
Quantum Information and Computation, Vol. 22, No.7&8 (2022) 0569-0593
© Rinton Press

OPTIMIZATION AND NOISE ANALYSIS OF THE QUANTUM ALGORITHM FOR
SOLVING ONE-DIMENSIONAL POISSON EQUATION

GUOLONG CUI1, ZHIMIN WANG1,*, SHENGBIN WANG1, SHANGSHANG SHI1, RUIMIN

SHANG1, WENDONG LI1, ZHIQIANG WEI1,2, YONGJIAN GU1,*

1College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

2High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology

(Qingdao), Qingdao 266100, China
*Correspondence author, e-mail: wangzhimin@ouc.edu.cn; yjgu@ouc.edu.cn

Received July 30, 2021

Revised February 18, 2022

Solving differential equations is one of the most promising applications of quantum computing. Recently
we proposed an efficient quantum algorithm for solving one-dimensional Poisson equation avoiding the
need to perform quantum arithmetic or Hamiltonian simulation. In this paper, we further develop this
algorithm to make it closer to the real application on the noisy intermediate-scale quantum (NISQ) devices.
To this end, we first optimize the quantum 1D-Poisson solver by developing a new way of performing the
sine transformation. The circuit depth for implementing the sine transform is reduced from n2 to n without
increasing the total qubit cost of the whole circuit, which is achieved by neatly reusing the additional
ancillary quits. Then, we analyse the effect of common noise existing in the real quantum devices on our
algorithm using the IBM Qiskit toolkit. We find that the phase damping noise has little effect on our
algorithm, while the bit flip noise has the greatest impact. In addition, threshold errors of the quantum
gates are obtained to make the fidelity of the circuit output being greater than 90%. The results of noise
analysis will provide a good guidance for the subsequent work of error correction for our algorithm. The
noise-analysis method developed in this work can be used for other algorithms to be executed on the NISQ
devices.

Keywords: Quantum algorithm, Poisson equation, Quantum noise

1. Introduction

Quantum computer executing quantum algorithms can efficiently solve many problems that are
extremely difficult for classical computer [1]. One of the most valuable applications is to solve
differential equations, which is the main task in classical high-performance scientific computing [2].
A series of quantum algorithms with exponential speed-up over the classical counterparts have been
developed for solving both ordinary and partial differential equations [3-7].

The main idea of most quantum algorithms for solving differential equations is to discretize the
differential equations into systems of linear equations, which are then solved by the quantum linear
system algorithm (QLSA) [8-9] or Hamiltonian simulation [10-12]. These algorithms aim to solve
general differential equations; however, they are too expensive to be implemented using the near-
term quantum computers [13-15].

570 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

Most recently, we proposed a concise quantum algorithm for solving one-dimensional (1D)
Poisson equation (hereafter this algorithm will be called as quantum 1D-Possion solver) [16]. In the
spirit of QLSA, our algorithm can encode the solutions of Poisson equation as a quantum state using
only 3n qubits and 5/3n3 elementary gates, where n is the logarithmic of the number of discrete
points. This algorithm aims to be implementable on the near-term noisy intermediate-scale quantum
(NISQ) devices for real applications [17-18].

The prominent features of NISQ devices are the short coherent time and the noisy quantum gates.
The short coherent time limits the depth of the quantum circuit, namely the total number of quantum
gates; the operational error of quantum gates will change the amplitude distribution of output states.
For a specific circuit representation of a quantum algorithm, it is necessary to study the influence of
various noises existing in a real quantum computer on the circuit to evaluate the practicality of
actually implementing the algorithm on a quantum computer.

In this paper, we first optimize the quantum 1D-Poisson solver by reducing the circuit depth to
meet the requirement of limited coherent time. The depth of the circuit for implementing the sine
transform is reduced from n2 to n. Secondly, we perform noise analysis for our quantum circuit
utilizing both the IBM real quantum computer, IBM SANTIAGO, and the IBM circuit simulator,
Qiskit. The main contribution of the present work is the development of a particular noise-analysis
method for quantum algorithms to be executed on the NISQ devices.

The paper is organized as follows. First, we provide a high-level overview of the algorithm of
quantum 1D-Poisson solver. Next, we optimize the quantum 1D-Poisson solver by redesigning the
way of performing the sine transform, and demonstrate the algorithm on the
IBMQ_QASM_SIMULATOR. Then, noise analysis of our circuits is performed by combining the
IBM real quantum computer and the circuit simulator. Finally, are the conclusions.

2. Overview of the quantum 1D-Poisson solver

The one-dimensional Poisson equation with Dirichlet boundary conditions can be expressed as
follows,

2

2

()
(), (0,1)

(0) (1) 0

d v x
b x x

dx
v v

  

 

,

,

 (1)

where b(x) given as input is a smooth function and v(x) is the solution of the equation. Using central
difference approximation, Eq. (1) can be discretized into a linear system of equations as follows,

2

1 1

0

(2) , 1,2,..., 1

0,
i i i i i

N

h v v v b i N

v v


       

 
 (2)

where h=1/N is mesh size and the number of discrete points is N+1. Ignore the truncation error εi,
then Eq. (2) turns to be

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 571

1 1

2 22

1 1

2 1 0

1
.

1

1 2 N N

v b

v b
Av b h

v b



 

     
           
    
    

    

   
  

 (3)

The coefficient matrix A is a tridiagonal Toeplitz matrix whose eigenvectors and corresponding

eigenvalues are () 2/ sin(/)ju k N j k N and 2 24 sin (/2)j N j N  .

The quantum version of solving Eq. (3) is to produce such a quantum state that

1 1

() () ,j
j j j j j

j j jj j

v A b u u u C u



 


 



      (4)

where C is the normalizing constant. In Ref. [16] we show that such a state can be prepared in a very
simple way, which avoid the need of invoking the high-cost subroutines of QLSA or Hamiltonian
simulation. The main point is that the reciprocal of eigenvalues of matrix A can be computed
according to the following equation,

 

2
1

1
2

2 2 mod 28
= sin sin()

6 2

k m km
n m

k
k

j

j 


 




       
. (5)

That is, each 1/ j in Eq. (4) can be calculated using n-1 terms of square of sine values, where n

equals log(N). Furthermore, the sine-square terms can be prepared easily by a series of single-qubit
Ry rotations.

