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Properties of quantum systems can be estimated using classical shadows, which implement measure-
ments based on random ensembles of unitaries. Originally derived for global Clifford unitaries and
products of single-qubit Clifford gates, practical implementations are limited to the latter scheme for
moderate numbers of qubits. Beyond local gates, the accurate implementation of very short random
circuits with two-local gates is still experimentally feasible and, therefore, interesting for implementing
measurements in near-term applications. In this work, we derive closed-form analytical expressions
for shadow estimation using brickwork circuits with two layers of parallel two-local Haar-random (or
Clifford) unitaries. Besides the construction of the classical shadow, our results give rise to sample-
complexity guarantees for estimating Pauli observables. We then compare the performance of shadow
estimation with brickwork circuits to the established approach using local Clifford unitaries and find
improved sample complexity in the estimation of observables supported on sufficiently many qubits.
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1 Introduction

Retrieving information about the state of a quantum system is a long-standing problem in quantum
information processing and of central practical importance in quantum technologies. Full quantum
state tomography can recover a complete, precise classical description of the state but requires a large
number of state copies [1, 2, 3, 4, 5], making the protocol feasible only for a very moderate number
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962 Closed-form analytic expressions for shadow estimation with brickwork circuits

of qubits. Nevertheless, for many concrete tasks, complete knowledge of the quantum state is often
unnecessary [6], and estimation schemes for specific properties are often scalable.

A particularly attractive estimation primitive is nowadays referred to as shadow estimation [7, 8].
Here, an approximation of a repeatedly prepared unknown quantum state, the so-called classical
shadow, is constructed from measurements in randomly selected bases. In the limit of many bases,
this approach allows, in principle, for full state tomography. For this reason, classical shadows can
be further post-processed to construct estimators for the expectation value of arbitrary sets of observ-
ables. Importantly, for certain random measurement ensembles, rigorous analytical guarantees ensure
that precise estimates of expectation values can be evaluated long before one has collected enough
measurement statistics for full quantum state tomography.

The original examples with strict guarantees on the sample complexity are, in a sense, two “ex-
treme” scenarios: The first one is characterized by evolving the state with a global random Clifford
unitary before performing a basis measurement. It is particularly suited for predicting global prop-
erties; for instance, fidelity estimation requires a constant number of samples with this setting. The
second scheme is built on local Clifford unitaries and effectively amounts to perform measurements
in random local Pauli bases. In this case, local properties can often be efficiently estimated [9, 10, 11].
Moreover, biasing the distribution of local Clifford unitaries to the estimation task at hand can yield
further improvements in sample complexity [12].

An accurate estimation requires a precise experimental implementation of the random unitaries.
Although more robust variants of shadow estimation exist [13, 14], the implementation of global
multi-qubit Clifford unitaries on near-term hardware will typically introduce too much noise to be
useful for estimation.

Experimentally feasible alternatives, naturally interpolating between the two extreme cases and
potentially lowering the sample complexity over local Clifford unitaries, are short Clifford circuits
[15]. However, finding expressions for classical shadows for random low-depth Clifford circuits is a
challenging task. For instance, the construction by Hu et al. [15] involve numerically solving a large
system of equations.

In this work, we derive closed-form analytic expressions for the arguably simplest non-trivial
circuit construction of classical shadows: One round of a brickwork circuit consisting of two layers of
products of random unitaries. Besides providing a more direct construction of the classical shadow,
these analytic expressions allow us to compare the sample complexity of the circuit construction to the
one with local Clifford unitaries. In particular, we first observe that for Pauli observables, one shall
look at pairs of adjacent qubits in the support of such observables and their relative position in the
circuit. Then, we find that the (very short) brickwork shadows outperform the local Clifford ones for
Pauli observables supported on sufficiently many qubits of a brickwork circuit. Conversely, we also
observe that local Clifford unitaries yield a lower sample complexity in the case of Pauli observables
supported on sparsely distributed qubits in the sense of the brickwork circuit.

The remainder is structured as follows: Following the observation that the associated measure-
ment channel can be interpreted as a frame (super-)operator [16] in Section 2.2, we work out its
matrix representation in the Pauli basis in Section 3. In particular, using well-known expressions for
the second-moment operator of sufficiently uniform probability measures over the unitary group, we
derive recurrence relations for subcircuits that can be analytically solved. In Section 4, we identify the
regime where the resulting sample complexity outperforms the shadow estimation protocol with the
local Cliffords ensemble, and in Section 4.1 we compare numerically the performance of brickwork
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and local Cliffords shadows.

Related works. During the completion of this work, two other papers on brickwork circuits were
published [17, 18]. Both describe shadows associated with brickwork circuits of arbitrary depth and
numerically study the measurement channels associated with such circuits using tensor network tech-
niques. In particular, Akhtar et al. [17] apply the formalism based on entanglement features introduced
by Bu et al. [19] and discusses average case scenario upper bounds on sample complexity based on
the locally scrambled shadow norm [15]. A similar discussion, following a probabilistic interpretation
of the eigenvalues of the measurement channels, is done by Bertoni et al. [18]. In particular, they
provide rigorous upper bounds to the locally scrambled shadow norm for circuits of depth logarithmic
in the number of qubits, and find upper bounds to the shadow norm for a class of observables beyond
the Pauli case. In comparison, we only focus on single-round brick-layer circuits but provide analytic
expressions for the estimator of Pauli observables.

2 Preliminaries

2.1 Notation

We denote the Hilbert-Schmidt inner product by a braket-like notation, namely

Tr(A†B) ≡ (A|B) A,B ∈ Cd×d . (1)

Likewise, the outer product |A)(B| denotes the superoperator C 7→ (B |C)A. We parametrize single-
qubit Pauli operators by binary vectors v = (z, x) ∈ F2

2 as

W (0, 0) := 1, W (0, 1) := X, W (1, 0) := Z, W (1, 1) := Y, (2)

where X,Y, Z ∈ C2×2 are the usual Pauli matrices. Then, we define the n-qubit Pauli operators as
tensor products of the single-qubit Pauli operators, indexed by vectors v = v1 ⊕ · · · ⊕ vn ∈ F2n

2 :

W (v) :=W (v1)⊗ · · · ⊗W (vn) . (3)

For a given vector v = v1⊕· · ·⊕vn ∈ F2n
2 , we define its weight vector as the binary vector wt(v) ∈ Fn

2

such that wt(v)i = 0 if vi = (0, 0) and wt(v)i = 1 else. In other words, wt(v) has a zero in the ith
position if and only if W (v) is the identity on the ith qubit. We use the shorthand notation

|v) ≡ 1√
d
W (v) (4)

for the normalized Pauli operators. Hence, the set {|v)} denotes the orthonormal Pauli basis in Cd×d,
where d = 2n denotes the dimension of the Hilbert space of n qubits from now on.

Finally, for any k ∈ N, we set [k] := {1, . . . , k}.

2.2 Classical shadows formalism

In this section, we review the shadow estimation protocol [7] in the language of frame theory (see
Ref. [20] for an introduction to frame theory). The procedure works as follows: draw unitaries U ∼ ν

according to some probability measure ν on the unitary group U(d), apply U to the (unknown) state
ρ, and finally measure in the computational basis {Ei := |i⟩⟨i|}i∈[d]. Having obtained outcome i,
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store the classical snapshot (i, U). Repeating this primitive yields multiple snapshots {ik, Uk}mk=1.
Finally, given an observable O, one evaluates a scalar function fO(i, U) for each snapshot and takes
the empirical average ô =

∑m
k=1 fO(ik, Uk).

Constructing fO(i, U) as follows ensures that ô is an unbiased estimator for the expectation value
Tr(Oρ): First, one shall require that {Ei,U := U†EiU} is a tomographically complete, positive
operator valued measure (POVM) [21], i.e. for all states ρ ̸= σ there exists a pair (i, U) such that
⟨i |UρU† |i⟩ ≠ ⟨i |UσU† |i⟩. This ensures that {Ei,U} is a frame [22, 1], and the associated measure-
ment channel

S(ρ) :=
∑
i∈[d]

EU∼ν |Ei,U )(Ei,U |ρ) =
∑
i∈[d]

EU∼ν⟨i |UρU† |i⟩U†|i⟩⟨i|U (5)

has the interpretation as a frame operator. In particular, S is positive definite, and thus invertible. Then,
{Ẽi,U := S−1(Ei,U )} is the so-called canonical dual frame, and we have the following relation

Tr(Oρ) = Tr(OS−1S(ρ)) =
∑
i

EU∼ν(O |Ẽi,U )(Ei,U |ρ) . (6)

Therefore, the last expression can be interpreted as the expected value of fO(i, U) := (O |Ẽi,U )

when sampling U ∼ ν and i ∼ (Ei,U |ρ) and is, thus, the limit of the empirical average over many
experimental snapshots.

