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An algorithm of Ross and Selinger for the factorization of diagonal elements of PU(2) to
within distance ε was adapted by Parzanchevski and Sarnak into an efficient probabilistic

algorithm for any element of PU(2) using at most effective 3 logp
1
ε3

factors from certain

well-chosen sets associated to a number field and a prime p. The icosahedral super golden
gates are one such set associated to Q(

√
5). We leverage recent work of Carvalho Pinto,

Petit, and Stier to reduce this bound to 7
3

log59
1
ε3

, and we implement the algorithm in
Python. This represents an improvement by a multiplicative factor of log2 59 ≈ 5.9 over

the analogous result for the Clifford+T gates. This is of interest because the icosahedral

gates have shortest factorization lengths among all super golden gates.

Keywords: Quantum computing, quaternion algebras

1 Introduction

Lubotzky, Phillips, and Sarnak, in a series of papers [1, 2, 3, 4], explicitly constructed topo-

logical generators with optimal covering properties for the compact Lie group PU(2). Such

generators for projective unitary groups find an interesting application in quantum computing

where a fundamental design challenge is to determine an optimal, fault-tolerant decomposi-

tion of a quantum gate. For classical computing a single bit state is an element of {0, 1}.
A classical gate implements functions on binary inputs. The only nontrivial single bit logic

operation is NOT, which takes 0 to 1 and 1 to 0 (though it is also possible for the codomain

to contain more than one bit). In the quantum setting, single qubit states are points

u = (u1, u2) ∈ C2

up to a mutual phase e2πiθ in each component, such that

|u|2 = |u1|2 + |u2|2 = 1.

A gate here cannot output more than one qubit, and thus must be a 2× 2 projective unitary.

A universal gate set is a finite set of gates, S := {s1, s2, · · · , sk : s` ∈ PU(2)}, that can

approximate, in the bi-invariant metric on the compact Lie group, any matrix arbitrarily
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902 Fast naviation with icosahedral golden gates

well. That is, the group generated by S must be topologically dense in PU(2). The Solovay–

Kitaev theorem [5] guarantees that universal gate sets can efficiently approximate quantum

operations for unitaries on a constant number of qubits. Universal gate sets typically consists

of a finite group C ≤ PU(2) together with an extra element τ , which we will take to be an

involution, so that the subgroup generated by C and τ covers PU(2) with minimal τ -count,

and simultaneously navigates PU(2) efficiently. That is, given some gate in PU(2) and desired

precision ε, there is an efficient algorithm (polynomial-time in the input size) that with high

probability finds a short word in S to that precision, typically of length O(log(1/ε)). The deep

insight of Sarnak [6] is that the construction and optimality of universal single-qubit quantum

gate sets can be understood in terms of the arithmetic of quaternion algebras. Specifically,

identifying C with a subgroup of the group of units in a definite quaternion algebra over a

totally real number field provides a coherent framework within which one can systematically

address the question of optimality of topological generators for PU(2).

The question we address within this context is that of finding the “best” topological gen-

erators of PU(2) among those universal gate sets, the super golden gates of Parzanchevski and

Sarnak [7], which are known to possess optimal covering properties and efficient navigation.

In particular, there are only finitely many super golden gates [7, p.870–871] and the respective

finite subgroups C can be realized as the group of symmetries of of the Platonic solids: for

the tetrahedron, A4; for the cube and the octahedron, S4; and for the dodecahedron and

icosahedron, A5.

We demonstrate that the icosahedral super golden gates admit a factorization directly

analogous to the one obtained by Stier [8], and that this gives the best-known preconstant to

the first-power logarithm in the approximation length. The exact factor of the improvement

is log2 59 ≈ 5.9. This improvement is due to the fact that the icosahedral super golden gates

have a growth rate that is on the order of 59k, while gate set studied in [8], the Clifford+T

gates, have growth rate of order 2k. We note also that the icosahedral super-golden-gates

represent the greatest number of distinct gates with bounded τ -count.

The commonly used Clifford+T gate set provides a set of elementary gates that is universal

and consists only of a small number of gates, all of which are very well compatible with

many established error correction schemes and can be physically implemented in all quantum

technologies that seem promising for large-scale quantum computations [9]. In this case the

finite group C is the Clifford group C24 of order 24 in PU(2). At least one non-Clifford gate

must be added to the basic gate set in order to achieve universality. A common choice for this

additional gate is the T -gate (or π
8 -gate). The T -gate is not the only possible extension of the

Clifford group but it is considered to be the most practical one. This is due to the availability

of fault-tolerant implementations of the T -gate. For this reason, the Clifford+T gate set is

considered the most promising candidate for practical quantum computing. We recall, for the

convenience of the reader, some of the salient details of the single qubit Clifford+T gate set.

Let

H :=
i√
2

(
1 1
1 −1

)
and T :=

(
eiπ/8

e−iπ/8

)
.

We take S := {H,T} [6, 8, 10]. The Clifford+T universal gate set is an example of a golden

gate set [6, 7]. The remarkable observation of [6] is that the H and T gates of the Clifford+T
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gate set come from the definite quaternion algebra

A :=

(
−1,−1

Q(
√

2)

)
.

Kliuchnikov, Maslov, and Mosca [11] characterized the group 〈S〉 and demonstrated an effi-

cient algorithm to factor exactly, by carefully studying the powers of
√

2 in the denominators

of matrix entries. Ross and Selinger [10] then focused on diagonal matrices near to 〈S〉, with

the goal of finding ε-close factorizations of length c log2(1/ε3); the base of 2 is intrinsic to

the structure of the Clifford+T gates. By studying upright sets in the plane, which function

analogously to the simplices of Lenstra’s algorithm [12, 13], they achieved the leading coeffi-

cient of 1 + o(1) (in that restricted case). Parzenchevski and Sarnak [7] generalized Ross and

Selinger’s approach to any golden gate set (with the base of the logarithm correspondingly

changing per the gate set), and by considering Euler angles reached the coefficient of 3 + o(1)

for approximations to generic elements. Working with the (finite) LPS Ramanujan graphs

(see §2.1.3 and [4]), Carvalho Pinto and Petit [14] factorize in the equivalent of 7/3+o(1). This

approach is adapted by Stier [8] for the same coefficient with Clifford+T gates. We combine

aspects of the techniques of [14, 8], in the proposed icosahedral setting, to reduce this bound

to 7
3 log59(1/ε3).

2 Super Golden Gates

We recall here essential ideas related to the arithmetic of quaternion algebras [15, 16], S-

arithmetic groups [17, §C], and Ramanujan graphs [18] which lead to the icosahedral super

golden gates [7].

2.1 Quaternion algebras

A quaternion algebra A over a field F is a central simple algebra of dimension four over F (cf.

[19, §5.2] or [20, p.15]). It follows from Wedderburn’s structure theorem on simple algebras

[21] that every quaternion algebra over any field F is either isomorphic to M2(F) or a division

algebra with center F [22]. If the characteristic of F is not 2 then it is always possible to find

a basis {1, i, j, k} for A over F such that

i2 = α, j2 = β, k = ij = −ji

where α, β ∈ F×. We designate such an algebra by

A =

(
α, β

F

)
.

Evidently q ∈ A is of the form

q = x0 + x1i+ x2j + x3k, (1)

where x` ∈ F. In this notation, Hamilton’s quaternions arise as

H =

(
−1,−1

R

)
.
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The conjugate of q as in (1), denoted by q̄, is equal to x0 − x1i − x2j − x3k. For each

q ∈ A we define the (reduced) norm map N : A → F by

N(q) := qq̄ = x20 − αx21 − βx22 + αβx23

and the (reduced) trace map Tr : A → F by

Tr(q) := q + q̄ = 2x0.

We note that every element q ∈ A satisfies the quadratic equation

q2 − Tr(q)q + N(q) = 0.

It is possible to make everything completely explicit by embedding A in M2(F (
√
α)) by, for

example,

i 7→
(√

α
−
√
α

)
and j 7→

(
β

1

)
.