The overall quantum circuit to solve the one-dimensional Poisson equation is shown in Figure 1.

The sine transform (ST) is used to change the basis of Register B from eigenstates ju to

computational basis j , namely j j jj j
u j   . Then the reciprocals of eigenvalues are

calculated under the control of computational basis j through a series of Ry rotations according to

Eq. (5). Details of this part can be found in Ref. [16]. After the multi-controlled CNOT operation
and the inverse sine transform (ST†), the state evolves to

2

2 1 2 2

1

8 8
1 0 1 1 ,

n n

j jE Ej B
j j

  
 

  



          
 (6)

where
E

 represents all the states with at least one qubit being 0 in register E. Finally, the ancilla

qubit is measured, and if the result is 1 , the solution state of the one-dimensional Poisson equation

is created successfully in register B. Before the measurement, amplitude amplification is usually
implemented to increase the success probability of obtaining the expected state.

The complexity of the circuit in Figure 1 is 3n in qubits and 5/3n3 in elementary gates, which is
rather low comparing with the algorithms in Refs. [19,24]. Here we find that the cost can be reduced
further by changing the way of implementing the sine transform and combining it properly with the

572 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

following series of Ry rotations. In the next section, we will show the optimized quantum 1D-Poisson
solver.

Figure 1 The overall circuit for solving one-dimensional Poisson equation. Register B encodes the input

states
j jj

b u , and ST represents the sine transform. Register E is used to compute the reciprocals of eigenvalue

through a series of Ry rotations. Finally, Ancilla qubit will be measured with the success flag being 1 .

3. Optimization and demonstration of the quantum 1D-Poisson solver

3.1. Optimize the quantum 1D-Poisson solver

We optimize the quantum 1D-Poisson solver by redesigning the way of performing the sine
transform (ST). The sine transform corresponds to a

matrix  , , 1,..., 1i j i j N
ST

 
with , 2 sin()i jST N ij N . Generally, the sine transform can be

implemented through the Fourier transform (FT) as follows,

1†

2 2 2
1

0
,

0
N

N N N
N

CT
T FT T

i ST




 
    

 (7)

where CTN+1 (STN-1) represents the cosine (sine) transform and the subscript denotes the size of the
corresponding matrix [20]. As shown in Figure 2, the sine transform can be extracted easily from the

matrix of †
2 2 2N N NT FT T by utilizing one ancilla qubit. The quantum Fourier transform can be

implemented efficiently in an exact way [21] or an approximated way [22] (with n circuit depth).
Below we discuss the T2N transformation, which is the starting point we improve the way of
implementing the sine transform.

Figure 2 The frame to implement the sine transform. The ancilla qubit initialized to 1 is used to pick out the sine transform

from the transformation matrix
†

2 2 2N N N
T FT T .

 The general quantum circuits for implementing the unitary T2N are discussed in Refs. [23]. The T2N
transformation mainly consists of an add-one operation, which is usually implemented in a way as
shown in Figure 3(a) [24]. The advantage of this way is that it does not need any ancillary qubits,

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 573

while the disadvantage is the heavy cost of operations and circuit depth mainly resulting from the
multi-controlled NOT gates.

 In the present work, we adapt the quantum ripple carry adder [25] to implement the add-one
operation as shown in Figure 3(b). The carry adder can reduce the depth of the add-one circuit
greatly, that is, the n n-controlled NOT gates are replaced by n TOFFOLI gates as shown in the
figure. Specifically, using the new way of performing addition-one operation, the sine transform
requires at most 3n2+6n basic gates and the depth of the circuit is 4n. As comparison, the previous
method needs at least 4n2+n gates, and the depth is at least n2+5n according to Ref. [26]. This

improvement brings the quantum 1D-Poisson solver closer to the real application on quantum
computer in the near future.

It is worth noting that although the carry adder in Figure 3(b) needs n-1 additional ancillary qubits
comparing with the previous method in Figure 3(a), these ancillary qubits (i.e. the carry register C in
Figure 3(b)) are reversed to zero and will be employed in the following Ry rotation operations as
discussed below. Therefore, we reduce the circuit depth for implementing the sine transform from n2
to n without increasing the total qubit cost of the whole circuit for solving the Poisson equations.

Figure 3 The quantum circuits for implementing T2N transformation before (a) and after (b) optimization. In the optimized
circuit (b), the ripple carry adder is used to perform add one operation, and an additional register C (i.e. c1, c2…cn) is used to

stores the carry.

Figure 4 The optimized quantum circuit for solving one-dimensional Poisson equation. Register B and Ancilla are the same as
those in Figure 1. Register C is the carry register in Figure 3. Register C and E is combined to implement the series of Ry

rotations.

574 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

Combine the new sine transform with the following Ry rotations, and then we obtain the optimized
quantum 1D-Poisson solver as shown in Figure 4. Comparing with the previous algorithm as shown
in Figure 1, the main difference is that the Register E in Figure 1 is divided into two registers in
Figure 4. One of the registers, namely Register C, is first used to implement the sine transformation
before reversing the eignvalues.

 Now let us sketch how the quantum states evolve through the circuit in Figure 4. As before, first
the sine transform change the basis in Register B. After the implement of the Ry rotations and
controlled NOT operations, the state evolves into

2

2 1 1 1

&1

8 8
1 0 1 1 1 ,

n n n

j E C E Cj
j j

j 
 

    



          
 (8)

where
&E C

 represents all the states with at least one qubit being 0 in register E and C. Next, the X

module flip the states of Register C qubits, i.e. the second term in equation (8) from 1 to 0 as

follows,

2

2 1 1 1

&1

8 8
1 0 1 0 1 .

n n n

j E C E Cj
j j

j 
 

    



          
 (9)

Next step is to inverse the sine transform, which transforms the state into

2

2 1 2 1 1 1†

&1 1

8 8
1 0 1 0 1 .

n n n n

j j jregE C regE regCj j
j j

ST j u  
 

     

 

 
   
 

  (10)

Before measurement, we can perform amplitude amplification to increase the success probability
of obtaining the targeted state. Finally, we measure the ancilla qubit; if the measurement result is 1 ,

then the solution state to the one-dimensional Poisson equation is created successfully in Register B.