However, the computation of the canonical dual frame is in general a highly non-trivial task.
Analytical inversion of S is often only possible in special cases where the probability measure ν
is very structured. For instance, if ν is the Haar measure on U(d), or a unitary 2-design, then the
POVM {Ei,U} is a complex projective (state) 2-design and, thus, forms a tight frame on the subspace
of traceless Hermitian matrices. As a consequence, S is a depolarizing channel and can be readily
inverted. A similar argument can be applied when the unitaries U are drawn Haar-randomly from a
subgroup G ⊂ U(d) [23]. More generally, one has to rely on numerical methods which are not only
expensive, but may also be numerically unstable since there are no general guarantees on the condition
number of S. In principle, the condition number can even be exponentially large [23].

Under certain conditions, the inversion of S is however drastically simplified: For instance, if
the measure ν is right-invariant under multiplication with Pauli operators, then S is diagonal in the
Pauli basis [19]. This follows from the observation that, in this case, we have W(v)†SW(v) = S,
where W(v) := W (v)( · )W (v)†, and hence S is invariant under the channel twirl over the Pauli
group. Thus, it is a Pauli channel and, in particular, diagonal in the Pauli basis, which means S−1

can be computed via entrywise inversion of the diagonal elements (v |S |v). Notice that, for Pauli
invariant ensemble without group structure, it is convenient to construct the estimator according to
Eq. (6) instead of the classical shadows S−1(ρ) as in [7]: For instance, for sparse observables in the
Pauli basis [18], the estimator can be computed more easily than the classical shadows. Indeed, in
the latter case, one would rely on the decomposition of ρ in the Pauli basis, which usually involves
exponentially many terms.

Finally, if O = W (v) is a Pauli observable (we call this task Pauli estimation), the sample com-
plexity of shadow tomography can be bounded for simple circuits. In particular, if S is diagonal in the
Pauli basis, we simply have

fW (v)(i, U) =
1

(v |S |v) (W (v)|Ei,U ) . (7)
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Note that this expression features only a single diagonal element of the frame operator independent
of i and U . The sample complexity of the corresponding mean estimator ŵ(v) can be controlled
using the variance of fW (v)(i, U) which can be shown to be dominated by (v |S |v)−1 [19]. Cheby-
shev’s inequality then ensures that the mean estimator is ϵ-precise using O((v |S |v)−1ϵ−2δ−1) many
snapshots with probability 1 − δ. Note that a Hoeffding bound here yields a worse bound scaling as
(v |S |v)−2. If the expectation values of ‘many’ observables are to be estimated at once, it may be ben-
eficial to use the median-of-mean estimator with sample complexity depending only logarithmically
on δ [7].

In general, however, it is not easy to find strict guarantees for the sample complexity, since it is
hard to analytically bound the variance, even for different classes of Pauli invariant measures. In these
cases, one can rely on the weaker notion of locally scrambled shadow norm [15, 17, 18], which can
be interpreted as the average variance over all states. In particular, since the variance is linear in the
state ρ, the locally scrambled shadow norm thus quantifies the performance when ρ is the completely
mixed state.

3 The brickwork circuit: analytical results

We assume for simplicity that the number of qubits is even. We consider one round of a one-
dimensional brickwork (BW) circuit built in the following way: a first layer of n/2 two-local Haar
random unitaries is applied to qubits (2i − 1, 2i) for i ∈ [n/2]. The second layer, built in the same
way but shifted by one position, applies Haar random unitaries to qubits (2i, 2i + 1). Here, we con-
sider two cases, see also Figure 1. First, the second layer has periodic boundary conditions such that

Fig. 1. Brickwork circuits acting on n = 10 qubits. The left and right figures show periodic and open boundary
conditions, respectively, and the arrow indicates the direction in which the circuit acts on quantum states. For both
of them, the first layer is composed of n/2 two-qubit Haar random unitaries acting on qubits (2i − 1, 2i), i ∈
[5], and the second layer is shifted by one position. On the left, the bricks in the second layer acts on qubits
(2i, 2i + 1) , i ∈ [5], with the periodic identification n + 1 = 1. On the right, the second layer acts on qubits
(2i, 2i+ 1) , i ∈ [4], leaving the first and the nth qubit untouched.

qubits n + 1 and 1 are identified, and consequently, the n/2th random unitary acts on the qubit pair
(n, 1). Second, we treat the case of open boundary conditions, where the second layer does not act
on the first and the nth qubit. In practice, it can be more convenient to draw unitaries from a unitary
2-design, such as the Clifford group (which, for qubits systems, is even a 3-design [24, 25]). Indeed,
implementing Haar-random unitaries is very hard [26] and, moreover, employing Clifford unitaries
ensures one can classically post-process shadows efficiently [27].

In the following, we derive analytical results for the frame operator of random brickwork circuits
with open and periodic boundary conditions. Both BW circuit ensembles are clearly (left and right)
invariant under tensor products of single-qubit unitaries, in particular they are right-invariant under
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Pauli operators. By the preceding discussion in Section 2.2, we thus know that the frame operator
S is diagonal in the Pauli basis. It is thus sufficient to compute the matrix elements (v |S |v) for
all v ∈ F2n

2 . Moreover, both BW circuit ensembles are also invariant under local Clifford unitaries,
i.e. tensor products of single-qubit Clifford gates. This implies that (v |S |v) is invariant under the
exchange of X , Y , and Z operators, and hence depends only on the weight vector wt(v). As we show
shortly, (v |S |v) is in fact determined by non-vanishing pairs of elements in wt(v) corresponding to
a brick in the second layer, and by their positions in the circuit. To make this precise, we have to
introduce some definitions.

Let us consider a Pauli string v = v1 ⊕ · · · ⊕ vn ∈ F2n
2 . Roughly speaking, a brick is identified by

a pair of two adjacent qubits, and it is in the support of v if at least one of the qubits is in the support
of v. More formally, we define the vector of supported bricks as

ṽ = (ṽ1, . . . , ṽn/2) ∈ Fn/2
2 , ṽi := wt(v)2i ∨ wt(v)2i+1 , i ∈ [n/2] , (8)

where x ∨ y is the logical or between two bits x, y ∈ F2, i.e. x ∨ y = 1 if x = 1 or y = 1,
and 0 else. The last entry of ṽ is defined according to the boundary conditions of the second layer,
in particular ṽn/2 = wt(v)n ∨ wt(v)1 for periodic boundary conditions, and ṽn/2 ≡ 0 for open
boundary conditions, see also Fig. 2 for an explicit example how ṽ is computed. We say that the ith

W (v) = Y ⊗ X ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ Z ⊗ 1 ⊗ 1 ⊗ Y

v = 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

wt(v) = 1 1 0 0 0 0 1 0 0 1 (1)
∨ ∨ ∨ ∨ ∨

ṽ = 1 0 1 0 1

Fig. 2. Example how the vector of supported bricks is computed from a 10-qubit Pauli operator. The structure
of the shaded bricks is the one of the second layer of the circuit. First, the Pauli operator is transformed into
its binary representation v ∈ F20

2 . We apply a logical or (∨) per qubit to compute the weight vector wt(v).
Subsequently, this procedure is repeated for qubit pairs (2i, 2i + 1) and yields the vector of supported bricks
ṽ. For periodic boundary conditions, the last entry of ṽ is computed between the last and first entry of wt(v)

(here depicted by appending the first entry at the end in parentheses). The brickwork support of this example is
suppBW(v) = {1, 3, 5}, while its partition into local factors is partBW(v) = (1, 2).

brick in the second layer, with i ∈ [n/2], is in the support of v if ṽi = 1. Then, one can define the
brickwork support of v ∈ F2n

2 as suppBW(v) := {i | ṽi ̸= 0}. In the following, however, it will be
equally important to keep track of sequences of consecutive supported bricks in the circuit. Hence,
we introduce the following notation: A one-component of ṽ is a maximal tuple of consecutive ones
in ṽ, where “consecutive” is again meant w.r.t. the boundary conditions of the BW circuit. Then, we
define the partition of the brickwork support partBW(v) to be the integer sequence given by the (non-
unique) sizes of the one-components of ṽ. For instance, if we have periodic boundary conditions and
ṽ = (1, 0, 1, 0, 1) as in Fig. 2, then partBW(v) = (1, 2). Note that the maximal number of consecutive
ones is n/2− 1 and n/2 for open and periodic boundary conditions, respectively.