Evidently, if α is a square in F, then A ∼= M2(F). A necessary and sufficient condition for

A ∼= M2(F) is that α is the norm of an element in F(
√
β) with respect to F [16]. Of course,

one may interchange α and β in this remark.

Specializing to quaternion algebras over the rational field Q, or over one of the completions

Qp or R (the completion Q∞), let A be a quaternion algebra over Q and let p be a prime (or

∞). We define

Ap := A⊗
Q
Qp.

Either Ap ∼= M2(Qp) or Ap is a division algebra over Qp. In this case we will have that

Ap ∼= Hp and say that A is ramified at p. When Ap ∼= M2(Qp) we will say that A is unramified

or split at p. If A is ramified at ∞ it is called a definite rational quaternion algebra—that is,

if A is definite then

A∞ = A⊗
Q
R ∼= H.

IfA is split at∞, it is called an indefinite rational quaternion algebra—that is, ifA is indefinite

then

A∞ = A⊗
Q
R ∼= M2(R).

2.1.1 Definite quaternion algebras over totally real number fields

We now turn to the quaternion algebras that are the objects of interest in this paper, definite

quaternion algebras over totally real number fields. Let A be a quaternion algebra over a

number field F, ν be a place of F, and Fν be the completion of F at ν. Recall that a totally

real number field is a finite algebraic extension of Q all of whose complex embeddings lie

entirely in R. For example, the field Q(
√
d) is totally real for positive, integral d. If every

infinite place of F is ramified in A, we say that A is a totally definite quaternion algebra.

Consequently, if A is a totally definite quaternion algebra over a number field F, then F is

necessarily totally real. Moreover, if F is a quadratic field, the number of finite places which

are ramified in A is even.
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2.1.2 Unit groups in orders in definite quaternion algebras over totally real number fields

Let A be quaternion algebra over a field F and let OF be the ring of integers in F. An element

q ∈ A is integral if N(q),Tr(q) ∈ OF. An order O ⊆ A is a OF-algebra of integral elements

such that [23, p.2]

O ⊗
OF

F ∼= A.

Observe that as an example of an order we always have

O := OF ⊕OFi⊕OFj ⊕OFk. (2)

If O is an OF-order in a definite quaternion algebra A over the totally real field F then the

group of units of reduced norm 1, i.e.

O1 := {α ∈ O : N(α) = 1} (3)

is a finite group [16, p.289]. These finite groups will correspond to the groups of rotational

symmetries of the platonic solids [16, p.172–173].

2.1.3 Ramanujan graphs

Two key ideas are needed for the construction of golden gate and super golden gate sets: a

S-arithmetic unit quaternion group and a Ramanujan graph. We outline the essential ideas

of Lubotzky, Phillips, and Sarnak’s [4] “LPS” construction of these objects.

Ramanujan graphs are graphs whose spectrum is bounded optimally. Let X be a finite

connected k-regular graph and A its adjacency matrix.

Definition 1. The graph X is called a Ramanujan graph if every eigenvalue λ of A satisfies

either |λ| = k or |λ| ≤ 2
√
k − 1.

LPS Ramanujan graphs [24] arise as Cayley graphs of PSL(2,Fq) (for Fq the finite field

on q elements). When considering these graphs we interchangeably refer to their elements

by their group-theoretic properties as matrices and their graph-theoretic relations as ver-

tices. [4] establishes that for any prime p ≡ 1 (mod 4) there are infinitely many (p + 1)-

regular Ramanujan graphs. We use the notation Xp,q where p and q are distinct primes

congruent to 1 modulo 4 to represent such graphs. The construction comes from number

theory by way of the generalized Ramanujan conjecture [7, p.873]. The symmetric space

PGL(2,Qp)/PGL(2,Zp) can be identified with a (p+ 1)-regular infinite tree. PGL(2,Z[1/p])

acts from the left on PGL(2,Qp)/PGL(2,Zp). The generalized Ramanujan conjecture, a the-

orem in this case, implies that the quotient of PGL(2,Qp)/PGL(2,Zp) by any congruence

subgroup of PGL(2,Z[1/p]), a (p + 1)-regular graph, is a Ramanujan graph. By considering

an appropriate congruence subgroup of PGL(2,Z[1/p]) we can identify the quotient of this

symmetric space with a Cayley graph associated to PSL(2,Fq) or PGL(2,Fq), depending on

the value of the Legendre symbol
(
p
q

)
[25].

2.1.4 p-arithmetic unit quaternion groups

Golden gate and super golden gate sets for PU(2) require the construction of a p-arithmetic

group (a special case of S-arithmetic groups, where S is a collection of places of Z). Let

G ≤ GL(n) be an algebraic group defined over Z[1/p] with G(R) compact. A p-arithmetic

group Λ is a subgroup of G(Z[1/p]) ≤ G(R) × G(Qp), and has congruence subgroup Λ(N) :=
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{g ∈ Λ : g ≡ I (mod N)}. That is, in our compact Lie group PU(2) we take only rational

numbers whose denominators are powers of a fixed prime p as coefficients in the matrices.

One can also make the same construction over the ring of integers OF of a totally real

number field F strictly containing Q, at which point the role of p is played by p a prime ideal

of OF, so that the inverted elements (those allowed in denominators) are now all of p ∩ F×.

2.2 Golden gates

Golden gates are special unit groups in quaternion algebras over totally real number fields

derived from the p-arithmetic groups [6]. They give variants of optimal generators for PU(2)

and connect the arithmetic of quaternion algebras to quantum computation on a single qubit.

The “golden” characterization is to be understood by way of an interesting link between p-

arithmetic unit groups coming from unit quaternion groups and the Ramanujan graphs Xp,q,

which we explicate below.

Recall once more that in classical computation, one decomposes any function into basic

logical gates such as XOR, AND, and NOR, and that in quantum computation, the classical bits

are replaced by qubits, which are vectors in projective Hilbert space CPn, and that the logical

gates are all the elements of the projective unitary group PU(2). Let S be a subgroup of PU(2)

and denote by S(`) the set of `-fold products of elements in S. If 〈S〉 =
⋃
`≥0

S(`) is dense in

PU(2) (with respect to the standard bi-invariant metric d2(A,B) := 1 − |Tr(A
∗B)|

2 ) then S

is universal. That is, any gate can be approximated with arbitrary precision as a product of

elements of S.

The notion of of a golden gate set is much stronger, requiring [18]:

1. Optimal covering of PU(2) by 〈S〉: for every ` the set S(`) distributes in PU(2) as a

perfect sphere packing (or randomly placed points) would, up to a negligible factor.

2. Approximation: given A ∈ PU(2) and ε > 0, there is an efficient algorithm to find some

A′ ∈ Bε(A) (the ε-ball around A) such that A′ ∈ S(`) with ` (almost) minimal.

3. Compiling: given A ∈ 〈S〉 as a matrix, there is an efficient algorithm to write A as a

word in S of the smallest possible length.

These requirements ensure that any gate can be approximated and compiled as an efficient

circuit using the gates in S.

2.3 Super golden gates

Each super golden gate set is composed of a finite group C and an involution τ , which lie

in a p-arithmetic group for p a prime ideal of the integers OF of a totally definite quaternion

algebra A, over a totally real number field F. We require that:

1. C acts simply transitively on the neighbors of any given vertex in Xp, the (p+1)-regular

tree, for p the norm of p.

2. τ is an involution which takes a vertex to one of its neighbors.

p-arithmetic unit quaternion group act transitively on the vertices of the corresponding

Xp. The p-arithmetic groups which act transitively on the vertices of Xp are called the golden
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gates and the p-arithmetic groups which act transitively on both the vertices and edges of Xp

are called the super golden gates.

3 Icosahedral Super Golden Gates

Recall that there are only finitely many such super golden gate sets and in each case the

finite group C is identified with the group of rotational symmetries of a platonic solid: for

the tetrahedron, A4; for the cube and the octahedron, S4; and for the dodecahedron and

icosahedron, A5. Each of these finite groups can be precisely identified with a p-arithmetic

unit quaternion group coming from one of the following quaternion algebras [6]:

• tetrahedral gates: A =
(
−1,−1

Q

)
;

• octahedral gates: A =
(
−1,−1
Q(
√
2)

)
; and

• icosahedral gates: A =
(
−1,−1
Q(
√
5)

)
.

