27]]4
[[510, 402,≥ 28]]4 [[511, 402,≥ 28]]4 [[511, 271, 28]]4
[[510, 398,≥ 29]]4 [[511, 398,≥ 29]]4 [[511, 322, 29]]4
[[510, 394,≥ 30]]4 [[511, 394,≥ 30]]4 [[511, 313, 30]]4
[[510, 390,≥ 31]]4 [[511, 390,≥ 31]]4 [[511, 304, 31]]4
[[510, 386,≥ 32]]4 −− −−
· · · −− −−
[[510, 305,≥ 51]]4 −− −−



Liqi Wang, Xiujing Zheng, and Shixin Zhu 9

3.2 Construction II

Let n = q2m−1
ρ , where ρ | (q + 1), q is a prime power, and m ≥ 2 is a positive integer. In this

subsection, we consider the η-constacyclic codes over Fq2m of length n. Let ord(η)= r = ρ.
Obviously, the length n is coprime to q2m and all the q2m-cyclotomic cosets modulo nr are
given by Cq2m [i, nr] = {i}, for 0 ≤ i ≤ n− 1. If ρ = r = 1, then n = q2m − 1 and the η-
constacyclic code is indeed the cyclic code, which is included in Construction I, so we assume
that ρ 6= 1 here.

If m = 2k ≥ 2, define

Θmax =

{
q3−q2+2

ρ + λ, m = 2 and q ≥ 4,
qm+1−q2+2−ρ

ρ − [ρ = 2], m = 2k ≥ 4 or q ≤ 3.
(2)

and λ = d q−4
ρ e − 1.

If m = 2k + 1 ≥ 3, define

Θmax =

{
qm − 2, ρ = 2,
(qm+1)(ρ−[ρ odd])

2ρ − 2, otherwise.
(3)

d·e and b·c means the ceiling function and floor function, respectively. If the statement is
true, then [statement]=1, otherwise, [statement]=0.

Lemma 13: Let n = q2m−1
ρ , where ρ | (q + 1), ρ 6= 1, q is a prime power and m ≥ 2 is

a positive integer. If D is an η-constacyclic code over Fq2m of length n with nonzero set
T2m =

∪θ
i=0 Cq2m [i, nr], where 0 ≤ θ ≤ Θmax, then LA(D) ⊆ LA(D)⊥h .

Proof: From Lemma 6, we only need to proof that for any 1 + ρx, 1 + ρy ∈ T2m,

(1 + ρx)q2l+1 + (1 + ρy) 6≡ 0 (mod ρn).

Assume that there exist x, y ∈ T2m such that

(1 + ρx)q2l+1 + (1 + ρy) ≡ 0 (mod ρn),

where 0 ≤ l ≤ 2m− 1. Observe that

(1 + ρx) + (1 + ρy)q2(2m−l−1)+1 ≡ 0 (mod ρn),

hence, when m ≤ l ≤ 2m− 1, we have 0 ≤ 2m− l− 1 ≤ m− 1, so we only seek contradictions
for the case 0 ≤ l ≤ m− 1. Let T ∗

2m =
∪θ

i=0 Cq2m [i, nr], where 0 ≤ θ ≤ Θ∗.

(i) If m = 2 and q ≥ 4, then l = 0 and 1. Since λ = d q−4
ρ e− 1, q−4

ρ − 1 ≤ λ < q−4
ρ , namely,

q − 4− ρ ≤ λρ < q − 4.
If l = 0, then

q + 1 ≤ (1 + ρx)q + (1 + ρy) ≤ [1 + ρ(
q3 − q2 + 2

ρ
+ λ)](q + 1) < q4 − 1 = n.

It is a contradiction.
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If l = 1, we have the following congruence because of q4 ≡ 1 (mod ρn),

(1 + ρx)q3 + (1 + ρy) ≡ (1 + ρx) + (1 + ρy)q (mod ρn).

So we have the same contradiction as the above case.
Moreover, if Θ∗ = Θmax + 1 = q3−q2+2

ρ + λ+ 1, then we have 1 + ρΘ∗ = 1 + q3 − q2 +

2 + ρ(λ+ 1) ≥ q3 − q2 + q − 1. Note that

−q(1 + ρΘ∗) ≡ q3 − 3q − 1− ρq(λ+ 1) (mod ρn).

Obviously, q3 − 3q − 1 − ρq(λ + 1) ≤ q3 − q2 + q − 1, so we can select x = Θ∗, y =
q3−3q−2−ρq(λ+1)

ρ ∈ T ∗
2m and l = 0 such that

(1 + ρx)q2l+1 + (1 + ρy) ≡ 0 (mod ρn).