We can now state our main result:

Theorem 1 Let S be the frame operator associated with one round of a two-local brickwork
circuit with open or periodic boundary conditions in the second layer. Then, S is diagonal in the
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Pauli basis, and for v ∈ F2n
2

(v |S |v) =
{
Σpb(n) , partBW(v) = (n/2) ,∏

l∈partBW(v) Σob(2l + 2) , otherwise ,
(9)

where, for any m ∈ N even,

Σpb(m) =

(√
41 + 5

)m/2
+ (−1)m/2

(√
41− 5

)m/2

(5
√
2)m

, (10)

Σob(m) =
5

2
√
41

(
25− 3

√
41

) (√
41 + 5

)m/2
+ (−1)m/2+1

(
25 + 3

√
41

) (√
41− 5

)m/2(
5
√
2
)m . (11)

We provide a proof for the theorem in Section 3.1.
Let us briefly comment on the interpretation of the matrix elements of S. These values, determined

by the elements of partBW(v), are associated with different topologies of the effective BW circuit.
First, notice that the case partBW(v) = (n/2) can occur for periodic boundary conditions only

and corresponds to all bricks being in the support of v. In particular, for open boundary conditions,
the second case in Eq. (9) always applies.

Next, let us motivate the second case in Eq. (9). Concretely, let us first assume partBW(v) =

(n/2 − 1). In the case of open boundary conditions, this assumption corresponds to all bricks being
in the support of v, since ṽn/2 = 0 by definition. Likewise, this situation occurs in the BW circuit
with periodic boundary conditions whenever there exists exactly one i ∈ [n/2] such that ṽi = 0, see
Figure 3. Then, we can make two observations: First, the topology of the effective circuit changes
from periodic to open boundary conditions. Second, the effective circuit is equivalent –up to reorder-
ing of qubits on which it acts– to the fully supported circuit with open boundary conditions described
before, which is depicted in Figure 1.

Suppose now we have a BW circuit with open boundary conditions, and there exists another index
i such that ṽi = 0. Then, two cases can occur: Either, (a), i = 1 or i = n/2 − 1, which implies
partBW(v) = (n/2− 2), and we simply obtain a BW circuit with open boundary conditions on n− 4

qubits. Otherwise, (b), partBW(v) = (i−1, n/2− i−1) and the BW circuit again factorizes into two
independent BW circuits with open boundary conditions, acting on 2i and n− 2i qubits respectively.

In general, the effective circuit splits into as many independent BW circuits with open boundary
conditions as the number of elements in partBW(v), and the diagonal elements of S are given by
products of different contributions as in Eq. (9). These elements also determine the number of qubits
on which these subcircuits act, see Figure 3 for an example with |partBW(v)| = 2.

The frame operator provides, as proved in Ref. [19], a bound on the variance of the Pauli estimation
task. Here, the variance of a single sample is given as

σ2
BW(v, ρ) :=

∑
i

EU∼µfW (v)(i, U)2(Ei,U |ρ)− (W (v)|ρ)2 , (12)

where fW (v) is defined as in Eq. (7). Then, the following result holds:
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Fig. 3. Effective brickwork circuits associated with non-fully supported Pauli operators in the case n = 10. On
the left, the effective BW circuit associated with a v ∈ F20

2 such that ṽ2 = 0 and partBW(v) = (4). In this case,
open boundary conditions apply and the circuit is topologically equivalent to the right one in Figure 1. On the right,
the effective BW circuit associated with v ∈ F20

2 such that ṽ2, ṽ5 = 0, which implies suppBW(v) = {1, 3, 4}
and partBW(v) = (1, 2). In this case, the circuit is the product of two smaller subcircuits with open boundary
conditions. In particular, the subcircuits are defined on 4 and 6 qubits, respectively.

Proposition 1 ([19, Prop. 3]) For any state ρ, estimate W (v) using BW shadows. Then, σ2
BW de-

pends only on v ∈ F2n
2 , and

σ2
BW(v, ρ) ≡ σ2

BW(v) ≤ 1

(v |S |v) . (13)

We remark that the latter holds in general for any ensemble invariant under Pauli multiplication.
In Appendix C we provide an alternative proof for circuits with periodic boundary conditions

which holds for unitary 3-designs.

3.1 Proof of Theorem 1

In this section, we provide a proof of Eq. (5). It goes through the following steps: First, in Lemma 1,
we will prove that such eigenvalues are determined by partBW(v) for any v ∈ F2n

2 . Those eigenvalues
are associated with different, effective BW circuits. Exploiting the structure of the BW circuit, we can
‘split’ the action of the layers in two separate (2-local) group twirls, which can be evaluated using
standard results in the computation of moment operators (see Appendix A.1 for a quick introduction
on these techniques and the main facts of our interest). Next, in Lemmas 2 and 3, using tensor network
techniques, we reduce the problem of finding such eigenvalues to two different systems of recurrence
relations, associated with BW circuits with periodic and open boundary conditions, respectively. The
latter admit closed-form analytic solutions, which lead to the explicit expression of (v |S |v).

In the following, given an operatorA ∈ L(C2⊗C2), we denote byA(2) ≡ A⊗A ∈ L(C4⊗C4) the
operator acting on two copies of two qubit “sites”. In particular, we will extensively use the operator
F(2) ≡ F ⊗ F , where F is the flip operator which swaps tensor factors of C2 ⊗ C2. The action of F
is also depicted in Fig. 4.

As we observed in Section 2.2, the frame operator is diagonal in the Pauli basis [19] for Pauli
invariant measures. However, since unitaries in the BW circuit are Haar random, we can characterize
the matrix elements of the frame operator exploiting some known results about the second moment
operator [1], which we summarize in Lemma A.1 in Appendix A.1. As a side note, this also implies
that, in practice, we can draw unitaries from any unitary 2-design instead [28, 29], such as the Clifford
group. Then, the following holds:
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qubits

copies

F

Fig. 4. Flip operator swapping tensor factors of two copies of the third qubit site.

Lemma 1 Let S be the frame operator associated with one round of a two-local brickwork circuit
with periodic or open boundary conditions in the second layer. Then, S is diagonal in the Pauli basis,
and

(v |S |v) =
{

1
(10

√
3)n

tpb(n) , partBW(v) = (n/2)
1

15|ṽ|

∏
l∈partBW(v)

tob(2l+2)

(2
√
5)2l+2

, otherwise ,
(14)

where |ṽ| is the Hamming weight of ṽ, and

tpb(n) := Tr
[
(1+ F(2))

⊗n/2 D(2)

(
4F(2) − 1

)⊗n/2
D−1

(2)

]
, (15)

tob(n) := Tr
[
(1+ F(2))

⊗n/2
{
14 ⊗

(
(4F(2) − 1)⊗(n/2−1)

)
⊗ 14

}]
, (16)

with D|ψ1⟩ ⊗ · · · ⊗ |ψn⟩ := |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ ⊗ |ψ1⟩ being a cyclic shift operator.

Proof. Let µ be a probability measure on the BW circuit. Hence, µ is the product of probability
measures µij , where i = 1, . . . , n/2, and j = 1, 2. In other terms, the operator corresponding to the
ij th brick is sampled independently from all the others. Then, given u, v ∈ F2n

2 , we have

(u |S |v) = 1

d

∑
i

EU∼µ(u|Ei,U )(Ei,U |v)

=
1

d

∑
i

EU∼µ Tr[W (u)†U |i⟩⟨i|U†] Tr[U |i⟩⟨i|U†W (v)]

= EU∼µ⟨0 |U⊗2†W (u)⊗W (v)U⊗2 |0⟩ . (17)

Consider now the following factorization of W (v):

W (v) =W (v2,3)⊗ · · · ⊗W (vn,1) , (18)

where, for each i ∈ [n/2],
v2i,2i+1 ≡ v2i ⊕ v2i+1 ∈ F2

2 ⊕ F2
2 , (19)

and each W (v2i,2i+1) is as in Eq. (3). Moreover, writing U = DU2D
†U1, where Ui is the tensor

product of two-local Haar random unitaries, it follows

(u |S |v) = Tr
[
EU1

[
U⊗2
1 |0⟩⟨0|U⊗2†

1

]
D(2) EU2

[
U⊗2†
2 D†

(2)W (u)⊗W (v)D(2)U
⊗2
2

]
D†

(2)

]
.

(20)
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Hence, by Lemma A.1 in Appendix A.1, we have

EU1
U⊗2
1 |0⟩⟨0|⊗2U⊗2†

1 =
1

10n/2
P

⊗n/2
sym2 , (21)

EU2U
⊗2
2 D†

(2)W (v)⊗W (u)D(2)U
⊗2†
2 = δu,v

⊗
i∈[n/2]

Qṽi , (22)

where

Qṽi :=

{
1 if ṽi = 0 ,
1
15

(
4F(2) − 1

)
otherwise .