We consider the quaternion algebra A over the golden field Q(
√

5) [7, p.895]. A maximal

order O in A :=
(
−1,−1
Q(
√
5)

)
is given by the ring of icosians. The unit group O1 is the platonic

icosahedral group, generated by
〈

1+i+j+k
2 , 1+ϕ

−1j+ϕk
2

〉
, where ϕ := 1+

√
5

2 is the golden ratio,

and O1 ∼= A5 In PU(2), this corresponds to

C60 =

〈(
1 1
i −i

)
,

(
1 ϕ− i/ϕ

ϕ+ i/ϕ −1

)〉
=: 〈ρ, σ〉.

We take as our involution

τ = τ60 :=

(
2 + ϕ 1− i
1 + i −2− ϕ

)
.

For the prime ideal p = (7 + 5ϕ) one has Fp
∼= Q59, and the generated group Γ = 〈C60, τ60〉 is

the full (7 + 5ϕ)-arithmetic group of O. As such, we establish:

Theorem 1. Subject to standard number-theoretic heuristic conjectures, there exists a fac-

torization of any g ∈ PU(2) to precision ε using τ -count at most (7/3 + o(1)) log59(1/ε3).

In particular, if g is near to a diagonal matrix then we just apply the approach in §5 (for

additive error) to get a path of length at most (1 + o(1)) log59(1/ε3), and otherwise run the

approach in §6.

Notice that no other choice of golden gates is both super and has a greater logarithm base,

so that these are the “best” generators of PU(2) given the present state of knowledge, as an

interesting application of number theory in that geometric setting. However, we make no

claim in this work as to the relevance of icosahedral golden gates to fault-tolerant quantum

computing, as such relationships are not yet established; given the present stage of research

into quantum computers, we offer the results of this paper merely to advance understanding

of a gate set with specific known advantages, and many more unknown qualities.

4 Nearby Elements in PU(2), and Factoring in Γ

In this section, we establish a key technical lemma regarding approximations in the matrix

group, and the method for exact synthesis for elements of the relevant subgroup.
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For α, β ∈ C satisfying |α|2 + |β|2 = 1 we write

u(α, β) :=

(
α β
−β̄ ᾱ

)
,

and for θ ∈ R we write

u(θ) := u(eiθ, 0) =

(
eiθ

e−iθ

)
.

We restate below [8, Lemma 5] which holds independent of our choice of universal gate

set.

Lemma 1. Select absolute constants δ, ε0 > 0 and put C =

√
1
2 + 1

2

(
2+δ
ε0

)2
. Take γ1 and

γ2 in either SU(2) or PU(2) and write them as γ1 = u(α1, β1) and γ2 = u(α2, β2). If

||α1| − |α2|| < ε for some ε < δ and min{|α1|, |α2|} <
√

1− ε20 then for

θ1 =
1

2
(argα1 − argα2 + arg β1 − arg β2), δ1 = u(θ1)

θ2 =
1

2
(argα1 − argα2 − arg β1 + arg β2), δ2 = u(θ2)

we have the approximation δ1γ2δ2 to γ1, satisfying

d(γ1, δ1γ2δ2) < Cε.

Loosely, this result can be thought of as a sufficient condition to transform one 2 × 2

unitary into (approximately) another based only on a weak condition and by “tuning” with

diagonal (rotation) matrices on either side. The condition is merely that the “starting” and

“target” matrices have top-left entries nearby in absolute value, and that neither is very near

to 1.

We now move to factorizing. Put η = 7 + 5ϕ for the sequel. Observe that is is a positive

real number, and the generator of p above. For our purposes, we will encounter elements

of Γ = 〈ρ, σ, τ〉 ≤ PU(2) only as Z[ϕ]-quaternions with norm a power of η, envisioned as

elements of the Cayley graph for 〈ρ, σ, τ〉 ≤ Q(ϕ) U2(Z[ϕ]), which [7] shows acts transitively

with respect to the distance measure of τ -count, which can be detected by counting the power

of η in the quaternion norm, after quotienting out Z[ϕ]-scalars. This leads to the following

factoring algorithm.

Algorithm 1. Let C be a set of representatives of 〈ρ, σ〉 ≤ PU(2) lifted to Q(ϕ) U2(Z[ϕ]).

Given γ a lift of some element of Γ with τ -count k, it can be factored by determining which

(unique) c ∈ C gives rise to γcτ of τ -count k − 1, which in turn requires no more than 60

multiplications of three matrices. c is found if and only if γcτ has all coefficients divisble by

η in Z[ϕ].

This algorithm has the base case of simply comparing γ against all 60 elements of C, an-

other trivial computational task. The idea of the general case is that γ has the representation

c0
∏
i∈[n]

τci

where ci is not the identity for i 6= 0, n. Then c will be projectively equal to c−1n , giving rise

to

γcτ = c0
∏

i∈[n−1]

τciτcncτ = zpc0
∏

i∈[n−1]

τci
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for z = det(cnc) (coprime to η).

5 Algorithm for Short Paths to Diagonal Elements

5.1 Algorithm

We proceed by, for given diagonal element δ = u(θ) and ε, seeking γ ∈ Γ with d(δ, γ) < ε.

Knowing that γ is projectively equal to an element(
x0 + x1i x2 + x3i
−x2 + x3i x0 − x1i

)
for x0, x1, x2, x3 ∈ Z[ϕ] satisfying

x20 + x21 + x22 + x23 = ηm (4)

for some m ∈ N, we also have that it is sufficient to satisfy

x0 cos θ + x1 sin θ ≥ ηm/2(1− 2ε2) (5)

(note that this is precisely [10, (13) and Problem 7.4] (see there for the derivation)), following

the readily computable observation that ‖δ − γ‖ ≥
√

2d(δ, γ) and setting the goal ‖δ − γ‖ ≤√
2ε, since [10] operates with respect to the operator norm. Observe, unfortunately, that (4)

is a quadratic constraint and (5) is a linear constraint. We now explain how to transform

them into a practicable sequence of integer programs.a

Fix m. We seek x` ∈ Z[ϕ] satisfying (4) and (5). Define y` = x`/ηm/2. Artificially add the

constraint

1− ε2 − y1 sin θ ≥ 0. (6)

Observe from (4) that y20 ≤ 1 − y21 . Then, we have the sequence of implications (mainly by

algebraic manipulation)

y0 cos θ ≥ 1− ε2 − y1 sin θ ≥ 0

y20 cos2 θ ≥ (1− ε2)2 + y21 sin2 θ − 2(1− ε2)y1 sin θ

cos2 θ ≥ (y1 − (1− ε2) sin θ)2 − (1− ε2)2 sin2 θ + (1− ε2)2

cos2 θ(2ε2 − ε4) ≥ (y1 − (1− ε2) sin θ)2∣∣y1 − (1− ε2) sin θ
∣∣ ≤ |cos θ|

√
2− ε2ε (7)

and so we have reduced our consideration to just one of the four variables. As [Q(ϕ) : Q] = 2,

we explicitly work with the Galois group elements

σ+ : 1 7−→ 1

ϕ 7−→ ϕ,

σ− : 1 7−→ 1

ϕ 7−→ ϕ•,

aFundamentally, this is the same idea as in [10], as their study of upright ellipses accomplishes the same task
as Lenstra’s algorithm.
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where ϕ• is ϕ’s Galois conjugate 1−
√
5

2 = 1− ϕ, both of which are real embeddings, yielding

the additional constraints

|σ±y1| ≤ 1. (8)

Now, putting x1 = c+ dϕ for some c, d ∈ Z, (6), (7), and (8) transform into

Problem 1. Given m, find (c, d) ∈ Z2 satisfying the five linear constraints

(c+ dϕ) sin θ ≤ ηm/2(1− ε2),

|c+ dσ±ϕ| ≤ (σ±η)
m/2,∣∣∣c+ dϕ− ηm/2(1− ε2) sin θ

∣∣∣ ≤ ηm/2|cos θ|
√

2− ε2ε.