(ii) m = 2k ≥ 4 or q ≤ 3:
If 0 ≤ l ≤ m−2

2 , then

q + 1 ≤ (1 + ρx)q2l+1 + (1 + ρy) ≤ (qm+1 − q2 + 3− ρ− [ρ = 2])(qm−1 + 1) < ρn.

It is a contradiction.
If m

2 ≤ l ≤ m− 1, then 0 ≤ m− l − 1 ≤ m−2
2 . Note that q2m ≡ 1 (mod ρn), the above

congruence is equivalent to

(1 + ρx) + (1 + ρy)q2(m−l−1)+1 ≡ 0 (mod ρn).

So we have a similar contradiction.
Moreover, if Θ∗ = Θmax + 1, then 1 + ρΘ∗ = qm+1 − q2 + 3− [ρ = 2]ρ. Note that

−qm−1(1 + ρΘ∗) ≡ qm+1 − 3qm−1 − 1 + [ρ = 2]ρqm−2 (mod ρn).

Obviously,

qm+1 − 3qm−1 − 1 + [ρ = 2]ρqm−2 ≤ qm+1 − q2 + 3− [ρ = 2]ρ,

then we can select x = Θ∗, y = qm+1−3qm−1−2+[ρ=2]ρqm−2

ρ ∈ T ∗
2m and l = m−2

2 such that

(1 + ρx)q2l+1 + (1 + ρy) ≡ 0 (mod ρn).

(iii) m = 2k + 1 ≥ 3 and ρ = 2:
If 0 ≤ l ≤ m−3

2 , then

q + 1 ≤ (1 + ρx)q2l+1 + (1 + ρy) ≤ [1 + ρ(qm − 2)](qm−2 + 1) < ρn,

which is a contradiction.
If m+1

2 ≤ l ≤ m− 1, one can get the same contradiction as above.
If l = m−1

2 , then
qm(1 + 2x) + (1 + 2y) ≡ 0 (mod q2m − 1).
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Therefore,

q + 1 ≤ qm(1 + 2x) + (1 + 2y) ≤ 2q2m − qm − 3 < 2(q2m − 1),

so it must be
qm(1 + 2x) + (1 + 2y) = q2m − 1.

Hence, we can get y = −qmx+ q2m−qm−2
2 .

If 0 ≤ x ≤ qm−3
2 , then y ≥ qm−1, which contradicts to the fact that y ≤ qm−2 = Θmax.

If qm−1
2 ≤ x ≤ Θmax, then y < 0, which contradicts to the fact that y ≥ 0.

Moreover, if Θ∗ = Θmax+1, then there exist x = qm−1, y = qm−3
2 ∈ T ∗

2m and l = m−1
2

such that
qm[1 + 2(qm − 1)] + (1 + 2

qm − 3

2
) ≡ 0 (mod q2m − 1).

(iv) m = 2k + 1 ≥ 3 and ρ 6= 2:
If 0 ≤ l ≤ m−3

2 , then

q + 1 ≤ (1 + ρx)q2l+1 + (1 + ρy) ≤ (1 + ρΘmax)(q
m−2 + 1) < ρn,

which is a contradiction.
If m+1

2 ≤ l ≤ m− 1, one can get the same contradiction as above.
If l = m−1

2 , then
qm(1 + ρx) + (1 + ρy) ≡ 0 (mod q2m − 1).

Hence, we have the following congruence

qm(1 + ρx) + (1 + ρy) ≡ 0 (mod qm + 1),

which is equivalent to ρ(y − x) ≡ 0 (mod qm + 1). Then we can get y = x + µ qm+1
ρ ,

where −ρ−[ρ odd]
2 + 1 ≤ µ ≤ ρ−[ρ odd]

2 − 1.
Substituting y into qm(1 + ρx) + (1 + ρy) ≡ 0 (mod q2m − 1), one can get

(qm + 1)(1 + ρx+ µ) ≡ 0 (mod q2m − 1),

which implies that 1 + ρx + µ ≡ 0 (mod qm − 1). Hence, x = ν(qm−1)−1−µ
ρ . Since

ρ | (q + 1) and m is odd, qm − 1 ≡ −2 (mod ρ), and then 2ν + µ+ 1 = 0 (mod ρ).
If ν ≤ −1 or ν ≥ ρ−[ρ odd]

2 , then x < 0 or x ≥ ρ−[ρ odd]
2ρ (qm − 2) > Θmax, which

contradicts to the fact that x ∈ T2m. So 0 ≤ ν ≤ ρ−[ρ odd]
2 − 1.

Substituting x = ν(qm−1)−1−µ
ρ into y = x+ µ qm+1

ρ , one can get y = (µ+ν)qm−ν−1
ρ .