(23)

Therefore, writing Psym2 = 1
2

(
1+ F(2)

)
,

(v |S |v) = 1

(2
√
5)n

Tr

(1+ F(2))
⊗n/2 D(2)

⊗
i∈[n/2]

Qṽi D
−1
(2)

 . (24)

Finally, we distinguish cases for the latter according to partBW(v). In particular, if partBW(v) =

(n/2), then Qṽi = 1
15

(
4F(2) − 1

)
∀i = 1, . . . , n/2, and Eq. (15) reads immediately from Eq. (24).

Next, assume partBW(v) = (n/2 − 1). In particular, due to invariance under translations of bricks,
we can assume without loss of generality that ṽn/2 = 0, meaning Qṽn/2

= 1. This yields

(v |S |v) = 1

(2
√
5)n

1

15n/2−1
Tr

[(
1+ F(2)

)⊗n/2
1⊗

(
4F(2) − 1

)⊗n/2−1 ⊗ 1
]
. (25)

Consider now there exists i ∈ [n/2 − 1] such that ṽi = 0. Then, we distinguish between two cases.
If i = 1 or i = n/2 − 1, then (v |S |v) is still given by an expression that is morally equivalent to
Eq. (25) up to obvious modifications determined by partBW(v) = (n/2 − 2). More specifically, we
have

(v |S |v) = 1

(2
√
5)n

1

15n/2−2
Tr

[
1+ F(2)

]
Tr

[(
1+ F(2)

)⊗n/2−1
1⊗

(
4F(2) − 1

)⊗n/2−2 ⊗ 1
]

=
1

(2
√
5)n−2

1

15n/2−2
tob(n− 2) . (26)

On the other hand, if i ∈ {2, . . . , n/2−2}, we have partBW(v) = (i−1, n/2−1− i), and the circuit
splits into two subcircuits, yielding

(v |S |v) = 1

(2
√
5)n

Tr
[(
1+ F(2)

)⊗i
1⊗

(
4F(2) − 1

)⊗(i−1) ⊗ 1
]

× Tr
[(
1+ F(2)

)⊗n/2−i
1⊗

(
4F(2) − 1

)⊗n/2−1−i ⊗ 1
]

=
1

(2
√
5)n

tob(2i) tob(n− 2i) . (27)

All other cases follow from analogous considerations □.

Note that the traces in the latter expression have two main contributions. The first one, which
is proportional to the projector on the symmetric subspace Psym2 , comes from scrambling Ei with
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the first layer of the BW circuit, and it is independent of v. The second layer, on the other hand,
acts on W (u) ⊗ W (v), and the result of the scrambling for each pair of qubits is an operator that
depends on v. This means that effectively the second layer determines whether the circuit factorizes
at a given position, and the number of qubits on which each subcircuit is defined is determined by the
corresponding first layer of random unitaries.

The next couple of technical results will give a way to evaluate the traces appearing in the previous
lemma. The core steps of the proofs are most conveniently presented in terms of tensor network
diagrams and deferred to Appendix B.

Lemma 2 Let t1(n), t2(n), t3(n) defined as follows:

t1(n) := Tr
[(
1⊗

(
1+ F(2)

)⊗n/2−1 ⊗ 1
) (

4F(2) − 1
)⊗n/2

]
, (28)

t2(n) := Tr
[(
F ⊗

(
1+ F(2)

)⊗n/2−1 ⊗ F
) (

4F(2) − 1
)⊗n/2

]
, (29)

t3(n) := Tr
[(
1⊗

(
1+ F(2)

)⊗n/2−1 ⊗ F
) (

4F(2) − 1
)⊗n/2

]
. (30)

Then, tpb(n) = t1(n) + t2(n) and the following system of recursive relations hold true:
t1(n) = 24 t3(n− 2)

t2(n) = 24 t3(n− 2) + 60 t2(n− 2)

t3(n) = 24 t1(n− 2) + 60 t3(n− 2)

, n ≥ 2 , n = 0 mod 2 , (31)

with the following base conditions: 
t1(2) = 0

t2(2) = 60

t3(2) = 24

. (32)

Proof. The fact that tpb(n) = t1(n) + t2(n) is clear from the definition of t1 and t2. Relations (31)
and (32) are proved in Appendix B.1 □.

Lemma 3 Let t1(n), t2(n) be defined as follows:

t1(n) := Tr
[{
14 ⊗ (1+ F(2))

⊗(n/2−1)
}{

(4F(2) − 1)⊗(n/2−1) ⊗ 14

}]
, (33)

t2(n) := Tr
[{
F ⊗ (1+ F(2))

⊗(n/2−1)
}{

(4F(2) − 1)⊗(n/2−1) ⊗ 14

}]
. (34)

Then, tob(n) = 4t1(n) + 2t2(n), and the following recursive relations hold true:{
t1(n) = 24 t2(n− 2)

t2(n) = 24 t1(n− 2) + 60 t2(n− 2)
n ≥ 4 , n = 0 mod 2 , (35)

with the following base conditions: {
t1(4) = 48

t2(4) = 216
. (36)
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Proof. First, observe that

tob(n) := Tr
[
(1+ F(2))

⊗n/2
{
1⊗

(
4F(2) − 1

)⊗(n/2−1) ⊗ 1
}]

= Tr
[{

Tr1
[
(1+ F(2))

]
⊗

[
(1+ F(2))

⊗(n/2−1)
]}{

(4F(2) − 1)⊗(n/2−1) ⊗ 1
}]

= Tr
[{

(41+ 2F )⊗ (1+ F(2))
⊗(n/2−1)

}{
(4F(2) − 1)⊗(n/2−1) ⊗ 1

}]
= 4 t1(n) + 2 t2(n) . (37)

Relations (35) and (36) are proved in Appendix B.2 □.

Proof. [Proof of Theorem 1] As discussed before, S is diagonal in the Pauli basis, and we only need
to characterize its diagonal elements (v |S |v), which, by Lemma 1, are determined by partBW(v).
In the first case, when partBW(v) = (n/2), the circuit retains periodic boundary conditions, and
(v |S |v) is proportional to tpb(n) according to Eq. (14). By Lemma 2, tpb(n) can be expressed as the
sum of two terms that can be calculated recursively using the system of recurrence relations (31), and
one can check that the solution of this system is given by

tpb(n) = 6n/2
[(√

41 + 5
)n/2

+ (−1)n/2
(√

41− 5
)n/2

]
. (38)

This solution can be found with a computer algebra system, or, by hand, using the Z-transform [30],
which maps recurrence relations to algebraic equations. Inserting Eq. (38) into Eq. (14) then shows
Eq. (10).

Otherwise, partBW(v) determines the factorization into (possibly many) subcircuits with open
boundary conditions. In particular, each entry l ∈ partBW(v) determines a (factorized) subcircuit
acting on 2l + 2 qubits. Each such subcircuit evaluates up to a multiplicative constant to tob(2l + 2),
that, by Lemma 3 fulfills the recurrence relations (35). These also admit a closed-form solution that
can be found with the same techniques and is given as

tob(m) =
6m/2

6
√
41

[(
25− 3

√
41

)(√
41 + 5

)m/2

+ (−1)m/2+1
(
25 + 3

√
41

)(√
41− 5

)m/2
]
,

(39)
for any m ≡ 2l + 2. This shows Eq. (11) for each subcircuit □.

As a final remark, observe that the proof of the theorem can be generalized to systems of arbitrary
prime or power of prime local dimension. In particular, redefining ṽ according to the local dimension,
Eq. (24) holds true with obvious modifications for any prime p, and the same holds for the traces
Eqs. (15) and (16).

Finally, one may wonder whether it is possible to find analytical expressions for the frame oper-
ator associated with circuits with more layers. However, in this case, splitting the scrambling over
multiple layers is more involved, since non-trivial ‘intertwinings’ between layers occur. This implies
that the analytical contraction of the corresponding tensor network is more difficult compared to the
calculations of Appendix B, and one might only resort to numerical methods to evaluate the frame
operator [17, 18].
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4 Discussion and comparison with local Clifford circuits

Given the closed analytic expressions for the frame operator associated with the BW circuit, we can
now compare the performance with the local Cliffords (LCs) ensemble.