The existence of such a pair is determinable in O(polym) time, by Lenstra’s algorithm

[12, 13].

Putting x0 = a+ bϕ for some a, b ∈ Z, for a particular solution to Problem 1, (4) and (5)

transform into

Problem 0. Given m and x1 = c+ dϕ, find (a, b) ∈ Z2 satisfying the four linear constraints

|a+ bσ±ϕ| ≤ (σ±η)
m/2
√

1− (σ±x1)2,

(a+ bϕ) cos θ ≤ ηm/2(1− x1 sin θ),

(a+ bϕ) cos θ ≥ ηm/2(1− ε2 − x1 sin θ).

Again, the existence of such a pair is determinable in O(polym) time, by Lenstra’s algo-

rithm.

Finally, if we have solutions to Problem 0 and Problem 1, we seek to solve

Problem 23. Given m, x0 = a+ bϕ, and x1 = c+ dϕ, find (x2, x3) ∈ Z[ϕ]2 satisfying (4).

Here we change techniques. The objective is to write ηm − x20 − x21 as a sum of squares in

Z[ϕ]. Assuming efficient factorization in Z (or Z[ϕ], also a PID), Problem 23 is efficiently solv-

able via Theorem 3 (the general approach being basically identical to the classical algorithms

for Z[i] or Z[eiπ/8], cf. [10, §C] for the latter).

We have succeeded in the core of the algorithm. To handle given δ, begin by fixing m = 0.

For given m, attempt to solve Problem 1; for each solution, attempt to solve Problem 0; for

each solution, attempt to solve Problem 23. If this results in a tuple (x0, x1, x2, x3) satisfying

all three problems, halt and return

1

ηm/2

(
x0 + x1i x2 + x3i
−x2 + x3i x0 − x1

)
.

Otherwise, if all possibilities have been exhausted, increment m.

5.2 Analysis

We refer the reader to [7, §2.3]’s analysis of timing and correctness for Ross and Selinger’s

algorithm generalized to any golden gate set, where the conclusion is that for desired precision

ε, the factorization length becomes (1 + o(1)) log59(1/ε3) with required computational time

remaining O(poly log(1/ε)).
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6 Algorithm For Short Paths

Here we largely adopt the structure and wording from [8, §4 and §5], as the core concepts and

heuristics that make the algorithm work are the same in the icosahedral setting.

6.1 Algorithm

Select absolute constants ε̃, ε0 > 0. Take any g = u(α, β) ∈ PU(2) where |α| <
√

1− ε20, and

pick ε < ε̃. We wish to approximate g in d using γ ∈ Γ of the form

γ =
1

ηk/2

(
x0 + x1i x2 + x3i
−x2 + x3i x0 − x1i

)
(9)

having k, the factorization length, minimized, and so we begin with k = 0. (We also have

x0, x1, x2, x3 ∈ Z[ϕ].) In particular, the objective is to approximate g as γ1γγ2 where

γ1, γ2 ∈ Γ approximate well-chosen diagonals computable using §5, and γ ∈ Γ has factor-

ization computable using Algorithm 1. We will see that γ is designed to have factorization

typically shorter than that of γ1 and γ2, giving rise to the desired improvement.

In order to apply Lemma 1 we need to have
∣∣∣x0+x1i

ηk/2

∣∣∣ =
√

x2
0+x

2
1

ηk
near |α| (that is, within ε).

Because
∣∣∣x0+x1i

ηk/2

∣∣∣+ |α| ≥ |α| which is fixed, it suffices to find candidate values for x0, x1 ∈ Z[ϕ]

with

∣∣∣∣∣∣∣x0+x1i

ηk/2

∣∣∣2 − |α|2∣∣∣∣ < ε|α|, rewritten to∣∣∣x20 + x21 − |α|
2
ηk
∣∣∣ < ε|α|ηk. (10)

Viewing γ as an element of SU(2), we also have det γ = 1, i.e. x20 + x21 + x22 + x23 = ηk. As

x` ∈ Z[ϕ] ⊂ Q(ϕ) ⊂ R, it follows that σ±(x20 + x21) + σ±(x22 + x23) = σ±(ηk), and so

σ±(x20 + x21) ≤ (σ±η)k. (11)

Now, let m = x20 + x21 ∈ Z[ϕ]. Considering Z[ϕ] as an integer lattice, we adapt (10) and (11)

and seek to solve ∣∣∣m− |α|2ηk∣∣∣ < ε|α|ηk (12)

m ≤ ηk (13)

m• ≤ (η•)k (14)

m,m• ≥ 0 (15)

which are convex constraints on m’s lattice components. Since this is an integer programming

problem in two dimensions, we apply Lenstra’s algorithm [12, 13] to efficiently list all such

lattice points m. For each m, using Theorem 3, we attempt to write m as a sum of two

squares; if possible, say m = x20 + x21, we then attempt to write m̃ = ηk −m as a sum of two

squares. If possible, say m̃ = x22 + x23, so we simply halt and return γ corresponding to (9).

However, if m̃ may not be represented as a sum of two squares, we simply move on to the

next value of m and try this process again. If this fails for all m arising from k, we increment

k and run Lenstra’s algorithm for the new inequalities.

Supposing we have halted and constructed γ, we compute δ1 and δ2 guaranteed by Lemma

1. These are efficiently approximable by §5 to γ1 and γ2, respectively. Chaining together the

three approximations as γ1γγ2 gives the final desired approximation to g.
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6.2 Analysis

We begin the analysis by establishing the τ -count and tightness of the approximation. In

particular, d(γ1, δ1) < ε and d(γ2, δ2) < ε with factorization lengths of γ` each up to

(1+o(1)) log59(1/ε3). By Lemma 1, d(γ, δ1γδ2) < Cε. Therefore, d(g, γ1γγ2) < (C+2)ε (by the

triangle inequality) and since γ has a factorization of τ -count up to
(
1
3 + o(1)

)
log59(1/ε3), this

constitutes a factorization of an element in g’s neighborhood of τ -count up to
(
7
3 + o(1)

)
log59(1/ε3).

The efficiency of this algorithm—that is, that it runs in time O(poly log(1/ε))—is because

we expect to halt when 59kε ∈ O(1) (so only k ≈ 1
3 log59(1/ε3) calls are expected), and only

call polynomially-many polynomial-time subroutines. The dominant subroutines are calls

to Lenstra’s algorithm which as shown in [12] runs in time polynomial in the size of the

constraints for any fixed dimension n. Indeed, here we have only n = 2 dimensions, m = 6

linear constraints (two per absolute value), and the largest value a in the constraints is ηk, so

the runtime is polynomial in nm log a ∈ Θ(k).

The reason we expect to halt when 59kε ∈ O(1) is that heuristically, we expect to

halt when the area enclosed by (12)–(15) is O(poly log(1/ε)). Conveniently, the region is

a rectangle since the vectors 〈1, ϕ〉 and 〈1, ϕ•〉 are orthogonal, so assuming in the limit that

ε � min
{
|α|, 1−|α|

2

|α|

}
(so that (13) and the “bottom” inequality of (12) are redundant), we

compute length-times-width of

2ε|α|ηk√
1 + ϕ2

· (η•)k√
1 + (1− ϕ)2

=
2|α|√

5
· 59kε ∈ O(poly log(1/ε))

whence we find k ∈ (1 + o(1)) log59(1/ε) as expected.

When attempting to write elements of O as a sum of two squares, we primarily rest on a

belief, in the style of Cramér’s conjecture and a conjecture of Sardari [26, (∗)] that sums of

squares are dense in N. Seeking to analogize [26, (∗)] in particular, we note that the operative

aspect is that a dense cluster of lattice points will represent at least one sum of two squares,

and that such a point thus will be found quickly through Lenstra’s algorithm.

The significance of this result is to accomplish a factorization in PU(2) in analogue to

[8], but using a gate set with additional desirable properties beyond those enjoyed by the

Clifford+T gates.

7 Implementation Details and Examples

Our algorithm has been implemented for proof-of-concept purposes in Python, and the code

is available at https://math.berkeley.edu/ zstier/icosahedral. Included in this imple-

mentation are:

• An implementation of Lenstra’s algorithm for special cases (convex.py).