If µ + ν ≤ 0 or µ + ν ≥ ρ−[ρ odd]
2 , then y < 0 or y ≥ ρ−[ρ odd]

2ρ (qm − 1) > Θmax,
which contradicts to the fact that y ∈ T2m. So 1 ≤ µ + ν ≤ ρ−[ρ odd]

2 − 1. Hence,
2ν + µ+ 1 ≤ ρ− [ρ odd]− 1 < ρ, which is a contradiction.
Moverover, if Θ∗ = Θmax + 1, then there exist x = Θ∗ = (qm+1)(ρ−[ρ odd])

2ρ − 1 and
y = (qm+1)(ρ+[ρ odd]−2)−2ρ

2ρ ∈ T ∗
2m such that

qm(1 + ρx) + (1 + ρy) ≡ 0 (mod ρn).
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Theorem 14: Let n = q2m−1
ρ , where ρ | (q + 1), ρ 6= 1, q is a prime power, and m ≥ 2 is a

positive integer. Then there exists a q-ary quantum code with parameters [[mn,mn−2m(θ+

1),≥ θ + 2]], where 0 ≤ θ ≤ Θmax .

Proof: Let D be the η-constacyclic code over Fq2m of length n with nonzero set

T2m =

θ∪
i=0

Cq2m [i, nr],

where 0 ≤ θ ≤ Θmax. By Lemma 13, LA(D) ⊆ LA(D)⊥h . The zero set of D is

Z2m =

n−1∪
i=θ+1

Cq2m [i, nr].

It can be easily obtained that the zero set Z2m has n−θ−1 consecutive roots αθ+1, . . . , αn−1,
where α is a primitive n-th root of unity. From Theorem 3, we have d ≥ n−θ and by Theorem
1, d ≤ n − θ. Hence, D is an [n, θ + 1, n − θ] MDS code over Fq2m . D⊥h is also an MDS
code, which has parameters [n, n− θ − 1, θ + 2]q2m . Due to Lemma 5, the minimum distance
of LA(D)⊥h is d∗ ≥ θ + 2. It follows that LA(D) has parameters [mn,m(θ + 1),≥ θ + 2]q2
because of LA(D) ⊆ LA(D)⊥h . According to Theorem 4, there exists a q-ary quantum code
with parameters [[mn,mn− 2m(θ + 1),≥ θ + 2]].

Remark 15: If ρ = q+1, then n = q2m−1
q+1 , quantum codes of length mn had been extensively

studied in [29] using cyclic codes. The concrete parameters are in the following:
• [[mn,mn− 2mu,≥ u+ 1]], q ≡ 1(mod 4), m ≥ 2 and 1 ≤ u ≤ U1,

• [[mn,mn− 2mu,≥ u+ 1]], q ≡ 3(mod 4), m ≥ 2 and 1 ≤ u ≤ U2,

where

U1 =

{
qm+1−q2−q+1

q+1 , m = 2k ≥ 2, k = 1, 2, . . .
qm−3

2 , m = 2k + 1 ≥ 3, k = 1, 2, . . .
(4)

U2 =

{
qm+1−q2−q+1

q+1 , m = 2k ≥ 2, k = 1, 2, . . .
2qm−q+1

q+1 , m = 2k + 1 ≥ 3, k = 1, 2, . . .
(5)

Comparing our results with theirs within such length, one can see that our quantum codes
have minimum distances larger than or equal to theirs. Hence, our results are better and
more general.

Example 16: Let q = 5 and m = 2, then ρ can be 2, 3 and 6(except ρ = 1). If ρ = 3, then
n = 208 and Θmax = 34. According to Theorem 14, there exist quantum codes of length
416 over F5. By Theorem 8, we can get quantum codes of length 417. The quantum codes
obtained by this method have larger code rate than the quantum twisted codes shown in [32].
The results are listed in Table 2.

Example 17: Let q = 8 and m = 2, then ρ can be 3 and 9(except ρ = 1). If ρ = 9, then
n = 455, Θmax = 50. According to Theorem 14, there exist quantum codes of length 910 over
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F8. By Theorem 8, we can get quantum codes of lengths 915 and 925. The quantum codes
obtained by this method have larger code rate than the quantum twisted codes shown in [32].
The results are listed in Table 3.

4 Conclusion

In this paper, we studied cyclic codes of length q2m−1
ρ with ρ | (q−1) over Fq2m and constacyclic

codes of length q2m−1
ρ with ρ | (q + 1) over Fq2m . The maximum nonzero sets to make the

images of cyclic codes and constacyclic codes to be Hermitian self-orthogonal were given,
respectively. Then, these Hermitian self-orthogonal codes were utilized to construct quantum
codes, and the resulting quantum codes have better parameters than the previously known
ones.
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