For LCs, the variance is exponential in the weight of the Pauli observable [7]. More precisely,
for any v ∈ F2n

2 we define the local Cliffords support as the set of weighted sites of v, namely
suppLC(v) := {i | wt(v)i ̸= 0}. Then, since the LCs ensemble is clearly invariant under multiplica-
tion with Pauli operators, one can apply Proposition 1 to get a bound on the variance. In particular,
σ2
LC(v) ≤ 1

(v |SLC |v) = 3| suppLC(v)|, where SLC is the frame operator associated with LCs shadows
(see Appendix A.2 for the derivation of its matrix elements). Notice also that, although this bound
corresponds to the shadow norm [7], one does not need to maximize over all the states. The inequality
solely originates in disregarding the square of the first-moment (Ei,UfW (v)(i, U))2 which agrees by
construction with Tr(W (v)ρ)2 for any ensemble. Therefore, we are most of the time comparing the
exact expressions for the second moment Ei,U [fW (v)(i, U)2] allowing us to formally deduce lower
and upper bounds. In the following, all our expressions for the variances are understood as being up
to first-moment terms and we write, e.g. σ2

LC = 3n.
As derived in the previous section, the variance for the brickwork circuit depends on the partition-

ing of the brick support into local factors. In principle, for any Pauli string v, we are able to compute
such variance by means of Theorem 1. We also remark that the value obtained in this way are strict
upper bounds, since we are only disregarding the square of the first moment term, which is upper
bounded by 1. For simplicity, to compare the BW and LCs ensembles, we derive lower and upper
bounds to the exact variance expression that make the asymptotic scaling transparent.

We obtain the simplest expression when partBW(v) = (n/2). In this case, Theorem 1 together
with Proposition 1 implies that 0.8 · 2n < σ2

BW < 2.1n+1; see Appendix D for details.
To compare the scaling of σ2

BW to the one of σ2
LC, we introduce some notation to distinguish

different regimes. First, recall that we say that v ∈ F2n
2 is supported on the ith brick if ṽi = 1, and,

by definition, ṽi = 1 if at least one of wt(v)2i and wt(v)2i+1 is non-zero. A supported brick can
further be of two types. If wt(v)2i ∧ wt(v)2i+1 = 1, namely the logical and between the two local
weights is non-trivial, the ith brick is said to be fully supported. Otherwise, the ith brick is said to
be half supported if the logical xor between the two local weights is non-trivial, or more formally
wt(v)2i ⊻ wt(v)2i+1 = 1.

Still assuming partBW(v) = (n/2), we have two extreme cases:

• If each brick is fully supported, then σ2
LC = 3n > 2.1n+1 > σ2

BW for all n ≥ 2. Thus,
the brickwork circuits have an improved sample complexity compared to single qubit random
Clifford unitaries. The number of samples is reduced by one order of magnitude for n ≥ 8 and
by a factor of about 0.5 · 10−4 for n = 20.

• If each brick is half-supported, then σ2
LC = 3n/2 < 1.75n < 0.8 · 2n < σ2

BW for all n ≥ 2.
In this case, the BW circuit retains its periodic structure, while LCs shadow sees the ‘correct’
number of qubits in the support leading to a smaller sample complexity.

Similar considerations apply if partBW(v) = (n/2 − 1) i.e. when (v |S |v) is given by a single
term with open boundary condition. Evaluations of the expressions for both cases are summarized in
Figure 5. We observe that the scaling for both cases only differ in a constant factor as we also explain
analytically in Appendix D.
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Fig. 5. Comparison of variances (exact evaluation of second moments) calculated for brickworks and local
Cliffords. For magenta and green triangles, we assumed suppLC(v) = n and suppLC(v) = n/2, respectively.
For blue and red dots, we assumed partBW(v) = (n/2) and partBW(v) = (n/2− 1), respectively.

The two extreme cases suggest that shadows with BW circuits outperform the LCs ones when the
number of fully supported bricks reaches a certain threshold. More specifically, based on our bounds,
we can guarantee a lower sample complexity with BW circuits if | suppLC(v)| ≥ 0.68(n+ 1) for the
cases partBW(v) = (n/2) and partBW(v) = (n/2−1), see Appendix D. Furthermore, the additional
constant term can be decreased for larger number of qubits. Evaluations of the threshold for up to 100

qubits are summarized in Figure 6.

Fig. 6. Numerical evaluation of the threshold that determines the BW sample advantage over LCs shadows in the
case partBW(v) = (n/2). On the x axis, we represent the total number of qubits. On the y axis, we represent
the ratio between the smallest number of qubits such that σ2

BW ≤ σ2
LC and the total number of qubits. The red

line represents the ratio between the lower bound for | suppLC(v)| and the total number of qubits. The numerical
dots are obtained by a direct comparison of σ2

BW and σ2
LC: For each fixed n, and starting from the case where

each brick is half-supported, we evaluated both of them for an increasing number of qubits (i.e. increasing the
number of fully supported bricks), until the condition σ2

BW ≤ σ2
LC has been satisfied.

Relaxing the restriction on partBW, we can ensure that σ2
BW ≤ σ2

LC provided that

| suppLC(v)| ≥ 0.8|partBW(v)|+ 1.4 |ṽ| , (40)

where |partBW(v)| is the number of entries in partBW(v) and |ṽ| the Hamming weight of ṽ, i.e. the
number of supported bricks in the circuit. The derivation of this criterion is given in Appendix D.
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The main contribution (up to rescaling factors) is given by the size of suppBW (which, in turn,
also influences the number of entries in partBW), while the number of connected components in the
effective circuit can be seen as a ‘correction’ to the naive comparison between the notions of supported
Pauli’s and bricks. In fact, by Eq. (24), the criterion is more likely to be satisfied if the local Pauli’s
are bunched together: Sparse Pauli observables are associated with (effective) BW circuits with many
disjoint partitions, which imply a higher threshold. For instance, for a fixed | suppLC(v)|, as the the
number of distinct partitions increases, each subcircuit is less densely populated, and the threshold
for each subcircuit becomes harder to reach. Fig. 7 shows two non-fully supported Pauli observables,
supported on a different number of qubits, associated with the BW circuit structure. Eq. (40) is
satisfied by the second Pauli string only.

v1

v2

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18

Fig. 7. Effective circuits associated with two non-fully supported Pauli observables v1, v2. Eq. (40) is sat-
isfied by v2 only. In particular, we have | partBW(v1)| = | partBW(v2)| = (2, 3, 1), | suppBW(v1)| =

9, | suppBW(v2)| = 11, which imply σ2
BW(v1) = σ2

BW(v2) ≈ 58 · 103, σ2
LC(v1) ≈ 19 · 103, σ2

LC(v2) ≈
177 · 103.

The threshold criterion is likely to hold for random Pauli observables, since, for a fixed n, few
additional qubits are needed to reach the threshold. On the other hand, for any random Pauli string
v ∈ F2n

2 , the probability of the ith brick to be fully supported is strictly larger than the probability
of being half supported. Indeed, evaluating the bounds for random Pauli strings we observe that the
brickwork circuit gives better performance with high probability drawing random Pauli strings, and

p(σ2
BW ≤ σ2

LC)
n big−−−→ 1, see Figure 8.

In conclusion, we showed that LCs shadows still have their own merit, in particular they are still the
best choice for very sparse, local Pauli observables. However, they are significantly outperformed in
all the other cases. For instance, for fully supported bricks, we observed that the variance is scaling as
≈ 2.1n, which is very close to the performance of a global Cliffords ensemble for a moderate number
of qubits, namely global properties may be predicted using brickwork shadows. This represents a
particular case of the shallow shadows presented in [18], where the authors argue that brickwork
circuits (in their case, of depth log(n)) are expected to have the same sample complexity as the global
Clifford scheme.

4.1 Numerical experiments

We now compare numerically performances of BW and LCs estimation procedures. We fix n = 10

as the number of qubits, and consider for simplicity ρ = |0⟩⟨0| as the input state. Then, we collect
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Fig. 8. Probability of σ2
BW ≤ σ2

LC, evaluated on 216 random bitstrings for each value of n.

numerical data for three different Z-type operators, that we assume to be supported on each brick. In
particular, we consider the following Pauli strings: vfull, which is supported on each qubit, vhalf , where
each brick is half supported, and vthres, which is supported on 8 qubits, ensuring it satisfy the threshold
criterion discussed in the last section. Notice that it does not matter where the two half supported
bricks are located in vthres, since all of them are supported. Finally, drawing unitaries from the
Clifford group, we can classically simulate the whole procedure efficiently using standard techniques
[27, 31, 32]. More details on the algorithms are provided in Appendix E and at the following link:
https://github.com/MirkoArienzo/shadow_short_circuits.