• The rings Z[ϕ], Z[i, ϕ], and H(Z[ϕ]) (rings.py and quaternions.py).

• Solutions to sum-of-two-square problems in Z[ϕ] (rings.py).

• Factorization of elements of H(Z[ϕ]) which are of norm a power of η (quaternions.py).

• Efficient factorization of diagonal elements of PU(2), as outlined in §5 (diagonal.py).
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• Efficient factorization of general elements of PU(2), as outlined in §6 (approx.py).

In the remainder of this section, we demonstrate the efficacy of this factorization technique

on the two more “classical” single-qubit quantum gate generators; recall

H =
i√
2

(
1 1
1 −1

)
and T =

(
eiπ/8

e−iπ/8

)
.

In both cases, pick precision ε = 1/1010.

For the first example of T , we yield

T ≈ ξ0τξ1τξ2τξ3τξ4τξ5τξ6τξ7τξ8τξ9τξ10τξ11τξ12τξ13τξ14τξ15τξ16τξ17τξ18τξ19
= (σσρσρ)τ(ρσσρσσ)τ(σρσρσ)τ(ρσρσρσ)τ(ρσσρ

σρσσρσρ)τ(σσρσρσσρσρ)τ(ρ)τ(σρσσρσρσσρ)

τ(ρ)τ(ρσσρσρσσρ)τ(ρσρσρσσ)τ(σσρσρσσρ)

τ(σρσρσσ)τ(σρσσρσρσσρ)τ(σρσρσσρσ)τ(σρ

σρσ)τ(ρσσρσρσσρσρ)τ(ρσσρσρσσρσ)τ(σρσ)

where ξi ∈ 〈σ, ρ〉 correspond to the parenthesized terms following; this achieves precision in

d of 1.28/1010. The τ -count is 19; compare this with the predicted log59(1/ε3) ≈ 16.9. We

remark that the discrepancy can be attributed to computational limitations: at key steps

in the algorithm, we must run the Tonelli–Shanks algorithm for finding quadratic residues

modulo some prime q, which has worst-case behavior Θ(q). Therefore it is only practical to

abandon on instances where some prime factor is at least 106, something that occurred more

than 328 times before the above-stated approximation was found.

For the second example of H, the central element is determined to be the following:

γ = ξ0τξ1τξ2τξ3τξ4τξ5τξ6τξ7τξ8τξ9

= (ρσσρσρσσρσρ)τ(ρσρσρσσρσσ)τ(σρσρσσ)τ

(ρσσρσρσσρ)τ(ρσσρ)τ(σρσσρσρ)τ(σρσρσσρ

σσ)τ(ρσρσσρσρσσρσ)τ(ρσσρσρσ)τ(ρσσρσρ)

(ξi serves the same function as above). It has τ -count 9; compare this with the predicted
1
3 log59(1/ε3) ≈ 5.6. As before, the discrepancy can be attributed to non-vanishing of o(1)

factors for explicit ε and to having to abandon possibilities with very large prime factors.



914 Fast naviation with icosahedral golden gates

The outer diagonal elements are determined to be the following:

γ1 ≈ ξ̃0τ ξ̃1τ ξ̃2τ ξ̃3τ ξ̃4τ ξ̃5τ ξ̃6τ ξ̃7τ ξ̃8τ ξ̃9τ ξ̃10τ ξ̃11τ ξ̃12τ ξ̃13τ ξ̃14τ ξ̃15τ ξ̃16τ ξ̃17τ ξ̃18
= (σρσρ)τ(ρσρσσρσρσσρσ)τ(ρσσρσσ)τ(ρσσρσ

ρσσρσρ)τ(ρσρσρσ)τ(σρσρ)τ(σσρσ)τ(σσρσρσ)

τ(σρσρσσρσ)τ(σρσρσσρσρ)τ(ρσσρσρσ)τ(ρσ

ρσσρ)τ(σσρσ)τ(σσρσρσσ)τ(σσ)τ(σρσρσσρσσ)

τ(σρσρσσρσ)τ(σσρσρσσρσρ)τ(ρσρσσρσρσ)

γ2 ≈ ξ̂0τ ξ̂1τ ξ̂2τ ξ̂3τ ξ̂4τ ξ̂5τ ξ̂6τ ξ̂7τ ξ̂8τ ξ̂9τ ξ̂10τ ξ̂11τ ξ̂12τ ξ̂13τ ξ̂14τ ξ̂15τ ξ̂16τ ξ̂17τ ξ̂18
= (σρσρσσρ)τ(σσρσρσσρ)τ(σρσρσσρσσ)τ(σρσ

σρσρ)τ(σσρσρσ)τ(ρσρσσ)τ(σρσσρσρ)τ(ρσρσ

ρσσρσρ)τ(ρσρσσρσσ)τ(ρσσρσ)τ(ρσρσρσσρ

σρ)τ(ρσσρ)τ(ρσσρσρσσρ)τ(ρσσρσ)τ(ρσρσσρ

σρσσ)τ(ρσρσσρσρσσ)τ(σσρσρσσρσ)τ(σρ)τ(ρ)

(ξ̃i, ξ̂i serves the same function as above). They both have τ -counts of 18, with 75 collective

abandoned cases; compare this with the predicted log59(1/ε3) ≈ 16.9. Multiplying out γ1γγ2
gives distance in d of 1.28/1010 (that this difference equals the previous one is a coincidence;

they disagree at the third decimal place).

8 Upper-Bounding Fault-Tolerant Resources

We are grateful to one of the anonymous referees from Quantum Information and Computation

for the remark which comprises this section, reproduced here for the reader’s benefit with only

light editing.

Note that it is possible to use existing results to implement super golden gates on common

fault-tolerant quantum computers, as well as any gate specified by a matrix with entries

in some number field. Therefore, it is theoretically possible to upper-bound the cost of

icosahedral golden gates.

Consider a gate U with entries in some number field K. This gate can be synthesized in

three steps using three well-known results.

First, reduce it to implementing an n-qubit unitary U ′ with entries in one of the fields

Q(ζ8), Q(i), or Q, by employing the Catalytic Embedding idea presented in [27, 28].

Second, synthesize U ′ using an (n+2)-qubit unitary U ′′ with entries in the rings Z[ζ8, 1/2],

Z[i, 1/2], or Z[1/2], utilizing [29, Theorem 18].

Third, employ exact synthesis techniques for unitaries [30, 31] with entries in Z[ζ8, 1/2],

Z[i, 1/2], or Z[1/2] to find a Clifford and T circuit for the unitary U ′′. Additionally, synthesize

the catalyst state up to the required accuracy using existing approximate synthesis techniques.

The cost of the catalyst state can be neglected since it is reused.

Furthermore, the results presented in [32] can be utilized to numerically establish lower

bounds on the T -cost of synthesizing U ′′. This approach allows us to determine if icosahedral

golden gates can become practical if multi-qubit synthesis algorithms are improved.
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9 Concluding Remarks

This work represents a theoretical, heuristic, and proof-of-concept demonstration of a state-

of-the-art methodology to construct single-qubit quantum gates, optimizing for using as few

expensive gates as possible, and in particular representing an improvement of log2 59 ≈ 5.9

over the previous best method [8]. However, the area of efficient quantum hardware selection

is far from fully explored. While [7] demonstrates that efficiently computing a length-logp(1/ε
3)

factorization is NP-complete (for an arbitrary PU(2)-element into golden gates associated to

prime p), it may still be possible to achieve length-c logp(1/ε
3) factorizations for c ∈ (1, 7/3).

Another possibility is in the study of multiple qubits simultaneously, as has been initiated for

PU(3) by Evra and Parzanchevski [33]. Further, the relationship of the icosahedral gates to

fault-tolerant quantum computing is as of yet not well understood.
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Appendix A

Here, we show that Q(i, ϕ) is norm-Euclidean.

Put R = Z[i, ϕ] and K = Q(i, ϕ).

Proposition 1. R is the ring of integers of K.