Here we remark that our algorithm solves the Poisson equations in a probabilistic way as shown
by Eq. (10) that is actually an implementation of non-unitary operation. In quantum computing, the
non-unitary transformation can be implemented by the method of linear combination of unitaries
(LCU), which was proposed in Ref. [27]. In fact, the well-known HHL algorithm [2] is a LCU
algorithm as shown in Ref. [28]; this is so for the present algorithm. The LCU method has become
one of the five major techniques for designing quantum algorithms as discussed in Ref. [29], and has
been extensively used, for instance, in full quantum eigensolver [30] and quantum optimization [31].

3.2. Demonstration of the optimized quantum 1D-Poisson solver

We take the cases of n=2 and n=3 for example to demonstrate the optimized quantum 1D-Poisson
solver. In the cases of n=2, the discretized matrix of the Poisson equation is 3×3 corresponding to 5
discretized points, while for n=3 the matrix is 7×7 with 9 points. Figure 5 shows the circuit for n=2.

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 575

Figure 5 The demonstrated circuit for quantum 1D-Poisson equation with n=2. The Anc. 2 qubit initialized in 1 corresponds

to the ancillary qubit in Figure 3. The NOT gate before the ST† transform is the X module in Figure 4. The circuit for n=3 can
be obtained accordingly.

We use the IBM quantum-circuit simulator, QASM_SIMULATORv0.1.547 [17], to execute the
circuits of n=2 and n=3. The initial state

2
b for n=2 and

3
b for n=3 are prepared

as 1/ 2 01 1/2 10 1/2 11 

and 1/2 001 2/4 010 2/4 011 2/4 100 2/4 101    2/4 110 2/4 111 respectively.

In theory, probabilities of the computational basis {01, 10, 11} are {0.205, 0.304, 0.161} for n=2
circuit and {0.029, 0.078, 0.118, 0.132, 0.114, 0.073, 0.025} for basis {001, 010, 011, 100, 101, 110,
111} of n=3 circuit. Note that the above probabilities of the computational basis are the ones when
the state of Ancilla in Figure 5 is measured as 1 , so the summation of them would not be 1.

The simulation results for n=2 and n=3 circuits are shown in Figure 6. The codes for the two
circuits can be found in the Appendix A. The codes are executed on the IBM Qiskit open-source
software. They are written in an intelligible quantum assembly language developed by the IBM. The
simulation results are in good coincidence with the theoretical ones, and thus the optimized quantum
1D-Poisson solver is verified.

Figure 6 The simulation results of the optimized quantum 1D-Poisson solver for n=2 (a) and n=3 (b) using the IBM circuit
simulator, Qiskit. The computational basis is that of Reg. B in Figure 5. The results coincidence well with the theoretical ones.

576 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

4. Noise analysis of the optimized quantum 1D-Poisson solver

4.1. Noise in the real quantum computer

Noise existing in the quantum computer is from the interaction between quantum systems and
environments. Every completely positive trace-preserving map ε can be regarded as a channel which
can be represented in the Kraus form [32],

   † ,k k
k

E E      (11)

where  is the density matrix of initial state  is density matrix of final state after dynamic process

and Ek represents a series of Kraus operators. It describes the dynamic evolution of the quantum
system. Different noise can be described by a particular series of Kraus operators.

 In general, there are four common kinds of noise, that is, amplitude damping, phase damping, bit
flip and depolarizing noise. The amplitude damping noise can be used to describe the loss of energy
from the quantum system to the environment, such as the process of photon emission. The Kraus
operators Ek corresponding to amplitude damping are [21]

 0 1

1 0 0
,

0 1 0 0

p
E E

p

   
    

    
， (13)

where  0 1p p  is the probability of a quantum state occurring error. The Kraus operator E0

leaves the state 0 unchanged and reduces the amplitude of state 1 , while E1 changes the

state 1 into 0 corresponding to the process of losing energy for the quantum system. Note that a

quantum state occurring error means that there appears noise in the circuit, so the noise intensity is
represented by the magnitude of the probability p. This relationship will be used below.

The phase damping noise describes the loss of quantum information of a quantum system, but
without loss of energy, like the process of photon scattering [21]. Its Kraus operators are

 0 1

1 0 0 0
,

0 1 0
E E

p p

   
    

      
， (14)

where  0 1p p  is the probability of a quantum state occurring error, i.e. the probability of

occurring photons scattering (without loss of energy). The Kraus operator E0 leaves the
state 0 unchanged and reduces the amplitude of the state 1 , while E1 destroys state 0 and reduces

the amplitude of state 1 .

The bit flip noise changes the state of a qubit from 0 to 1 and vice versa with a probability of 1-

p, and leave the state unchanged with probability p. So the Kraus operators is as follows [21],

 0 1

1 0 0 1
, 1 .

0 1 1 0
E p E p

   
     

   
 (15)

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 577

 The depolarizing channel depolarizes a state of qubit into a completely mixed state /2I with
probability p, and with a probability1- p the state is left unchanged. The Kraus operators is as
follows [21],

 0 1 2 3

1 0 0 1 0 1 03
1 , , , .

0 1 1 0 0 0 14 2 2 2

ip p pp
E E E E

i

       
                  

 (16)

 In order to analyze the noise effect on the quantum circuit, one needs to place the Kraus operators
after each quantum gate with certain probability in the quantum circuit, and analyze how the
quantum states are changed along with the probability.

4.2. Noise analysis of the quantum 1D-Poisson solver

We perform the noise analysis through three steps: first benchmarking the noise module provided by
the IBM Qiskit, then analyzing the effect of the four kinds of noise discussed above respectively,
finally quantifying the noise effect on the quantum 1D-Poisson solver circuit.