Then, we fix m as the number of samples, and compute the empirical average over all samples
as described in Section 2.2, which yields an estimator for the given observables and ρ = |0⟩⟨0|. We
run this procedure 100 times, and evaluate the average of the estimators over all runs. The latter has
standard deviation given by σ/

√
100m, with σ = σBW, σLC. Finally, the task is repeated for different

values of m.
The results of the simulations, shown in Figure 9, agree with the previous discussion. In particular,

for circuits that are fully supported or over the threshold, the convergence to the expected values is
faster using BW circuits, while the converse happens in the case of half supported circuits.

5 Conclusions

Shadow estimation with short circuits can interpolate between the originally proposed constructions
with local and global Clifford unitaries. We derived closed-form analytic expressions for the frame
operator (and its inverse) associated with the arguably simplest circuit construction: one round of
a brickwork circuit. In particular, we observed how the 2-design property of bricks can be used to
determine systems of recurrence relations for the contributions of subcircuits with effectively peri-
odic and open boundary conditions. The recurrence relations admit closed-form solutions and can
be used to calculate the classical shadow and the corresponding linear estimators. Furthermore, and
in contrast to numeric approaches, we explicitly worked out and analyse the sample complexity of
Pauli estimation with one round of a brickwork circuit. This gave rise to a simple criterion for the
structure of the support of the Pauli observable in order to have a scaling advantage compared to using
local Clifford unitaries. Going beyond the worked out example, our results provide clear evidence for
the potential of using short circuits for shadow estimation but also indicate limitations and the need

https://github.com/MirkoArienzo/shadow_short_circuits


Mirko Arienzo, Markus Heinrich, Ingo Roth, Martin Kliesch 977

Fig. 9. Convergence of the estimators ŵ(vfull), ŵ(vhalf), and ŵ(vthres), respectively, as defined in Section 2.2.
We consider a system of 10 qubits with input state ρ = |0⟩⟨0|, ensuring we can classically simulate the whole
procedure efficiently. For each fixed m, 100 runs have been performed and then the average over all of them, with
the respective standard deviation, has been plotted. BW estimator is converging faster for vfull and vthres.

for careful comparison in specific applications. Besides shadow estimation, the analytic expression
for the frame operator can potentially also unlock the usage of short depth circuits in related tasks
involving randomized measurements such as benchmarking and mitigation.

We expect that generalizing our analytic approach will become considerably more involved for
deeper circuits, especially for deriving the exact frame operator required for constructing the clas-
sic shadow. To this end, we regard numerical methods as a considerably more flexible approach.
Nonetheless, it might be possible to derive sample complexity bounds for deeper circuits and other
estimation tasks following and generalizing the argument presented here. Altogether, our work pro-
vides both the analytical results and the motivation for implementing short depth quantum circuits in
an actual shadow estimation experiment. After all, the merits of the approach have to be evaluated in
practice.
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Appendix A

Appendix A.1. Auxiliary results

Here, we include some basic facts concerning moment operators. For a self-contained introduction,
see [1, Section II.I]. Let µ be the Haar probability measure on the unitary group U(d). The k-th
moment operator of µ is defined by

M(k)
µ (A) :=

∫
U(d)

dµ(U)U⊗kAU†⊗k, A ∈ Ckd×kd. (A.1)

The operator M(k)
µ (A) is often referred to as the group twirling of the operator A. It is very easy to

check with the invariance of the Haar measure that M(k)
µ commutes with U⊗k for any U ∈ U(d),

and in particular it is the projector onto the set of such operators endowed with the Hilbert-Schmidt
inner product. Hence, by Schur-Weyl duality, one can prove that M(k)

µ can be expressed as the linear
combination of some suitable projectors associated with the irreps of the symmetric group Sk. In
particular, we will use the following result:

Lemma A.1 Let ν be the normalized Haar measure on U(d). Then, for any integer k ≥ 1

EU∼ν U
⊗k|0⟩⟨0|U⊗k† =

(
k + d− 1

d− 1

)−1

Psymk , (A.2)

which evaluates to 2
d(d+1) (1 + F ) for k = 2, where Psymk is the projector onto the completely

symmetric subspace and F ∈ L(Cd ⊗ Cd) the flip operator. Moreover, given u, v ∈ F2n
2 ,

EU∼ν U
⊗2W (u)⊗W (v)U⊗2† =

{
1 , if u = 0 and v = 0
δu,v

d2−1 (dF − 1) , otherwise
, (A.3)

where δu,v is the Kronecker δ over F2n
2 .

Proof. See e.g. [1, Section II.I] □.

Finally, recall that a unitary k-design is a probability measure ν on U(d) which reproduce expec-
tation values of the Haar measure µ up to degree k. Formally, this means that, for any A ∈ CkN⊗kN ,∫

U(d)

dν(U)U⊗kAU†⊗k =

∫
U(d)

dµ(U)U⊗kAU†⊗k . (A.4)

Therefore, the relevant results (for our purposes) in Lemma A.1 hold for any unitary 2-design.
We remark that unitary k-designs are fundamental for practical implementations, since we are

often interested only in the first k moments and, more importantly, drawing Haar random unitaries is
a very hard task.

Appendix A.2. Frame operator for Local Cliffords shadows

Here, we include the calculation for the frame operator of LC shadows. It follows the same steps as
the calculation given in Section 3.1 for BW shadows. However, dealing with only one layer of Clifford
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unitaries makes things more straightforward. In particular, given u, v ∈ F2n
2 , and denoting by SLC the

frame operator associated with LC shadows, we have

(u |SLC |v) =
1

d

∑
i

EU∼µ(u|Ei,U )(Ei,U |v)

=
1

d

∑
i

EU∼µ Tr[W (u)†U |i⟩⟨i|U†] Tr[U |i⟩⟨i|U†W (v)]

= EU∼µ⟨0 |U⊗2†W (u)⊗W (v)U⊗2 |0⟩ . (A.5)

Considering the factorization

W (v) =W (v1)⊗ · · · ⊗W (vn) , (A.6)

by Lemma A.1, we have

EU∼µU
⊗2†W (u)⊗W (v)U⊗2 = δu,v

1

3| suppLC(v)| (2F − 1)
⊗| suppLC(v)|

, (A.7)

where suppLC(v) := {i | wt(v)i ̸= 0}.
Therefore, it follows

(v |SLC |v) =
1

3| suppLC(v)| ⟨0 |2F − 1|0⟩| suppLC(v)|

=
1

3| suppLC(v)| . (A.8)

Appendix B

In this section, we show how t1, t2, t3 (respectively, t1, t2) appearing in Lemma 2 (respectively,
Lemma 3) can be written as a system of recurrence relations using tensor networks.

First, notice that each operator in the traces Eqs. (15) and (16) acts on two copies of 2 qubits. That
means that each brick is represented by two overlapping copies, see Fig. B.1. Next, given (the two

Fig. B.1. Each local operator corresponds to two overlapping copies of a brick in the BW circuit.

copies of) a brick, we set for notational purpose

≡ .
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Now notice that each brick is made up of identities and flips, the latter is usually represented as

F = . (B.1)

Finally, tpb(n) and tob(n) will be simplified exploiting linearity and separability of bricks. For this
purpose, and to simplify the notation, we rewrite each pair of lines corresponding to the same qubit
as a single one. In particular, if two lines are straight (the identity operator is applied), we summarize
them as a single black line, otherwise as a red line when the flip operator is applied. For instance, for
a brick 1+ F in the first layer of the circuit (here F ≡ F(2) for simplicity), we have

1+ F(2) = + ≡ + .

Appendix B.1. Proof of relations (31) and (32)

We show how to derive recurrence relations in Lemma 2. First, recall the following definitions:

t1(n) := Tr
[(
1⊗

(
1+ F(2)

)⊗n/2−1 ⊗ 1
) (

4F(2) − 1
)⊗n/2

]

=
. . .

, (B.2)

t2(n) := Tr
[(
F ⊗

(
1+ F(2)

)⊗n/2−1 ⊗ F
) (

4F(2) − 1
)⊗n/2

]

=
. . .

, (B.3)

t3(n) := Tr
[(
1⊗

(
1+ F(2)

)⊗n/2−1 ⊗ F
) (

4F(2) − 1
)⊗n/2

]

= . (B.4)
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Therefore, we have

t1(n) =
. . .

= 8
. . .

− 4
. . .

= 16
. . .

+ 32
. . .

− 16
. . .

− 8
. . .

= 24 t3(n− 2) .
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Similarly, for t2 we obtain

t2(n) =
. . .

= 16
. . .

− 2
. . .

= 32
. . .

+ 64
. . .

− 8
. . .

− 4
. . .

= 24 t3(n− 2) + 60 t2(n− 2) .
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Finally, for t3 a similar calculation yields

t3(n) =
. . .

= 16
. . .

− 2
. . .

= 32
. . .

+ 64
. . .

− 8
. . .

− 4
. . .

= 24 t1(n− 2) + 60 t3(n− 2) .

Moreover,

t1(2) = 4F(2) − 1 = 0 ,

t2(2) = 4F(2) − 1 = 60 ,

t3(2) = 4F(2) − 1 = 24 .

Appendix B.2. Proof of relations (35) and (36)
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Recall that, in this case,

t1(n) := Tr
[{
14 ⊗ (1+ F(2))

⊗(n/2−1)
}{

(4F(2) − 1)⊗(n/2−1) ⊗ 14

}]
(B.5)

=
. . .

, (B.6)

t2(n) := Tr
[{
F ⊗ (1+ F(2))

⊗(n/2−1)
}{

(4F(2) − 1)⊗(n/2−1) ⊗ 14

}]
(B.7)

=
. . .

. (B.8)

For the first trace we have

t1(n) =
. . .

= 8
. . .

− 4
. . .

= 16
. . .

+ 32
. . .

− 16
. . .

− 8
. . .

= 24 t2(n− 2) .
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Similarly,

t2(n) =
. . .

= 16
. . .

− 2
. . .

= 32
. . .

+ 64
. . .

− 8
. . .

− 4
. . .

= 24 t1(n− 2) + 60 t2(n− 2) .

Moreover,

t1(4) =
1+ F(2)

4F(2) − 1
= 8 1+ F(2) − 4 1+ F(2)

= 48 ,

t2(4) =
1+ F(2)

4F(2) − 1
= 16 1+ F(2) − 2 1+ F(2)

= 216 .

Appendix C

In this section, we provide an alternative proof of Proposition 1 in the case of BW circuits with
periodic boundary conditions that relies on the 3-design property of the multiqubits Clifford group. In
particular, it is based on the following result:

Lemma C.1 Let n ∈ N and let d = 2n be the dimension of a n-qubits system. If 0 ̸= v ∈ F2n
2 , then

EU∈Cln(2)U
⊗3

(
W (v)⊗2 ⊗W (u)

)
(U†)⊗3 =

1

d2 − 1
δu,0 (dF − 1d2)⊗ 1d ∀u ∈ F2n

2 . (C.1)
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Moreover,
EU∈Cln(2)U

⊗3
(
1⊗2
d ⊗W (u)

)
(U†)⊗3 = δu,01d3 ∀u ∈ F 2n

2 . (C.2)

Proof. First, we fix notations for the phase space representation of Clifford operators.
Let [·, ·] : F2n

2 × F2n
2 → F2 be the standard symplectic product over F2n

2 . Let α̃g : F2n
2 → Z4 be

a centre fixing automorphism of the associated Heisenberg-Weyl group, where g ∈ Sp2n(2). One can
prove that α̃g = αg + [w, ·], where αg : F2n

2 → F2 is a suitable function satisfying the compatibility
condition αg(0) = 0 [33, Sec. 3.3]. Notice also that |Cln(2)| = d2|Sp2n(2)|.

With these notations, the action of U ∈ Cln(2) on Weyl operators can be written as

UW (v)U† := χ([a, v] + αg(v))W (g(v)) , (C.3)

where χ(v) := i−vz·vx denotes the character of W (v).
Hence,

EU∈Cln(2)U
⊗3

(
W (v)⊗2 ⊗W (u)

)
(U†)⊗3

=
1

|Cln(2)
|
∑

a∈F2n
2

χ([a, 2v + u])
∑

g∈Sp2n(2)

χ(2αg(v) + αg(u))W (g(v))⊗2 ⊗W (g(u))

=
1

22n

∑
a∈F2n

2

χ([a, u])
1

|Sp2n(2)|
∑

g∈Sp2n(2)

χ(αg(u))W (g(v))⊗2 ⊗W (g(u))

=
1

|Sp2n(2)|
δu,0

∑
g∈Sp2n(2)

W (g(v))⊗2 ⊗W (g(u))

=
1

|Sp2n(2) · v|
δu,0

∑
w∈Sp2n(2)·v

W (w)⊗W (w)⊗ 12 . (C.4)

Going from the third to the fourth line, we used
∑

a∈F2n
2
χ([a, u]) = d2δu,0. In the last step, we wrote

the average over Sp2n(2) as an average over the orbit of v under Sp2n(2). Notice that, since v ̸= 0,
Sp2n(2) acts transitively on F2n

2 \ 0 [33], the average over such orbit can be rewritten as an average
over F2n

2 \ 0. Moreover, recalling that the flip operator has the following Pauli expansion:

F =
1

d

∑
w∈F2n

2

W (w)⊗W (w) , (C.5)

it holds that

EU∈Cln(2)U
⊗3

(
W (v)⊗2 ⊗W (u)

)
(U†)⊗3 =

1

d2 − 1
δu,0 (dF − 1d2)⊗ 1d. (C.6)

If v = 0, the assertion follows trivially from previous considerations □.

We will also need the following calculation:

Lemma C.2 Given two copies of a system of 3 qubits, it holds

Tr3 Psym3 =
d+ 2

6
(1+ F ) . (C.7)
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Proof. We prove the latter using tensor network diagrams. First, let us consider the decomposition
Psym3 = 1

6

(
1+ P(1,2) + P(1,3) + P(2,3) + P(1,2,3) + P(1,3,2)

)
, P(·) are unitary operators associated

with elements of the permutation group S3, and each a ∈ S3 is represented in cyclic notation. Then,

6 Psym = + +

+ + +

= (d+ 2)(1+ F ) .

The assertion is than proved □.

Proposition C.1 For any state ρ, estimate W (v) using BW shadows with periodic boundary condi-
tions. Then, the variance of the estimator depends only on v ∈ F2n

2 , and

σ2
BW(v) ≤ 1

(v |S |v) . (C.8)

Proof. In the following, we will denote by D the cyclic shift operator between Hilbert spaces as
before, so that a random brickwork unitary is given by U = DU2D

†U1, where Ui, i = 1, 2, is the
tensor product of two-local Haar random unitaries. For a given operator A ∈ L(C2 ⊗ C2), we will
also consider the operator acting on three copies of two qubit sites A(3) := A⊗A⊗A ∈ L(C8⊗C8).

According to the shadow estimation protocol, we estimate the expectation value Tr[W (v)ρ] of
some Pauli observable W (v) by measuring ρ many times in the computational basis after having
applied U ∼ µ, where µ is a probability measure on the ensemble of BW operators. Then, a single
such sample has a variance σ2

BW(v, ρ) bounded as

σ2
BW(v, ρ) :=

∑
i

EU∼µ(W (v)|Ẽi,U )
2(Ei,U |ρ)− Tr[W (v)ρ]2

≤
∑
i

EU∼µ Tr
[
S−1(W (v))U†EiU

]2
Tr

[
U†EiUρ

]
= dEU∼µ Tr

[
U⊗3†|0⟩⟨0|⊗3U⊗3

(
S−1(W (v))⊗2 ⊗ ρ

)]
=

d

(v |S |v)2 EU∼µ Tr
[
U⊗3†|0⟩⟨0|⊗3U⊗3

(
W (v)⊗2 ⊗ ρ

)]
=

1

(2
√
5)n

d

(v |S |v)2 EU2
Tr

[
P

⊗n/2
sym3 D(3) U

⊗3
2

(
D†

(3)W (v)⊗2 ⊗ ρD(3)

)
U⊗3†
2 D†

(3)

]
,

(C.9)

where in the last step we applied again Eq. (A.2) from Lemma A.1 and U = DU2D
†U1. Notice that

Psym3 acts on triples of two neighboring qubit sites.
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Consider now the expansion in the Pauli basis ρ =
∑

u∈F2n
2
cuW (u), where cu := 1

d Tr(W (u)ρ),
and for any w ∈ F2n

2 consider the decomposition

D†W (w)D =W (w2,3)⊗ · · · ⊗W (wn,1) , (C.10)

which agrees with the structure of the second layer of the BW circuit. Then, by Lemma C.1, we have

EU2
U⊗3
2

(
D†

(3)W (v)⊗2 ⊗W (u)D(3)

)
U⊗3†
2 = δu,0

⊗
i∈[n/2]

Qv̂i
⊗ 1d , (C.11)

from which it follows

σ2(v, ρ) ≤ 1

(2
√
5)n

d

(v |S |v)2 c0 Tr

P⊗n/2
sym3 D(3)

⊗
i∈[n/2]

Qṽi D
−1
(3) ⊗ 1d

 , (C.12)

whereQṽi is defined in Eq. (23). Hence, σ2(v, ρ) ≡ σ2(v), since c0 = 1/d. According to Lemma C.1,
this means that each Clifford unitary in the second layer depolarizes any dependency from the corre-
sponding two-qubits Weyl operator appearing in the decomposition of ρ in the Pauli basis; periodic
boundary conditions ensure that this applies to each pair of qubits. Finally, by Lemma C.2,

σ2(v) ≤ 1

(2
√
5)n

1

(v |S |v)2 Tr

Tr3(P⊗n/2
sym3 ) D(2)

⊗
i∈[n/2]

Qṽi
D−1

(2)


=

1

(2
√
5)2n

1

(v |S |v)2 Tr

(1+ F )⊗n/2 D(2)

⊗
i∈[n/2]

Qṽi D
−1
(2)


=

1

(v |S |v) , (C.13)

and the assertion is proved □.

Finally, notice that Lemma C.1 does not hold for arbitrary values of the local dimension. Indeed,
in odd dimensions, the flip operator has the Weyl expansion

F =
1

d

∑
v∈F2

p

W (v)⊗W (−v) , (C.14)

meaning the operator 1
d

∑
v∈F2n

2
W (v)⊗W (v) admits a nice expression for fields of characteristic 2

only, and the proof of Proposition C.1 holds for qubit systems only.

Appendix D

For the construction of the classical shadow, the exact expressions stated in Theorem 1 are required.
We here derive simpler (and looser) bounds for controlling the variance.

Let us start with the case relevant for partBW(v) = (n/2). Set a := (
√
41 + 5)1/2/(5

√
2) and

b := i(
√
41 − 5)1/2/(5

√
2). We have 2 < 1/a < 2.1, 1

1−|b/a|2 ≤ 1.2 and 1
1+|b/a|2 ≥ .89. Further,

since |b/a| < 1 and assuming n ≥ 2 and n even,

1

Σpb(n)
=

1

an + bn
=

1

an
1

1 + (b/a)n
≤ 1

an
1

1− |b/a|2 ≤ 1.2 · 2.1n , (D.1)
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and analogously
1

Σpb(n)
≥ 1

an
1

1 + |b/a|2 ≥ 0.8 · 2n . (D.2)

In the same way, we can bound 1/Σob(n). To this end, further set c = 5(25 − 3
√
41)/(2

√
41)

and d = 5(25 + 3
√
41)/(2

√
41). We have, up to adjusting the phase of b,

1

Σob(n)
=

1

can + dbn
=

1

can
1

1 + (d/c)(b/a)n
(D.3)

and, thus, for n ≥ 4 we have

0.3 · 2n < 1

can
1

1 + (d/c)|b/a|4 ≤ 1

Σob(n)
≤ 1

can
1

1− (d/c)|b/a|4 < 0.6 · 2.1n. (D.4)

Note that Eq. (D.3) goes to c−1a−n ≈ 0.44 · 2.1n for large n as the second fraction becomes 1

asymptotically. Similarly, 1
Σpb(n)

asymptotically becomes a−n. The deviation from this asymptotic
scaling is small already for small n. E.g., the relative error of the asymptotic approximation is smaller
than 10−2 for n ≥ 6. Asymptotically the frame operator elements for periodic and open boundary
conditions only differ by a constant factor c−1 ≈ 0.44.

Setting Γ ≡ 1
c

1
1−(d/c)|b/a|4 and ∆ ≡ 1

a , a bound of the form 1/Σob(n) ≤ Γ∆n, implies that the
variance is dominated by

σ2
BW ≤

∏
l∈partBW(v)

Σob(2l + 2)−1 ≤
∏

l∈partBW(v)

(Γ∆2)∆2l ≤ (Γ∆2)| partBW(v)|∆2Σ(partBW(v)),

(D.5)
where |partBW(v)| denotes the length of the tuple partBW(v), i.e. the number of parts in the partition,
and Σ(partBW(v)) :=

∑
l∈| partBW(v)| l = |ṽ| is the cumulative length of all parts.

Inserting the previous bounds for Γ and ∆ (without intermediate rounding), we conclude that

σ2
BW ≤ 2.2| partBW(v)|4.4Σ(partBW(v)) . (D.6)

When comparing to the variance of LC circuits in the case where partBW = (n/2) or (n/2− 1),
we are interested in ensuring that Γ∆n < 3| suppLC(v)|. This is the case when

| suppLC(v)| ≥ n log3 ∆+ log3 Γ , (D.7)

which for open and periodic boundary conditions translates to the sufficient condition

| suppLC(v)| > 0.68n+ 0.12 (D.8)

(the constant term for open boundary conditions is actually negative).
More generally, Eq. (D.6) is smaller than 3| suppLC(v)| if

| suppLC(v)| ≥ 0.8|partBW(v)|+ 1.4Σ(partBW(v)) . (D.9)

Appendix E
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In this section, we describe in detail the procedure used for our numerical experiments, which are
implemented in the following repository: https://github.com/MirkoArienzo/shadow_
short_circuits. First, given ρ = |0⟩⟨0| and a Pauli observable W (v), Eq. (6) becomes

⟨0 |W (v)|0⟩ = 1

(v |S |v)
∑
i

EU∼µ⟨i |UW (v)U† |i⟩|⟨i |U |0⟩|2 . (E.1)

As discussed above, U is chosen to be a Clifford operator, which is represented by a pair (g, a), with
g ∈ Sp2n(2), and a ∈ F2n

2 . Then, writing U =
⊗n/2

i=1

⊗n/2
j=1 U

(i)
1 U

(j)
2 , each local symplectic matrix

is sampled using König-Smolin’s algorithm [32], and a is a uniformly distributed vector in F2n
2 . Then,

samples {(Uj , ij)}mj=1 are drawn according to standard stabilizer simulation techniques [27, 31], and
the estimator is given by the following empirical average:

ŵ(v) =
1

m(v |S |v)
m∑
j=1

⟨ij |UjW (v)U†
j |ij⟩ . (E.2)

A single estimate requires the calculation of the phase function appearing in Eq. (C.3), which can
be done in time O(n3) [33]. However, when the observable is of Z-type, we can avoid this calculation,
and speed up the simulation. To prove this fact, let us consider the decomposition F2n

2 = Zn ⊕Xn,
and label the computational basis by binary vectors i ∈ Fn

2 . Then,

⟨i |UW (v)U† |i⟩ = (−1)αg(v)+[a,gv]+(gv)z·i1Zn(gv) , (E.3)

where (gv)z ∈ Zn ≃ Fn
2 is the Z part of the vector gv ∈ F2n

2 , and 1Zn
is the indicator function on

Zn. Then, suppose the outcome of the latter is non-zero, so (gv)x = 0. Hence, since vx = 0 by
assumption, we find:

[a, gv] + (gv)z · i = (gv)z · i0 = (gv)z ·
∑
j

ij(gej)x

=
∑
j

ij [gv, gej ] =
∑
j

ij [v, ej ]

= 0 , (E.4)

where we wrote i = i0 + ax for some i0 ∈ Fn
2 , and then we considered the decomposition i0 =∑

j ij(gej)z , where {ej} ⊂ Zn is the canonical basis.
Then, from Eq. (E.1) we get

(v |S |v) =
∑
i

EU∼µ⟨i |UW (v)U† |i⟩|⟨i |U |0⟩|2

=
∑
i

EU∼µ(−1)αg(v)|⟨i |U |0⟩|2 . (E.5)

Define now

p± :=
1

|Sp2n(2)|
|{g ∈ Sp2n(2) | gv ∈ Zn , (−1)αg(v) = ±1}| . (E.6)

https://github.com/MirkoArienzo/shadow_short_circuits
https://github.com/MirkoArienzo/shadow_short_circuits
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Then,

p+ + p− =
1

|Sp2n(2)|
|{g ∈ Sp2n(2) | gv ∈ Zn}|

=
1

|Sp2n(2)|
|STAB(v)| · |Zn \ 0|

=
1

|Sp2n(2)|
|Sp2n(2)|

|Sp2n(2) · v|
· |Zn \ 0|

=
2n − 1

22n − 1
=

1

2n + 1
, (E.7)

where STAB(v) denotes the set of stabilizers of v.
On the other hand, p+ and p− also have the interpretation of frequencies of ±1 outcomes in

Eq. (E.5) respectively. This means

(v |S |v) = p+ − p− =
|Zn|

22n − 1
=

1

2n + 1
, (E.8)

from which it follows p− = 0.
In conclusion, whenever vx = 0, we only need to check if (gv)x is trivial.
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