Proof. Consider the canonical Z-basis of R, namely {1, ϕ, i, iϕ}. One readily computes

its discriminant to be 400, equal to K’s, as per [34]. �

Consider the norm function N =
∣∣NK/Q∣∣, defined on K and taking integral values on R.

(The absolute value here is customary but superfluous, as one of K’s Q-automorphisms is

complex conjugation.)

In what follows, balls B(r) of radius r are centered at the origin and closed and with

respect to the `∞-norm.

We shall treat K interchangably with its formulation as the Q-space Q4.
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Theorem 2. R is norm-Euclidean; that is, R is a Euclidean domain with respect to the

Euclidean function N .

Proof. We use the standard reformulation that R is norm-Euclidean if and only if for all

α ∈ K there is β ∈ R for which N(α−β) < 1. Therefore we shall attack the latter statement.

Put α = w + xϕ+ yi+ ziϕ ∈ K. Then, we readily compute

N(α) = w4 + 2w3x− w2x2 − 2wx3 + x4 + 2w2y2 + 2wxy2 + 3x2y2 + y4 + 2w2yz

− 8wxyz − 2x2yz + 2y3z + 3w2z2 − 2wxz2 + 2x2z2 − y2z2 − 2yz3 + z4.

Define ‖α‖ = max{|w|, |x|, |y|, |z|}. Then we can also compute, for fixed α and any other

β ∈ K with ‖β‖ → 0,

N(α+ β) ≤ N(α) +O(‖β‖), (A.1)

and we shall presently obtain an effective, non-asymptotic form of this fact.

Viewing K ∼= Q4 as Q-spaces and R as the standard lattice, we can translate any element of

K using R to one with `∞-norm at most 1/2 (that is, B(1/2)), by subtracting off the “rounded”

element—round each component to the nearest integer. So, it remains to verify whether every

element α ∈ B(1/2) of the vector space has N(α) < 1 (which turns out to not actually hold!).

To attempt to accomplish this, we look at a refinement of R. In particular, consider Λ = 1
nZ

4

for well-chosen n. We cover B(1/2) with Λ-translates of B(1/2n), so that for each α ∈ Λ, for

all β ∈ α+ B(1/2n), by (A.1) we have N(β) ≤ N(α) +O(1/2n). The balancing act, then, is to

choose n small enough so that #(Λ∩B(1/2)) is manageable for a computer, but large enough

so that 1/2n is sufficiently small. There is a catch, where it is not actually the case that we can

ensure that N(α) +O(1/2n) < 1 for all α ∈ Λ∩B(1/2); however, for those α which violate this

condition, we can attempt to circumvent the obstruction by translating to (α + δ) + B(1/2n)

(where δ ∈ Z4) and then taking N .b

We now establish (A.1), after which we will be able to select n. Keeping α = w + xϕ +

yi + ziϕ, put β := d1 + d2ϕ + d3i + d4ϕ. Fully written out, N(α + β) is (the absolute value

of) a degree-four polynomial in eight variables with 170 total terms, so we spare the reader

bAs it turns out, picking δ so that it shifts exactly one component towards 0 by exactly 1 is sufficient when
any δ is necessary at all.
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its full statement. Letting ‖β‖ ≤ ε,chowever, we have that

N(α+ β) ≤ N(α)

+ 2ε

(∣∣2w3 + 3w2x− wx2 − x3 + 2wy2 + xy2 + 2wyz + 3wz2 − xz2 − 4xyz
∣∣

+
∣∣w3 − w2x− 3wx2 + 2x3 + wy2 + 3xy2 − 4wyz − 2xyz − wz2 + 2xz2

∣∣
+
∣∣2w2y + 2wxy + 3x2y + 2y3 + w2z − 4wxz − x2z + 3y2z − yz2 − z3

∣∣
+
∣∣w2y − 4wxy − x2y + y3 + 3w2z − 2wxz + 2x2z − y2z − 3yz2 + 2z3

∣∣)
+ ε2

(∣∣6w2 + 6wx− x2 + 2y2 + 2yz + 3z2
∣∣+ 2

∣∣3w2 − 2wx− 3x2 + y2 − 4yz − z2
∣∣

+
∣∣−w2 − 6wx+ 6x2 + 3y2 − 2yz + 2z2

∣∣+
∣∣2w2 + 2wx+ 3x2 + 6y2 + 6yz − z2

∣∣
+ 2
∣∣w2 − 4wx− x2 + 3y2 − 2yz − 3z2

∣∣+
∣∣3w2 − 2wx+ 2x2 − 6yz + 6z2 − y2

∣∣
+ 4|2wy + xy + wz − 2xz|+ 4|wy + 3xy − 2wz − xz|+ 4|wy − 2xy + 3wz − xz|

+ 4|−2wy − xy − wz + 2xz|
)

+ 2ε3
(
|w + x|+ 2|3w − x|+ 2|w + 3x|+ 2|2x− w|+ 3|2w + x|+ 2|w − 2x|

+ 2|2z − y|+ 2|y + 3z|+ 2|y − 2z|+ 2|3y − z|+ 4|2y + z|
)

+ 40ε4.

Then, picking n := 6 and ε := 1/12, for each α ∈ Λ ∩ B(1/2) as well as α − (sgnw, 0, 0, 0),

α − (0, sgnx, 0, 0), α − (0, 0, sgn y, 0), and α − (0, 0, 0, sgn z), we test whether the right-hand

side of the above is bounded by 1 for any of those five choices. The code appearing in Figure

A.1 verifies that this indeed comes to pass. �
Remark 1. It would appear that this method would readily adapt to a computation to deter-

mine that additional number fields are norm-Euclidean, so long as one knows a basis for its

ring of integers and correspondingly computes an appropriate analogue to the local effective

bound KQnorm(w,x,y,z,r). Unfortunately we have been unable to reproduce this success with

any other biquadratic number field of the form Q(i,
√
n), n > 5.

Appendix B

Here, we study irreducible elements and sums of two squares in Z[ϕ].

As in [10, §C], here we shall summarize results about classifying irreducible elements in

Z[ϕ] and an efficient algorithm for writing certain elements of Z[ϕ] as a sum of two squares.

For this section, let N = NQ(ϕ)/Q (in contrast to N = NQ(i,ϕ)/Q as in §1). We readily

compute N(a+ bϕ) = a2 + ab− b2.

Recall that Z[ϕ] is a Euclidean domain with respect to |N |, and that Z[ϕ]× = 〈±ϕ〉 (cf.

[7, §4.1.4]). Also recall that ϕ• is ϕ’s Galois conjugate, which happens to equal 1−ϕ. Extend
• Q-linearly to all of Q(ϕ).

Proposition 2. Let p be irreducible in Z. If p ≡ ±2 (mod 5) then p is irreducible in Z[ϕ].

If p ≡ ±1 (mod 5) then there is an algorithm (running in time O(poly log p)) to compute a

cSo that |d`| ≤ ε for all ` ∈ [4].
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1 import numpy as np
2 de f KQnorm(w, x , y , z , r ) :
3 p0 = abs (w∗∗4 + 2 ∗ w∗∗3 ∗ x − w∗∗2 ∗ x∗∗2 − 2 ∗ w ∗ x∗∗3 + x∗∗4 \
4 + 2 ∗ w∗∗2 ∗ y∗∗2 + 2 ∗ w ∗ x ∗ y∗∗2 + 3 ∗ x∗∗2 ∗ y∗∗2 \
5 + y∗∗4 + 2 ∗ w∗∗2 ∗ y ∗ z − 8 ∗ w ∗ x ∗ y ∗ z \
6 − 2 ∗ x∗∗2 ∗ y ∗ z + 2 ∗ y∗∗3 ∗ z + 3 ∗ w∗∗2 ∗ z ∗∗2 \
7 − y∗∗2 ∗ z ∗∗2 − 2 ∗ y ∗ z ∗∗3 + z ∗∗4 − 2 ∗ w ∗ x ∗ z ∗∗2 \
8 + 2 ∗ x∗∗2 ∗ z ∗∗2)
9 p1 = 2 ∗ r ∗ ( abs (2 ∗ w∗∗3 + 3 ∗ w∗∗2 ∗ x − w ∗ x∗∗2 − x∗∗3 \