To start, the quantum circuits are executed in three ways, i.e. by the ideal circuit simulator without
noise, by the circuit simulator with device backend noise model provided in the IBM Qiskit, and by
the real quantum computer IBMQ_SANTIAGO (five qubits) [17]. The obtained results in the three
scenarios for n=2 circuit are compared in Figure 7. The running codes are given in the Appendix A.

As can be seen from the Figure 7, the noise existing in the real quantum computer indeed has a
great effect on the output states. In fact, the noises nearly smooth the characteristic amplitude
distribution of the computational basis of the output states. The deviation would be up to 80 percent.
That is, the circuit fail to encode the solutions of the 1D-Poisson equation into its output states. In
addition, we can see that the device backend noise model in the IBM Qiskit can simulate, to some
extent, the effect of the noise in the real quantum device. This noise model is a good approximation
of the real noise, which can provide us a good reference and starting point to analyze the noise effect
in more detail. In fact, the device backend noise model is generated using the calibration information
of IBM’s real device, which can mimic a real quantum computer approximately (here we chose
IBMQ_SANTIAGO).

The backend noise model includes a single qubit depolarizing error followed by a single qubit
thermal relaxation error, a two-qubit depolarizing error followed by single-qubit thermal relaxation
errors, and the single-qubit readout errors when measuring individual qubit.

However, the device backend noise model provided by the IBM Qiskit can only be used to
simulate the total effect of all kinds of noise. Moreover, the maximum number of bits it supports is
equal to that of real device it mimics. In order to get more detail about the noise effect on our
quantum 1D-Poisson solver circuit, we individually add the four common noises in section 4.1 into
the circuit with reasonable error value (i.e. the noise intensity). When adding a noise to a quantum
gate, the corresponding Kraus operators of the noise is placed before the logic gate.

We add the four kinds of noise into the n=2 and n=3 circuits of the quantum 1D-Poisson solver.
The IBM Qiskit toolkit is employed to accomplish this task. It contains classes and functions to help
building desired noise model to simulate a quantum circuit. The simulation results for the n=2 circuit
is shown in Figure 8. The corresponding code is given in Appendix A. The noise intensity, namely

578 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

the magnitude of the probability p in Kraus operators, is set to be 1.8×10-2 according to the real
parameters of the 5-qubit IBMQ_SANTIAGO quantum computer.

Figure 7 The execution results of the quantum 1D-Poisson solver circuit (with n=2) by ideal circuit simulator without noise,
circuit simulator with device backend noise model, and real quantum computer. The real quantum computer is the
IBMQ_SANTIAGO. All the probability values in the figure are the average over three sets of data and the same is true for the
following figures.

Figure 8 The running results of the n=2 quantum 1D-Poisson solver on the IBM real quantum computer, as well as the
numerical simulation results under the effect of four types of noise. For each computational basis, the order of the data from
left to right is the same as that in the legend from up to down.

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 579

 It is interesting to see from Figure 8 that the noise of phase damping has small effect on the
circuit output. This is due to the fact that our algorithm is designed to evolve the quantum states on
the amplitudes that the phase damping would has little effect on the output states. The other three
kinds of noise, the amplitude damping, bit flip and depolarizing channel, has similar effect on the
circuit. This conclusion is useful, which tell us that when performing error correction, the phase
damping error can be ignored with small loss of accuracy. Furthermore, it shows that when
considering the four kinds of noise, we can properly mimic the effect of the noise existing in the real
quantum device.

 In the last step, we quantify the noise effect on our quantum 1D-Poisson solver. The four kinds of
noise are added into n=2 and n=3 circuits with different order of magnitudes of noise intensity.
Specifically, the probability p in Kraus operators for each kind of noise is set to be changed from 10-

4 to 10-2 step-by-step according to the following equation [33],

 4 0.110 700 , 1,2,...,9.i
ip i    (17)

 In addition, the deviation of the probability of each computational basis of the output states is
taken as a measure to quantify the noise effect. It is defined as

theory

theory
(), ,

noise

basis

p p
D E D D

p


  (18)

where noisep denotes the measured probability of the target computational basis with a given noise

type and level, and theoryp is the theoretical one without noise effect. The ()basisE D represents the

average of the deviation D over all targeted computational basis.

Figure 9 The deviation of the probability of targeted computational basis along with the increasing of noise intensity for the
n=2 (a), and n=3 (b) 1D-Poisson solver circuit. The noise intensity is set according to Eq. (17). The specific data can be found
in Table 1 and 2 in the Appendix B.

 The simulation results of the deviation D for n=2 and n=3 circuit are shown in Figure 9. (The
running codes are given in the Appendix A.) Obviously, as can be seen from the figure, along with
the error decreasing, the deviation become smaller and smaller. In order to guarantee that the
deviation of the amplitude distribution is below 10%, the error of the quantum gates should be lower
than 7.1×10-4 for the n=2 circuit with 131 basic quantum gates; while for the n=3 circuit with 361

580 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

basic gates, the error should lower than 1.9×10-4. This result also provides a good quantitative
reference for the noise effect on NISQ algorithms whose number of gates are similar or proportional
to the above two circuits. In addition, we find that when the noise level is moderate (neither too
imperceptible nor too noisy, which is also the typical noise level of the present NISQ devices), the
bit flip noise will cause the largest deviation for the probability distribution of the output states.
Furthermore, the four types of noise can be added to the quantum circuit simultaneously to
approximate the noise situation in the real quantum computers.

5. Conclusion

In the present work, we optimize the quantum algorithm for solving the one-dimensional Poisson
equation by reducing the circuit depth. To achieve the optimization, we develop a new way of
implementing the sine transformation, and its circuit depth is reduced from n2 to n. This new method
could be a useful tool for other quantum algorithms. The optimized quantum 1D-Poisson solver is
demonstrated using the IBM circuit simulator.

 In order to make the quantum 1D-Poisson solver closer to the real applications on the NISQ
devices, we analyze the noise effect of four common kinds of noise on the circuits. We first execute
the circuits successfully on a 5-qubits real quantum computer, the IBM_ SANTIAGO, and show the
great effect of the noise on the circuit output states. Then we quantify the noise effect of the four
kinds of noise, including the amplitude damping, phase damping, bit flip and depolarizing noise,
using the IBM Qiskit toolkit. We find that the phase damping noise has little effect on our algorithm,
while the bit flip noise causes the greatest effect in the concerned cases. In addition, for n=2 and n=3
quantum 1D-Poisson solver circuits with 131 and 361 basic gates, the threshold error of the quantum
gates should be lower than 7.1×10-4 and 1.9×10-4, respectively, to make the deviation of the output
probability distribution below 10%. These results provide a good guidance for our subsequent work
to implement error correction on our quantum 1D-Poisson solver.

Acknowledgements

We acknowledge the use of IBM Quantum services for this work. The views expressed are those of
the authors, and do not reflect the official policy or position of IBM or the IBM Quantum team. The
present work is supported by the National Natural Science Foundation of China (Grant No.
12005212, 6157518) and the Pilot National Laboratory for Marine Science and Technology
(Qingdao).

References
1. Shor P W (1994), Algorithms for quantum computation: discrete logarithms and factoring,

Proceedings 35th annual symposium on foundations of computer science, pp. 124-134
2. Harrow A W, Hassidim A and Lloyd S (2009), Quantum algorithm for linear systems of

equations, Phys. Rev. Lett. 103, pp. 150502
3. Leyton S K and Osborne T J (2008), A quantum algorithm to solve nonlinear differential

equations, arXiv:0812.4423
4. Clader B D, Jacobs B C and Sprouse C R (2013), Preconditioned quantum linear system

algorithm ,Phys. Rev. Lett. 110, pp. 250504
5. Berry D W, Childs A M, Ostrander A and Wang G (2017), Quantum algorithm for linear

differential equations with exponentially improved dependence on precision, Commun. Math.

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 581

Phys. 356, pp. 1057-1081
6. Childs A M and Liu J (2020), Quantum spectral methods for differential equations, Commun.

Math. Phys. 375, pp. 1427-1457
7. Arrazola J M, Kalajdzievski T, Weedbrook C and Lloyd S (2019), Quantum algorithm for

nonhomogeneous linear partial differential equations, Phys. Rev. A 100, pp. 032306.
8. Berry D W (2014), High-order quantum algorithm for solving linear differential equations, J.

Phys. A-Math. Theor. 47, pp. 105301
9. Childs A M, Kothari R and Somma R D (2017), Quantum algorithm for systems of linear

equations with exponentially improved dependence on precision, SIAM J. Comput. 46, pp.
1920-1950

10. Berry D W, Childs A M and Kothari R (2015), Hamiltonian simulation with nearly optimal
dependence on all parameters, IEEE 56th Annual Symposium on Foundations of Computer
Science, pp. 792-809

11. Berry D W, Childs A M, Cleve R, Kothari R and Somma R D (2014), Exponential improvement
in precision for simulating sparse Hamiltonians, Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pp. 283-292

12. Low G H and Chuang I L (2017), Optimal Hamiltonian simulation by quantum signal
processing, Phys. Rev. Lett. 118, pp. 010501

13. Arute F, Arya K, Babbush R and et al (2019), Quantum supremacy using a programmable
superconducting processor, Nature 574, pp. 505-510

14. Jurcevic P, Javadi-Abhari A, Bishop L S and et al (2021), Demonstration of quantum volume 64
on a superconducting quantum computing system, Quantum Sci. Technol. 6, pp. 025020

15. Sundaresan N, Lauer I, Pritchett E, Magesan E, Jurcevic P and Gambetta J M (2020), Reducing
unitary and spectator errors in cross resonance with optimized rotary echoes, PRX Quantum 1,
pp. 020318

16. Wang S, Wang Z, Li W, Fan L, Cui G, Wei Z and Gu Y (2020), A quantum Poisson solver
implementable on NISQ devices, arXiv:2005.00256

17. See IBM Quantum. https://quantum-computing.ibm.com/ (2021) for detailed information
18. Gong M, Wang S, Zha C and et al (2021), Quantum walks on a programmable two-dimensional

62-qubit superconducting processor, Science 372, pp. 948-952
19. Wang S, Wang Z, Li W, Fan L, Wei Z and Gu Y (2020), Quantum fast Poisson solver: the

algorithm and complete and modular circuit design, Quantum Inf. Process. 19, pp. 1-25
20. Wickerhauser M V (1996), Adapted wavelet analysis: from theory to software (CRC: Boca

Raton), pp. 68-90
21. Nielsen M A and Chuang I (2002), Quantum computation and quantum information (Cambridge

University: New York)
22. Yunseong N, Yuan Su and Dmitri M (2020), Approximate quantum Fourier transform with O (n

log(n)) T gates, npj Quantum Inf. 6, pp. 26
23. Klappenecker A and Rotteler M (2001), Discrete cosine transforms on quantum computers,

Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis.
In conjunction with 23rd International Conference on Information Technology Interfaces, pp.
464-468

24. Cao Y, Papageorgiou A, Petras I, Traub J and Kais S (2013), Quantum algorithm and circuit
design solving the Poisson equation, New J. Phys. 15, pp. 013021

25. Vedral V, Barenco A and Ekert A (1996), Quantum networks for elementary arithmetic
operations, Phys. Rev. A 54, pp. 147

26. Barenco A, Bennett C H, Cleve R and et al (1995), Elementary gates for quantum computation,
Phys. Rev. A 52, pp. 3457

27. Long G (2006), General quantum interference principle and duality computer, Commun. Theor.

582 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

Phys. 45, pp. 825
28. Wei S, Zhou Z, Ruan D and Long G (2017), Realization of the algorithm for system of linear

equations in duality quantum computing, 2017 IEEE 85th Vehicular Technology Conferenc
29. Shao C, Li Y and Li H (2019), Quantum algorithm design: techniques and applications, J. Syst.

Sci. Complex. 32, pp. 375-452
30. Wei S, Li H and Long G (2020), A full quantum eigensolver for quantum chemistry simulations,

Research 2020
31. Gao P, Li K, Wei S and Long G (2021), Quantum second-order optimization algorithm for

general polynomials, Sci. China-Phys. Mech. Astron. 64, pp. 1
32. Liang X (2003), Classical information capacities of some single qubit quantum noisy channels,

Commun. Theor. Phys. 39, pp. 537
33. Xue C, Chen Z, Wu Y and Guo G (2021), Effects of quantum noise on quantum approximate

optimization algorithm, Chin. Phys. Lett. 38, pp. 030302

Appendix A Codes

Here we provide the Qiskit codes for the case of n=2 and 3. In the section first in order to visualize the
designed circuit the code is taken the form in IBM online computing platform which can be
transformed into Qiskit code easily by drop-down window on the interface [1]. Then The Qiskit code
for ideal circuit simulation without noise, for device backend noise model mimicked
IBMQ_SANTIAGO, for the real quantum computer IBMQ_SANTIAGO, for adding four common
kinds of noise are given in turn. The execution of Qiskit code depends on the Python environment. So,
first, we need install the software Anaconda, next in Anaconda prompt create a python environment.
Then basing on the environment build a Qiskit package [2]. Finally typing ”python” to start the
simulation.

The circuit code for n=2
#the simulator has its basic gates of H, S, X, T, CNOT, TOFFOLI, U, U2, U3, etc
#they are converted to one & two qubit
gates to get the number of 79
#5 qubit omitted the auxiliary bits in fig.5 instead of observing Reg. E and Reg. C directly
#qubit 0 and 2 corresponds to Reg. E and C respectively
#qubit 3 and 1 Reg. B
#qubit 4 Anc.2

qreg q[5];
creg c[4];

#state b preparation
h q[3];
x q[4];
x q[3];
h q[4];
cx q[3],q[1];
x q[3];
ch q[3],q[1];
#state b preparation done

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 583

#sin transform
cx q[4],q[3];
cx q[4],q[1];
ccx q[4],q[1],q[2];
cx q[2],q[3];
ccx q[4],q[1],q[2];
cx q[4],q[1];
h q[4];
cu1(pi/2) q[3],q[4];
cu1(pi/4) q[1],q[4];
h q[3];
cu1(pi/2) q[1],q[3];
h q[1];
swap q[1],q[4];
cx q[4],q[1];
ccx q[4],q[1],q[2];
cx q[2],q[3];
ccx q[4],q[1],q[2];
cx q[4],q[1];
cx q[4],q[3];
#sin transform done

#controlled Ry module
x q[3];
ccx q[3],q[1],q[2];
ccx q[1],q[3],q[0];
cry(pi/8) q[1],q[2];
cry(pi/8) q[1],q[0];
cx q[3],q[1];
cry(-pi/8) q[1],q[2];
cry(-pi/8) q[1],q[0];
cx q[3],q[1];
cry(pi/8) q[3],q[2];
cry(pi/8) q[3],q[0];
x q[1];
x q[3];
cry(pi/6) q[1],q[2];
cry(pi/6) q[1],q[0];
cx q[3],q[1];
cry(-pi/6) q[1],q[2];
cry(-pi/6) q[1],q[0];
cx q[3],q[1];
cry(pi/6) q[3],q[2];
cry(pi/6) q[3],q[0];
x q[1];
cry(pi/8) q[1],q[2];
cry(pi/8) q[1],q[0];
cx q[3],q[1];
cry(-pi/8) q[1],q[2];
cry(-pi/8) q[1],q[0];

584 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

cx q[3],q[1];
cry(pi/8) q[3],q[2];
cry(pi/8) q[3],q[0];
#controlled Ry module done

x q[2]; #X module in Fig. 4
cx q[4],q[3];
cx q[4],q[1];
ccx q[4],q[1],q[2];
cx q[2],q[3];
ccx q[4],q[1],q[2];
cx q[4],q[1];
swap q[1],q[4];
h q[1];
cu1(-pi/2) q[1],q[3];
h q[3];
cu1(-pi/4) q[1],q[4];
cu1(-pi/2) q[3],q[4];
h q[4];
cx q[4],q[1];
ccx q[4],q[1],q[2];
cx q[2],q[3];
ccx q[4],q[1],q[2];
cx q[4],q[1];
x q[2];
cx q[4],q[3];
h q[4];
x q[4];
measure q[3] -> c[3];
measure q[1] -> c[2];
measure q[2] -> c[1];
measure q[0] -> c[0];

The circuit code for n=3
#9 qubit and 217 one & two qubit
gates
#qubit 0 Anc
#qubit 1, 2 and 4, 6 corresponds to Reg. E and C respectively
#qubit 3, 5, 7 Reg. B
#qubit 8 Anc.2
qreg q[9];
creg c[4];

#state b preparation
h q[5];
h q[7];
x q[8];
x q[5];
x q[7];

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 585

h q[8];
ccx q[7],q[5],q[3];
x q[5];
x q[7];
cry(pi/4) q[5],q[3];
cx q[7],q[5];
cry(-pi/4) q[5],q[3];
cx q[7],q[5];
cry(pi/4) q[7],q[3];
x q[5];
cry(pi/4) q[5],q[3];
cx q[7],q[5];
cry(-pi/4) q[5],q[3];
cx q[7],q[5];
cry(pi/4) q[7],q[3];
x q[5];
x q[7];
cry(pi/4) q[5],q[3];
cx q[7],q[5];
cry(-pi/4) q[5],q[3];
cx q[7],q[5];
cry(pi/4) q[7],q[3];
x q[7];
#state b preparation done

#sin transform
cx q[8],q[7];
cx q[8],q[5];
cx q[8],q[3];
ccx q[3],q[8],q[4];
ccx q[4],q[5],q[6];
cx q[6],q[7];
ccx q[4],q[5],q[6];
cx q[4],q[5];
ccx q[3],q[8],q[4];
cx q[8],q[3];
h q[8];
cp(pi/2) q[7],q[8];
cp(pi/4) q[5],q[8];
cp(pi/8) q[3],q[8];
h q[7];
cp(pi/2) q[5],q[7];
cp(pi/4) q[3],q[7];
h q[5];
cp(pi/2) q[3],q[5];
h q[3];
swap q[3],q[8];
swap q[5],q[7];
cx q[8],q[3];
ccx q[3],q[8],q[4];

586 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

cx q[4],q[5];
ccx q[4],q[5],q[6];
cx q[6],q[7];
ccx q[4],q[5],q[6];
ccx q[3],q[8],q[4];
cx q[8],q[3];
cx q[8],q[5];
barrier q[5];
cx q[8],q[7];
#sin transform done

#controlled Ry module
x q[5];
x q[7];
cry(pi/4) q[7],q[6];
cry(pi/4) q[7],q[4];
cx q[3],q[7];
cry(-pi/4) q[7],q[6];
cry(-pi/4) q[7],q[4];
cx q[3],q[7];
cry(pi/4) q[3],q[6];
x q[7];
cry(pi/4) q[3],q[4];
cry(pi/8) q[5],q[6];
x q[7];
cry(pi/8) q[5],q[4];
cx q[3],q[5];
cry(-pi/8) q[5],q[6];
cry(-pi/8) q[5],q[4];
cx q[3],q[5];
cry(pi/8) q[3],q[6];
cry(pi/8) q[3],q[4];
x q[5];
cry(pi/8) q[3],q[6];
cry(pi/8) q[3],q[4];
cx q[7],q[5];
cry(pi/4) q[5],q[2];
cry(pi/4) q[5],q[1];
cx q[3],q[5];
cry(-pi/4) q[5],q[2];
cry(-pi/4) q[5],q[1];
cx q[3],q[5];
cry(pi/4) q[3],q[2];
cx q[7],q[5];
cry(pi/4) q[3],q[1];
cry(pi/6) q[5],q[6];
x q[7];
cry(pi/4) q[3],q[2];
cry(pi/6) q[5],q[4];
x q[7];

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 587

cry(pi/4) q[3],q[1];
x q[3];
cx q[3],q[5];
cry(-pi/6) q[5],q[6];
cry(-pi/6) q[5],q[4];
cx q[3],q[5];
cry(pi/6) q[3],q[6];
cry(pi/6) q[3],q[4];
cry(pi/4) q[7],q[2];
cry(pi/4) q[7],q[1];
ccx q[3],q[5],q[7];
cry(-pi/4) q[7],q[2];
cry(-pi/4) q[7],q[1];
ccx q[3],q[5],q[7];
cry(pi/8) q[5],q[2];
x q[7];
cry(pi/8) q[5],q[1];
cry(pi/6) q[7],q[6];
cx q[3],q[5];
cry(-pi/8) q[5],q[2];
cry(-pi/8) q[5],q[1];
cx q[3],q[5];
cry(pi/8) q[3],q[2];
cry(pi/8) q[3],q[1];
cry(pi/8) q[5],q[2];
cry(pi/8) q[5],q[1];
cx q[3],q[5];
cry(-pi/8) q[5],q[2];
cry(-pi/8) q[5],q[1];
cx q[3],q[5];
cry(pi/8) q[3],q[2];
x q[5];
cry(pi/8) q[3],q[1];
cry(pi/6) q[7],q[4];
x q[3];
x q[3];
cry(pi/6) q[7],q[2];
cry(pi/6) q[7],q[1];
ccx q[3],q[5],q[7];
cry(-pi/6) q[7],q[6];
cry(-pi/6) q[7],q[4];
cry(-pi/6) q[7],q[2];
cry(-pi/6) q[7],q[1];
ccx q[3],q[5],q[7];
cry(pi/12) q[5],q[6];
cx q[8],q[7];
cry(pi/12) q[5],q[4];
cry(pi/12) q[5],q[2];
cry(pi/12) q[5],q[1];
cx q[3],q[5];

588 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

cry(-pi/12) q[5],q[6];
cry(-pi/12) q[5],q[4];
cry(-pi/12) q[5],q[2];
cry(-pi/12) q[5],q[1];
cx q[3],q[5];
cry(pi/12) q[3],q[6];
cry(pi/12) q[3],q[4];
x q[5];
cry(pi/12) q[3],q[2];
cry(pi/12) q[3],q[1];
crz(pi) q[1],q[0];
x q[3];
#controlled Ry module done

cry(pi/2) q[1],q[0];
crz(pi) q[2],q[0];
cry(pi/2) q[2],q[0];
ccx q[4],q[6],q[0];
cry(-pi/2) q[2],q[0];
crz(-pi/2) q[2],q[0];
ccx q[4],q[6],q[0];
crz(-pi/2) q[2],q[0];
cry(-pi/2) q[1],q[0];
crz(-pi/2) q[1],q[0];
crz(pi) q[2],q[0];
cry(pi/2) q[2],q[0];
ccx q[4],q[6],q[0];
cry(-pi/2) q[2],q[0];
crz(-pi/2) q[2],q[0];
ccx q[4],q[6],q[0];
crz(-pi/2) q[2],q[0];
x q[6]; #X module
crz(-pi/2) q[1],q[0];
x q[4]; #X module
cx q[8],q[5];
rx(pi) q[0];
cx q[8],q[3];
x q[0];
ccx q[3],q[8],q[4];
ccx q[4],q[5],q[6];
cx q[6],q[7];
ccx q[4],q[5],q[6];
cx q[4],q[5];
ccx q[3],q[8],q[4];
cx q[8],q[3];
swap q[5],q[7];
swap q[3],q[8];
h q[3];
cp(-pi/2) q[3],q[5];
h q[5];

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 589

cp(-pi/4) q[3],q[7];
cp(-pi/2) q[5],q[7];
h q[7];
cp(-pi/8) q[3],q[8];
cp(-pi/4) q[5],q[8];
cp(-pi/2) q[7],q[8];
h q[8];
cx q[8],q[3];
ccx q[3],q[8],q[4];
cx q[4],q[5];
ccx q[4],q[5],q[6];
cx q[6],q[7];
ccx q[4],q[5],q[6];
ccx q[3],q[8],q[4];
cx q[8],q[3];
cx q[8],q[5];
cx q[8],q[7];
h q[8];
x q[8];
measure q[7] -> c[3];
measure q[5] -> c[2];
measure q[3] -> c[1];
measure q[0] -> c[0];

The Qiskit code for ideal circuit simulation without noise
preparation for execution
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute,Aer
from qiskit.visualization import plot_histogram
from numpy import pi

#Put Qiskit circuit code for n=2 or n=3

#execute the circuit
backend=Aer.get_backend('qasm_simulator')
job=execute(circuit,backend,shots=16384)
result = job.result()
counts = result.get_counts(circuit)
plot_histogram(counts).show()

The n=2 Qiskit code for device backend noise model mimicked IBMQ_SANTIAGO
#preparation for execution
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute
from qiskit.providers.aer import QasmSimulator
from qiskit.visualization import plot_histogram
from qiskit.test.mock import FakeSantiago
from numpy import pi

#Put Qiskit circuit code for n=2

590 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

#execute the circuit
device_backend = FakeSantiago()
Santiago_simulator=QasmSimulator.from_backend(device_backend)
result=execute(circuit,Santiago_simulator).result()
counts =result.get_counts(circuit)
plot_histogram(counts).show()

The n=2 Qiskit code for executing circuit on real quantum computer IBMQ_SANTIAGO
#preparation for execution
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute
from qiskit.visualization import plot_histogram
from numpy import pi
from qiskit import IBMQ
provider = IBMQ.load_account()
backend=provider.get_backend('ibmq_santiago')

#Put Qiskit circuit code for n=2

#execute the circuit
job=execute(circuit,backend,shots=8192)
result = job.result()
counts = result.get_counts(circuit)
plot_histogram(counts).show()

The Qiskit code of adding four common kinds of noise
#preparation for execution
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute,Aer
from qiskit.visualization import plot_histogram
from numpy import pi

#Put Qiskit circuit code for n=2 or n=3

#execute the circuit
backend=Aer.get_backend('qasm_simulator')
job=execute(circuit,backend,shots=16384)
result = job.result()
counts = result.get_counts(circuit)
plot_histogram(counts).show()

The n=2 Qiskit code for device backend noise model mimicked IBMQ_SANTIAGO
#preparation for execution
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute
from qiskit.providers.aer import QasmSimulator
from qiskit.visualization import plot_histogram
from qiskit.test.mock import FakeSantiago
from numpy import pi

#Put Qiskit circuit code for n=2

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 591

#execute the circuit
device_backend = FakeSantiago()
Santiago_simulator=QasmSimulator.from_backend(device_backend)
result=execute(circuit,Santiago_simulator).result()
counts =result.get_counts(circuit)
plot_histogram(counts).show()

The n=2 Qiskit code for executing circuit on real quantum computer IBMQ_SANTIAGO
#preparation for execution
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute
from qiskit.visualization import plot_histogram
from numpy import pi
from qiskit import IBMQ
provider = IBMQ.load_account()
backend=provider.get_backend('ibmq_santiago')

#Put Qiskit circuit code for n=2

#execute the circuit
job=execute(circuit,backend,shots=8192)
result = job.result()
counts = result.get_counts(circuit)
plot_histogram(counts).show()

The Qiskit code of adding four common kinds of noise
#preparation for execution

from qiskit import QuantumRegister,
ClassicalRegister, QuantumCircuit, execute
from qiskit.providers.aer import QasmSimulator
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.noise import QuantumError
from qiskit.providers.aer.noise import amplitude_damping_error, phase_damping_error, depolarizing_error,
pauli_error
from qiskit.visualization import plot_histogram
from numpy import pi

#Put Qiskit circuit code for n=2 or n=3

#select the type of noise to add and set the noise intensity
p = 1e-04*pow(700,1)#set intensity noise
error=amplitude_damping_error(p)
error = phase_damping_error(p)
error = depolarizing_error(p, 1)
error = pauli_error([('X',p_error), ('I', 1 - p_error)])

#put selected noise on gates of the circuit
error_gatec = error.tensor(error)

592 Optimization and noise analysis of the quantum algorithm for solving one-dimensional Poisson equation

error_gateccx=error.tensor(error).tensor(error)
noise_model = NoiseModel()
noise_model.add_all_qubit_quantum_error(error, ["h"])
noise_model.add_all_qubit_quantum_error(error, ["x"])
noise_model.add_all_qubit_quantum_error(error_gatec, ["cx"])
noise_model.add_all_qubit_quantum_error(error_gatec, ["cry"])
noise_model.add_all_qubit_quantum_error(error_gatec, ["cu1"])
noise_model.add_all_qubit_quantum_error(error_gateccx, ["ccx"])
noise_model.add_all_qubit_quantum_error(error, "measure")

#execute the noisy circuit
noise_simulator=QasmSimulator(noise_model=noise_model)
job = execute(circuit, noise_simulator)
noisy_result = job.result()
noisy_counts=noisy_result.get_counts(0)
plot_histogram(noisy_counts).show()

Appendix B Date

The detailed data on Figure 9 in the table below.

 Table.1 The deviation for n=2 under four types of noise

i AD PD DE BF

1 0.0341 0.0206 0.0175 0.0161

2 0.0177 0.0275 0.0350 0.0293

3 0.0543 0.0396 0.0848 0.1001

4 0.0696 0.0310 0.0697 0.1184

5 0.1588 0.0196 0.1288 0.2381

6 0.2701 0.0412 0.2591 0.3782

7 0.4608 0.0606 0.4171 0.5390

8 0.6660 0.1504 0.5901 0.6528

9 0.8118 0.2412 0.7074 0.7047

 Table.2 The deviation for n=3 under four types of noise

i AD PD DE BF

1 0.0745 0.0625 0.0310 0.0778

2 0.1205 0.0498 0.1069 0.1580

3 0.1363 0.0372 0.1471 0.2116

4 0.2031 0.0842 0.2183 0.3565

5 0.3497 0.0900 0.3481 0.5365

6 0.4702 0.1781 0.4811 0.5875

7 0.5709 0.1993 0.6183 0.6690

8 0.6358 0.3257 0.5904 0.6736

9 0.7105 0.4825 0.6418 0.6212

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu 593

Further details
1. See IBM Quantum. https://quantum-computing.ibm.com/ (2021)
2. See https://qiskit.org/documentation/getting_started.html