10 + 2 ∗ w ∗ y∗∗2 + x ∗ y∗∗2 + 2 ∗ w ∗ y ∗ z + 3 ∗ w ∗ z ∗∗2 \
11 − x ∗ z ∗∗2 − 4 ∗ x ∗ y ∗ z ) + abs (w∗∗3 − w∗∗2 ∗ x \
12 − 3 ∗ w ∗ x∗∗2 + 2 ∗ x∗∗3 + w ∗ y∗∗2 + 3 ∗ x ∗ y∗∗2 \
13 − 4 ∗ w ∗ y ∗ z − 2 ∗ x ∗ y ∗ z − w ∗ z ∗∗2 + 2 ∗ x ∗ z ∗∗2) \
14 + abs (2 ∗ w∗∗2 ∗ y + 2 ∗ w ∗ x ∗ y + 3 ∗ x∗∗2 ∗ y + 2 ∗ y∗∗3 \
15 + w∗∗2 ∗ z − 4 ∗ w ∗ x ∗ z − x∗∗2 ∗ z + 3 ∗ y∗∗2 ∗ z \
16 − y ∗ z ∗∗2 − z ∗∗3) + abs (w∗∗2 ∗ y − 4 ∗ w ∗ x ∗ y − x∗∗2 ∗ y \
17 + y∗∗3 + 3 ∗ w∗∗2 ∗ z − 2 ∗ w ∗ x ∗ z + 2 ∗ x∗∗2 ∗ z \
18 − y∗∗2 ∗ z − 3 ∗ y ∗ z ∗∗2 + 2 ∗ z ∗∗3) )
19 p2 = r ∗∗2 ∗ ( abs (6 ∗ w∗∗2 + 6 ∗ w ∗ x − x∗∗2 + 2 ∗ y∗∗2 \
20 + 2 ∗ y ∗ z + 3 ∗ z ∗∗2) + abs (6 ∗ w∗∗2 − 4 ∗ w ∗ x \
21 − 6 ∗ x∗∗2 + 2 ∗ y∗∗2 − 8 ∗ y ∗ z − 2 ∗ z ∗∗2) \
22 + abs ( − w∗∗2 − 6 ∗ w ∗ x + 6 ∗ x∗∗2 + 3 ∗ y∗∗2 − 2 ∗ y ∗ z \
23 + 2 ∗ z ∗∗2) + abs (2 ∗ w∗∗2 + 2 ∗ w ∗ x + 3 ∗ x∗∗2 + 6 ∗ y∗∗2 \
24 + 6 ∗ y ∗ z − z ∗∗2) + abs (2 ∗ w∗∗2 − 8 ∗ w ∗ x − 2 ∗ x∗∗2 \
25 + 6 ∗ y∗∗2 − 4 ∗ y ∗ z − 6 ∗ z ∗∗2) + abs (3 ∗ w∗∗2 \
26 − 2 ∗ w ∗ x + 2 ∗ x∗∗2 − 6 ∗ y ∗ z + 6 ∗ z ∗∗2 − y∗∗2) \
27 + abs (8 ∗ w ∗ y + 4 ∗ x ∗ y + 4 ∗ w ∗ z − 8 ∗ x ∗ z ) \
28 + abs (4 ∗ w ∗ y + 12 ∗ x ∗ y − 8 ∗ w ∗ z − 4 ∗ x ∗ z ) \
29 + abs (4 ∗ w ∗ y − 8 ∗ x ∗ y + 12 ∗ w ∗ z − 4 ∗ x ∗ z ) \
30 + abs ( − 8 ∗ w ∗ y − 4 ∗ x ∗ y − 4 ∗ w ∗ z + 8 ∗ x ∗ z ) )
31 p3 = 2 ∗ r ∗∗3 ∗ ( abs (w + x ) + 2 ∗ abs (3 ∗ w − x ) \
32 + 2 ∗ abs (w + 3 ∗ x ) + 2 ∗ abs (2 ∗ x − w) \
33 + 3 ∗ abs (2 ∗ w + x ) + 2 ∗ abs (w − 2 ∗ x ) \
34 + 2 ∗ abs (2 ∗ z − y ) + 2 ∗ abs ( y + 3 ∗ z ) \
35 + 2 ∗ abs ( y − 2 ∗ z ) + 2 ∗ abs (3 ∗ y − z ) \
36 + 4 ∗ abs (2 ∗ y + z ) )
37 p4 = 40 ∗ r ∗∗4
38 r e turn p0 + p1 + p2 + p3 + p4
39 n = 7
40 r = 1 . 0/ (2∗ ( n−1) )
41 l = np . l i n s p a c e ( −0 .5 ,0 .5 , n )
42 f o r a in l :
43 f o r b in l :
44 f o r c in l :
45 f o r d in l :
46 i f KQnorm(a , b , c , d , r ) >= 1 \
47 and KQnorm( a−np . s i gn ( a ) ,b , c , d , r ) >= 1 \
48 and KQnorm( a , b−np . s i gn (b) , c , d , r ) >= 1 \
49 and KQnorm( a , b , c−np . s i gn ( c ) ,d , r ) >= 1 \
50 and KQnorm( a , b , c , d−np . s i gn (d) , r ) >= 1 :
51 pr in t ( a , b , c , d )

Fig. A.1. Code used to prove Theorem 2. It prints 4-tuples corresponding to points whose norms
are too large. Its failure to print anything completes the proof.
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Z[ϕ]-irreducible element dividing p.

Proof. If p is reducible in Z[ϕ] then there exist non-units u, v ∈ Z[ϕ] with uv = p and

accordingly N(u) | N(p) = p2; that is, N(u) = p.

• Observe that a2 + ab − b2 ≡ (a − 2b)2 (mod 5) and that neither of ±2 are quadratic

residues modulo 5. This proves the first part of the proposition, as if u = a + bϕ then

N(u) can never equal p.

• To prove the second part, we first show that if p ≡ 1 (mod 5) then there exists x ∈ Z
satisfying x2−x−1 ≡ 0 (mod p). Indeed, rewrite the equation to (x−2−1)2 ≡ 1+4−1.

Now, (
1 + 4−1

p

)
=

(
1 + 4−1

p

)(
4

p

)
=

(
5

p

)
=
(p

5

)
(−1)p−1 =

(p
5

)
= 1

with the third equality following by quadratic reciprocity. Let y ∈ Z be any modulo-p

square root of 1 + 4−1. Then x = y + 2−1 suffices. Set z = x − ϕ ∈ Z[ϕ]. Then

p | x2 − x − 1 = zz• but p does not divide z as z’s ϕ-part is not divisible by p, so p is

not irreducible. Thus u = gcd(p, z) will be a non-unit divisor of p, as desired. (u cannot

be a unit because otherwise gcd(p•, z•) = gcd(p, z•) will also be a unit, but then there

are no prime divisors of zz• also dividing p, a contradiction.)

The timing of the above method is due to the extended Euclidean algorithm for modular

inverses, and the standard Euclidean algorithm for GCDs in a Euclidean domain, which

have respective runtimes O(log2 p) and O(log p).

�
The only case not covered in the above is p = 5, which trivially factors as (−1 + 2ϕ)2.

Algorithm 2. Assume that there is an efficient blackbox algorithm to factor n ∈ Z in time

O(poly log n). Then there is an algorithm which factors n ∈ Z[ϕ] in time O(poly log|N(n)|).
Proof. Factor N(n) as

m∏
`=1

pe`` . Each prime p` is factorizable in time O(poly log p`) ⊂

O(poly logN(n)), by Proposition 2. There are O(logN(n)) such primes. �
To each irreducible u ∈ Z[ϕ], let its associated prime be the least (positive) prime factor

of N(u); that is,
√
N(u) when u is a Z-irreducible times a unit, and N(u) otherwise.d

Lemma 1. For any u ∈ Z[ϕ]\{0}, it is not the case that both u and uϕ can be written as a

sum of two squares.

Proof. Suppose not, so write u = w2 + x2 and uϕ = y2 + z2. Then we may take the

product

u•uϕ = N(u)ϕ = (w•y + x•z)2 + (w•z − x•y)2 = (a+ bϕ)2 + (c+ dϕ)2

for some a, b, c, d ∈ Z. The right-hand side expands out with 1-parteequal to a2 + b2 + c2 +d2,

but N(u)ϕ has 1-part equal to 0, so a = b = c = d = 0, and therefore N(u) = 0, a

contradiction. �
dLet us quickly establish why the associated prime is well-defined. Suppose p 6= q are Z-primes with p, q |
N(u) = uu•. Let p′, q′ ∈ Z[ϕ] be irreducibles such that |N(p′)| = p if p ≡ ±1 (mod 5) or p = 5, and p′ = p
otherwise; and define q′ similarly. Then p′, q′ | uu•, so as irreducibles we have p′ dividing either u or u•, and
similarly for q′, hence p = q since u and u• are themselves irreducible. Thus, N(u) is divisible by at most one
prime at most twice.
eViewing Q(ϕ) ∼= 〈1, ϕ〉Q ∼= Q2 so that the “1-part” and “ϕ-part” are the corresponding components in the
canonical isomorphism.
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Proposition 3. Let u ∈ Z[ϕ] be irreducible, with associated prime p. If p ≡ 1, 3, 7, 9, 13, 17

(mod 20) then there is an efficient algorithm in time O(poly log p) to write either u or uϕ as

a sum of two squares.

Observe that φ(20) = 8 (φ here signifying Euler’s totient function), so by Chebotarev’s

density theorem the above-asserted algorithm manages to write 3/4 of primes as sums of two

squares.

Proof. Before beginning in earnest, first remark that 2 factors in Z[i, ϕ] as (1 + i)(1− i),
and that 1± i are irreducible because NQ(i,ϕ)/Q(ϕ)(1± i) = 2, a Z[ϕ]-irreducible.

• Suppose p ≡ 1 (mod 4) (i.e. p ≡ 1, 9, 13, 17 (mod 20)). Then there exists even x ∈ Z
satisfying x2 + 1 ≡ 0 (mod p), that is, u | p | x2 + 1. Let g = gcd(u, x+ i), computed in

Z[i, ϕ], and set s = Re(g) and t = Im(g). We claim that either u or uϕ equals a squared

unit times s2 + t2. Indeed, suppose q ∈ Z[i, ϕ] is an irreducible divisor of u. We wish

to show that q divides exactly one of x± i. (Clearly it divides at least one of them, by

q | u | x2 + 1.)

– Say 1± i 6= q ∈ Z[i, ϕ] is an irreducible dividing u and both x± i. Then q | 2i. By

our choice of q this is impossible.

– Suppose now we let q be one of 1± i. Then in order to have 1±1 i | x±2 i (where

±1 and ±2 are independent signs) we must have (1 ±1 i)(a + bi) = x ±2 i where

a, b ∈ Z[ϕ]. Solving for a and b by looking at real and imaginary parts, we have

a∓1 b = x

b±1 a = ±21

and solving yields 2a = x±1 ±21, so in order for a to exist we must have x is odd.

This is a contradiction to our assumption that x is even, regardless of the choice

of ±1 and ±2, thus in fact we have neither of 1± i dividing either of x± i.

Thus, if q divides u with multiplicity mq (so that u factors in Z[i, ϕ] as u = ϕm
∏
q|u
qmq ),

we must have that q divides x± i with multiplicity at least m and x∓ i with multiplicity

0; and sofg =
∏

q|u,x+i
qmq while ḡ = gcd(u, x − i) =

∏
q|u,x−i

qmq . Thus u = ϕmgḡ =

ϕm(Re(g)2 + Im(g)2). If 2 | m then u = (ϕm/2 Re(g))2 + (ϕm/2 Im(g))2.

• Suppose p ≡ 3 (mod 4),±2 (mod 5) (i.e. p ≡ 3, 7 (mod 20)). Then compute(
−5

p

)
=

(
−1

p

)(
5

p

)
= −

(p
5

)
(−1)p−1 = 1

so that there exists even x ∈ Z which is not a multiple of 5 satisfying x2+5 ≡ 0 (mod p),

that is, u = p | x2 + 5. Let g = gcd(g, x + i(−1 + 2ϕ)), computed in Z[i, ϕ], and set

s = Re(g) and t = Im(g). We claim that p = s2 + t2. Indeed, suppose q ∈ Z[i, ϕ] is

an irreducible divisor of p (in Z[i, ϕ]). We wish to show that q divides exactly one of

x± i(−1 + 2ϕ). (Clearly it divides at least one of them, by q | p | x2 + 5.)

fDepending on choice of GCD algorithm, there may be a unit factor in front, but we assume not without loss
of generality.
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– Say −1+2ϕ, 1±i 6= q ∈ Z[i, ϕ] is an irreducible dividing u and both x±i(−1+2ϕ).

Then q | 2(−1 + 2ϕ)i. By our choice of q this is impossible.

– Suppose we let q = −1 + 2ϕ =
√

5. Then as 5 does not divide x, we have

x± i(−1 + 2ϕ)

q
=
x

5
(−1 + 2ϕ)± i ∈ Q(i, ϕ)\Z[i, ϕ]

and so in fact q divides neither of x± i(−1 + 2ϕ).

– Suppose now we let q be one of 1± i. Then in order to have 1±1 i | x±2 i(−1+2ϕ)

(where ±1 and ±2 are independent signs) we must have (1 ±1 i)(a + bi) = x ±2

i(−1 + 2ϕ) where a, b ∈ Z[ϕ]. Solving for a and b by looking at real and imaginary

parts, we have

a∓1 b = x

b±1 a = ±2(−1 + 2ϕ)

and solving yields 2a = x±1±2(−1+2ϕ), so in order for a to exist we must have x

is odd. This is a contradiction to our assumption that x is even, regardless of the

choice of ±1 and ±2, thus in fact we have neither of 1± i dividing either of x± i.

It is here that we require Theorem 2, that Z[i, ϕ] is norm-Euclidean, as this ensures that

GCDs are efficiently computable, using an Euclidean algorithm with respect to the Euclidean

function (the norm). As before, the bottlenecks are in the extended and standard Euclidean

algorithms, which are both of runtime O(log2 p). �
Observe that we can also include the Z-irreducibles 2 = 12 + 12 and 5 = (−1 + 2ϕ)2 + 02.

Theorem 3. For x ∈ Z[ϕ], factor it as

x =

n∏
`=1

um``

where u` ∈ Z[ϕ] are all irreducible, with associated primes p`, and m` ∈ N. Then either x or

xϕ may be written as the sum of two squares if, for all ` ∈ [n], one of the following holds:

• p` = 2;

• p` ≡ 1, 3, 7, 9, 13, 17 (mod 20);

• 2 | m`;

and, for arbitrary x not a priori satisfying all three criteria, this whole procedure (i.e., ei-

ther determining a sum of two squares, or rejecting on the basis of some ` failing all three

conditions) runs in time O(poly log|N(x)|).

Proof. For each ` ∈ [n], consider s` and t` defined as follows:

• If p` = 2 then s` = t` = 1.

• If p` ≡ 1, 3, 7, 9, 13, 17 (mod 20) then s` and t` are as computed using Proposition 3.

• If 2 | m` then s` = u
m`/2
` and t` = 0.
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Now, we do the standard (inductive) trick where (s2` + t2`)(s
2
`′ + t2`′) = (s`s`′ + t`t`′)

2 +

(s`t`′ − t`s`′)
2. Since we have that s2` + t2` equals either u` or u`ϕ, the resulting product

from performing the trick n times gives a sum of two squares s2 + t2 equal to xϕn
′

where

0 ≤ n′ ≤ n. If 2 | n′ then we return the pair (sϕ−n
′/2, tϕ−n

′/2), and otherwise we return

(sϕ(1−n′)/2, tϕ(1−n′)/2).

For the runtime analysis, simply factor x using Algorithm 2 and then for each resulting

factor, apply Proposition 3 after checking that one of the three criteria holds (immediately

halting and rejecting if any factor fails). �


