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Solving differential equations is one of the most promising applications of quantum computing. Recently 
we proposed an efficient quantum algorithm for solving one-dimensional Poisson equation avoiding the 
need to perform quantum arithmetic or Hamiltonian simulation. In this paper, we further develop this 
algorithm to make it closer to the real application on the noisy intermediate-scale quantum (NISQ) devices. 
To this end, we first optimize the quantum 1D-Poisson solver by developing a new way of performing the 
sine transformation. The circuit depth for implementing the sine transform is reduced from n2 to n without 
increasing the total qubit cost of the whole circuit, which is achieved by neatly reusing the additional 
ancillary quits. Then, we analyse the effect of common noise existing in the real quantum devices on our 
algorithm using the IBM Qiskit toolkit. We find that the phase damping noise has little effect on our 
algorithm, while the bit flip noise has the greatest impact. In addition, threshold errors of the quantum 
gates are obtained to make the fidelity of the circuit output being greater than 90%. The results of noise 
analysis will provide a good guidance for the subsequent work of error correction for our algorithm. The 
noise-analysis method developed in this work can be used for other algorithms to be executed on the NISQ 
devices. 
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1. Introduction 

Quantum computer executing quantum algorithms can efficiently solve many problems that are 
extremely difficult for classical computer [1]. One of the most valuable applications is to solve 
differential equations, which is the main task in classical high-performance scientific computing [2]. 
A series of quantum algorithms with exponential speed-up over the classical counterparts have been 
developed for solving both ordinary and partial differential equations [3-7]. 

The main idea of most quantum algorithms for solving differential equations is to discretize the 
differential equations into systems of linear equations, which are then solved by the quantum linear 
system algorithm (QLSA) [8-9] or Hamiltonian simulation [10-12]. These algorithms aim to solve 
general differential equations; however, they are too expensive to be implemented using the near-
term quantum computers [13-15].  
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Most recently, we proposed a concise quantum algorithm for solving one-dimensional (1D) 
Poisson equation (hereafter this algorithm will be called as quantum 1D-Possion solver) [16]. In the 
spirit of QLSA, our algorithm can encode the solutions of Poisson equation as a quantum state using 
only 3n qubits and 5/3n3 elementary gates, where n is the logarithmic of the number of discrete 
points. This algorithm aims to be implementable on the near-term noisy intermediate-scale quantum 
(NISQ) devices for real applications [17-18].  

The prominent features of NISQ devices are the short coherent time and the noisy quantum gates. 
The short coherent time limits the depth of the quantum circuit, namely the total number of quantum 
gates; the operational error of quantum gates will change the amplitude distribution of output states. 
For a specific circuit representation of a quantum algorithm, it is necessary to study the influence of 
various noises existing in a real quantum computer on the circuit to evaluate the practicality of 
actually implementing the algorithm on a quantum computer. 

In this paper, we first optimize the quantum 1D-Poisson solver by reducing the circuit depth to 
meet the requirement of limited coherent time. The depth of the circuit for implementing the sine 
transform is reduced from n2 to n. Secondly, we perform noise analysis for our quantum circuit 
utilizing both the IBM real quantum computer, IBM SANTIAGO, and the IBM circuit simulator, 
Qiskit. The main contribution of the present work is the development of a particular noise-analysis 
method for quantum algorithms to be executed on the NISQ devices. 

The paper is organized as follows. First, we provide a high-level overview of the algorithm of 
quantum 1D-Poisson solver. Next, we optimize the quantum 1D-Poisson solver by redesigning the 
way of performing the sine transform, and demonstrate the algorithm on the 
IBMQ_QASM_SIMULATOR. Then, noise analysis of our circuits is performed by combining the 
IBM real quantum computer and the circuit simulator. Finally, are the conclusions. 

2. Overview of the quantum 1D-Poisson solver 

The one-dimensional Poisson equation with Dirichlet boundary conditions can be expressed as 
follows, 
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where b(x) given as input is a smooth function and v(x) is the solution of the equation. Using central 
difference approximation, Eq. (1) can be discretized into a linear system of equations as follows, 
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where h=1/N is mesh size and the number of discrete points is N+1. Ignore the truncation error εi, 
then Eq. (2) turns to be 
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The coefficient matrix A is a tridiagonal Toeplitz matrix whose eigenvectors and corresponding 

eigenvalues are ( ) 2/ sin( / )ju k N j k N and 2 24 sin ( /2 )j N j N  .  

The quantum version of solving Eq. (3) is to produce such a quantum state that 
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where C is the normalizing constant. In Ref. [16] we show that such a state can be prepared in a very 
simple way, which avoid the need of invoking the high-cost subroutines of QLSA or Hamiltonian 
simulation. The main point is that the reciprocal of eigenvalues of matrix A can be computed 
according to the following equation, 
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That is, each 1/ j in Eq. (4) can be calculated using n-1 terms of square of sine values, where n 

equals log(N). Furthermore, the sine-square terms can be prepared easily by a series of single-qubit 
Ry rotations.  

The overall quantum circuit to solve the one-dimensional Poisson equation is shown in Figure 1. 

The sine transform (ST) is used to change the basis of Register B from eigenstates ju to 

computational basis j , namely j j jj j
u j   . Then the reciprocals of eigenvalues are 

calculated under the control of computational basis j  through a series of Ry rotations according to 

Eq. (5). Details of this part can be found in Ref. [16]. After the multi-controlled CNOT operation 
and the inverse sine transform (ST†), the state evolves to  
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where
E

 represents all the states with at least one qubit being 0 in register E. Finally, the ancilla 

qubit is measured, and if the result is 1 , the solution state of the one-dimensional Poisson equation 

is created successfully in register B. Before the measurement, amplitude amplification is usually 
implemented to increase the success probability of obtaining the expected state. 

The complexity of the circuit in Figure 1 is 3n in qubits and 5/3n3 in elementary gates, which is 
rather low comparing with the algorithms in Refs. [19,24]. Here we find that the cost can be reduced 
further by changing the way of implementing the sine transform and combining it properly with the 
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following series of Ry rotations. In the next section, we will show the optimized quantum 1D-Poisson 
solver. 

 

Figure 1 The overall circuit for solving one-dimensional Poisson equation. Register B encodes the input 

states
j jj

b u , and ST represents the sine transform. Register E is used to compute the reciprocals of eigenvalue 

through a series of Ry rotations. Finally, Ancilla qubit will be measured with the success flag being 1 .  

3. Optimization and demonstration of the quantum 1D-Poisson solver 

3.1. Optimize the quantum 1D-Poisson solver 

We optimize the quantum 1D-Poisson solver by redesigning the way of performing the sine 
transform (ST). The sine transform corresponds to a 

matrix  , , 1,..., 1i j i j N
ST

 
with , 2 sin( )i jST N ij N . Generally, the sine transform can be 

implemented through the Fourier transform (FT) as follows,  
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where CTN+1 (STN-1) represents the cosine (sine) transform and the subscript denotes the size of the 
corresponding matrix [20]. As shown in Figure 2, the sine transform can be extracted easily from the 

matrix of †
2 2 2N N NT FT T by utilizing one ancilla qubit. The quantum Fourier transform can be 

implemented efficiently in an exact way [21] or an approximated way [22] (with n circuit depth). 
Below we discuss the T2N transformation, which is the starting point we improve the way of 
implementing the sine transform. 
 

 

Figure 2 The frame to implement the sine transform. The ancilla qubit initialized to 1 is used to pick out the sine transform 

from the transformation matrix
†

2 2 2N N N
T FT T . 

  The general quantum circuits for implementing the unitary T2N are discussed in Refs. [23]. The T2N 
transformation mainly consists of an add-one operation, which is usually implemented in a way as 
shown in Figure 3(a) [24]. The advantage of this way is that it does not need any ancillary qubits, 



 

 

G-L Cui, Z-M Wang, S-B Wang, S-S Shi, R-M Shang, W-D Li, Z-Q Wei, and Y-J Gu     573

while the disadvantage is the heavy cost of operations and circuit depth mainly resulting from the 
multi-controlled NOT gates. 

  In the present work, we adapt the quantum ripple carry adder [25] to implement the add-one 
operation as shown in Figure 3(b). The carry adder can reduce the depth of the add-one circuit 
greatly, that is, the n n-controlled NOT gates are replaced by n TOFFOLI gates as shown in the 
figure. Specifically, using the new way of performing addition-one operation, the sine transform 
requires at most 3n2+6n basic gates and the depth of the circuit is 4n. As comparison, the previous 
method needs at least 4n2+n gates, and the depth is at least n2+5n according to Ref. [26]. This 

improvement brings the quantum 1D-Poisson solver closer to the real application on quantum 
computer in the near future. 

It is worth noting that although the carry adder in Figure 3(b) needs n-1 additional ancillary qubits 
comparing with the previous method in Figure 3(a), these ancillary qubits (i.e. the carry register C in 
Figure 3(b)) are reversed to zero and will be employed in the following Ry rotation operations as 
discussed below. Therefore, we reduce the circuit depth for implementing the sine transform from n2 
to n without increasing the total qubit cost of the whole circuit for solving the Poisson equations. 

 

 

Figure 3 The quantum circuits for implementing T2N transformation before (a) and after (b) optimization. In the optimized 
circuit (b), the ripple carry adder is used to perform add one operation, and an additional register C (i.e. c1, c2…cn) is used to 

stores the carry. 

 

 

Figure 4 The optimized quantum circuit for solving one-dimensional Poisson equation. Register B and Ancilla are the same as 
those in Figure 1. Register C is the carry register in Figure 3. Register C and E is combined to implement the series of Ry 

rotations. 
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Combine the new sine transform with the following Ry rotations, and then we obtain the optimized 
quantum 1D-Poisson solver as shown in Figure 4. Comparing with the previous   algorithm as shown 
in Figure 1, the main difference is that the Register E in Figure 1 is divided into two registers in 
Figure 4. One of the registers, namely Register C, is first used to implement the sine transformation 
before reversing the eignvalues. 

      Now let us sketch how the quantum states evolve through the circuit in Figure 4. As before, first 
the sine transform change the basis in Register B. After the implement of the Ry rotations and 
controlled NOT operations, the state evolves into  
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where
&E C

 represents all the states with at least one qubit being 0 in register E and C. Next, the X 

module flip the states of Register C qubits, i.e. the second term in equation (8) from 1 to 0 as 

follows, 
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Next step is to inverse the sine transform, which transforms the state into 
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Before measurement, we can perform amplitude amplification to increase the success probability 
of obtaining the targeted state. Finally, we measure the ancilla qubit; if the measurement result is 1 , 

then the solution state to the one-dimensional Poisson equation is created successfully in Register B.  

Here we remark that our algorithm solves the Poisson equations in a probabilistic way as shown 
by Eq. (10) that is actually an implementation of non-unitary operation. In quantum computing, the 
non-unitary transformation can be implemented by the method of linear combination of unitaries 
(LCU), which was proposed in Ref. [27]. In fact, the well-known HHL algorithm [2] is a LCU 
algorithm as shown in Ref. [28]; this is so for the present algorithm. The LCU method has become 
one of the five major techniques for designing quantum algorithms as discussed in Ref. [29], and has 
been extensively used, for instance, in full quantum eigensolver [30] and quantum optimization [31]. 

3.2. Demonstration of the optimized quantum 1D-Poisson solver 

We take the cases of n=2 and n=3 for example to demonstrate the optimized quantum 1D-Poisson 
solver. In the cases of n=2, the discretized matrix of the Poisson equation is 3×3 corresponding to 5 
discretized points, while for n=3 the matrix is 7×7 with 9 points. Figure 5 shows the circuit for n=2. 
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Figure 5 The demonstrated circuit for quantum 1D-Poisson equation with n=2. The Anc. 2 qubit initialized in 1  corresponds 

to the ancillary qubit in Figure 3. The NOT gate before the ST† transform is the X module in Figure 4. The circuit for n=3 can 
be obtained accordingly. 

We use the IBM quantum-circuit simulator, QASM_SIMULATORv0.1.547 [17], to execute the 
circuits of n=2 and n=3. The initial state

2
b for n=2 and

3
b for n=3 are prepared 

as 1/ 2 01 1/2 10 1/2 11   

and 1/2 001 2/4 010 2/4 011 2/4 100 2/4 101    2/4 110 2/4 111  respectively. 

In theory, probabilities of the computational basis {01, 10, 11} are {0.205, 0.304, 0.161} for n=2 
circuit and {0.029, 0.078, 0.118, 0.132, 0.114, 0.073, 0.025} for basis {001, 010, 011, 100, 101, 110, 
111} of n=3 circuit. Note that the above probabilities of the computational basis are the ones when 
the state of Ancilla in Figure 5 is measured as 1 , so the summation of them would not be 1.  

The simulation results for n=2 and n=3 circuits are shown in Figure 6. The codes for the two 
circuits can be found in the Appendix A. The codes are executed on the IBM Qiskit open-source 
software. They are written in an intelligible quantum assembly language developed by the IBM. The 
simulation results are in good coincidence with the theoretical ones, and thus the optimized quantum 
1D-Poisson solver is verified.  

 

 

 

Figure 6 The simulation results of the optimized quantum 1D-Poisson solver for n=2 (a) and n=3 (b) using the IBM circuit 
simulator, Qiskit. The computational basis is that of Reg. B in Figure 5. The results coincidence well with the theoretical ones. 
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4.  Noise analysis of the optimized quantum 1D-Poisson solver 

4.1. Noise in the real quantum computer 

Noise existing in the quantum computer is from the interaction between quantum systems and 
environments. Every completely positive trace-preserving map ε can be regarded as a channel which 
can be represented in the Kraus form [32], 

   † ,k k
k

E E       (11) 

where  is the density matrix of initial state  is density matrix of final state after dynamic process 

and Ek represents a series of Kraus operators. It describes the dynamic evolution of the quantum 
system. Different noise can be described by a particular series of Kraus operators.  

  In general, there are four common kinds of noise, that is, amplitude damping, phase damping, bit 
flip and depolarizing noise. The amplitude damping noise can be used to describe the loss of energy 
from the quantum system to the environment, such as the process of photon emission. The Kraus 
operators Ek corresponding to amplitude damping are [21] 
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where  0 1p p  is the probability of a quantum state occurring error. The Kraus operator E0 

leaves the state 0 unchanged and reduces the amplitude of state 1 , while E1 changes the 

state 1 into 0 corresponding to the process of losing energy for the quantum system. Note that a 

quantum state occurring error means that there appears noise in the circuit, so the noise intensity is 
represented by the magnitude of the probability p. This relationship will be used below. 

The phase damping noise describes the loss of quantum information of a quantum system, but 
without loss of energy, like the process of photon scattering [21]. Its Kraus operators are  
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where  0 1p p   is the probability of a quantum state occurring error, i.e. the probability of 

occurring photons scattering (without loss of energy). The Kraus operator E0 leaves the 
state 0 unchanged and reduces the amplitude of the state 1 , while E1 destroys state 0 and reduces 

the amplitude of state 1 . 

The bit flip noise changes the state of a qubit from 0 to 1 and vice versa with a probability of 1- 

p, and leave the state unchanged with probability p. So the Kraus operators is as follows [21],  
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  The depolarizing channel depolarizes a state of qubit into a completely mixed state /2I with 
probability p, and with a probability1- p the state is left unchanged. The Kraus operators is as 
follows [21], 

 0 1 2 3

1 0 0 1 0 1 03
1 , , , .

0 1 1 0 0 0 14 2 2 2

ip p pp
E E E E

i
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  (16) 

  In order to analyze the noise effect on the quantum circuit, one needs to place the Kraus operators 
after each quantum gate with certain probability in the quantum circuit, and analyze how the 
quantum states are changed along with the probability. 

4.2. Noise analysis of the quantum 1D-Poisson solver 

We perform the noise analysis through three steps: first benchmarking the noise module provided by 
the IBM Qiskit, then analyzing the effect of the four kinds of noise discussed above respectively, 
finally quantifying the noise effect on the quantum 1D-Poisson solver circuit.  

To start, the quantum circuits are executed in three ways, i.e. by the ideal circuit simulator without 
noise, by the circuit simulator with device backend noise model provided in the IBM Qiskit, and by 
the real quantum computer IBMQ_SANTIAGO (five qubits) [17]. The obtained results in the three 
scenarios for n=2 circuit are compared in Figure 7. The running codes are given in the Appendix A.  

As can be seen from the Figure 7, the noise existing in the real quantum computer indeed has a 
great effect on the output states. In fact, the noises nearly smooth the characteristic amplitude 
distribution of the computational basis of the output states. The deviation would be up to 80 percent. 
That is, the circuit fail to encode the solutions of the 1D-Poisson equation into its output states. In 
addition, we can see that the device backend noise model in the IBM Qiskit can simulate, to some 
extent, the effect of the noise in the real quantum device. This noise model is a good approximation 
of the real noise, which can provide us a good reference and starting point to analyze the noise effect 
in more detail. In fact, the device backend noise model is generated using the calibration information 
of IBM’s real device, which can mimic a real quantum computer approximately (here we chose 
IBMQ_SANTIAGO).  

The backend noise model includes a single qubit depolarizing error followed by a single qubit 
thermal relaxation error, a two-qubit depolarizing error followed by single-qubit thermal relaxation 
errors, and the single-qubit readout errors when measuring individual qubit.  

However, the device backend noise model provided by the IBM Qiskit can only be used to 
simulate the total effect of all kinds of noise. Moreover, the maximum number of bits it supports is 
equal to that of real device it mimics. In order to get more detail about the noise effect on our 
quantum 1D-Poisson solver circuit, we individually add the four common noises in section 4.1 into 
the circuit with reasonable error value (i.e. the noise intensity). When adding a noise to a quantum 
gate, the corresponding Kraus operators of the noise is placed before the logic gate. 

We add the four kinds of noise into the n=2 and n=3 circuits of the quantum 1D-Poisson solver. 
The IBM Qiskit toolkit is employed to accomplish this task. It contains classes and functions to help 
building desired noise model to simulate a quantum circuit. The simulation results for the n=2 circuit 
is shown in Figure 8. The corresponding code is given in Appendix A. The noise intensity, namely 
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the magnitude of the probability p in Kraus operators, is set to be 1.8×10-2 according to the real 
parameters of the 5-qubit IBMQ_SANTIAGO quantum computer. 

 

 

Figure 7 The execution results of the quantum 1D-Poisson solver circuit (with n=2) by ideal circuit simulator without noise, 
circuit simulator with device backend noise model, and real quantum computer. The real quantum computer is the 
IBMQ_SANTIAGO. All the probability values in the figure are the average over three sets of data and the same is true for the 
following figures. 

 

 

Figure 8 The running results of the n=2 quantum 1D-Poisson solver on the IBM real quantum computer, as well as the 
numerical simulation results under the effect of four types of noise. For each computational basis, the order of the data from 
left to right is the same as that in the legend from up to down.  
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 It is interesting to see from Figure 8 that the noise of phase damping has small effect on the 
circuit output. This is due to the fact that our algorithm is designed to evolve the quantum states on 
the amplitudes that the phase damping would has little effect on the output states. The other three 
kinds of noise, the amplitude damping, bit flip and depolarizing channel, has similar effect on the 
circuit. This conclusion is useful, which tell us that when performing error correction, the phase 
damping error can be ignored with small loss of accuracy. Furthermore, it shows that when 
considering the four kinds of noise, we can properly mimic the effect of the noise existing in the real 
quantum device.  

 In the last step, we quantify the noise effect on our quantum 1D-Poisson solver. The four kinds of 
noise are added into n=2 and n=3 circuits with different order of magnitudes of noise intensity.       
Specifically, the probability p in Kraus operators for each kind of noise is set to be changed from 10-

4 to 10-2 step-by-step according to the following equation [33],  

 4 0.110 700 , 1,2,...,9.i
ip i     (17) 

     In addition, the deviation of the probability of each computational basis of the output states is 
taken as a measure to quantify the noise effect. It is defined as  
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theory
( ), ,

noise

basis

p p
D E D D

p


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where noisep denotes the measured probability of the target computational basis with a given noise 

type and level, and theoryp is the theoretical one without noise effect. The ( )basisE D represents the 

average of the deviation D over all targeted computational basis. 

 

Figure 9 The deviation of the probability of targeted computational basis along with the increasing of noise intensity for the 
n=2 (a), and n=3 (b) 1D-Poisson solver circuit. The noise intensity is set according to Eq. (17). The specific data can be found 
in Table 1 and 2 in the Appendix B. 

    The simulation results of the deviation D for n=2 and n=3 circuit are shown in Figure 9. (The 
running codes are given in the Appendix A.) Obviously, as can be seen from the figure, along with 
the error decreasing, the deviation become smaller and smaller. In order to guarantee that the 
deviation of the amplitude distribution is below 10%, the error of the quantum gates should be lower 
than 7.1×10-4 for the n=2 circuit with 131 basic quantum gates; while for the n=3 circuit with 361 
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basic gates, the error should lower than 1.9×10-4. This result also provides a good quantitative 
reference for the noise effect on NISQ algorithms whose number of gates are similar or proportional 
to the above two circuits. In addition, we find that when the noise level is moderate (neither too 
imperceptible nor too noisy, which is also the typical noise level of the present NISQ devices), the 
bit flip noise will cause the largest deviation for the probability distribution of the output states. 
Furthermore, the four types of noise can be added to the quantum circuit simultaneously to 
approximate the noise situation in the real quantum computers. 
 
5.  Conclusion 

In the present work, we optimize the quantum algorithm for solving the one-dimensional Poisson 
equation by reducing the circuit depth. To achieve the optimization, we develop a new way of 
implementing the sine transformation, and its circuit depth is reduced from n2 to n. This new method 
could be a useful tool for other quantum algorithms. The optimized quantum 1D-Poisson solver is 
demonstrated using the IBM circuit simulator.  

    In order to make the quantum 1D-Poisson solver closer to the real applications on the NISQ 
devices, we analyze the noise effect of four common kinds of noise on the circuits. We first execute 
the circuits successfully on a 5-qubits real quantum computer, the IBM_ SANTIAGO, and show the 
great effect of the noise on the circuit output states. Then we quantify the noise effect of the four 
kinds of noise, including the amplitude damping, phase damping, bit flip and depolarizing noise, 
using the IBM Qiskit toolkit. We find that the phase damping noise has little effect on our algorithm, 
while the bit flip noise causes the greatest effect in the concerned cases. In addition, for n=2 and n=3 
quantum 1D-Poisson solver circuits with 131 and 361 basic gates, the threshold error of the quantum 
gates should be lower than 7.1×10-4 and 1.9×10-4, respectively, to make the deviation of the output 
probability distribution below 10%. These results provide a good guidance for our subsequent work 
to implement error correction on our quantum 1D-Poisson solver. 
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Appendix A    Codes 

Here we provide the Qiskit codes for the case of n=2 and 3. In the section first in order to visualize the 
designed circuit the code is taken the form in IBM online computing platform which can be 
transformed into Qiskit code easily by drop-down window on the interface [1]. Then The Qiskit code 
for ideal circuit simulation without noise, for device backend noise model mimicked 
IBMQ_SANTIAGO, for the real quantum computer IBMQ_SANTIAGO, for adding four common 
kinds of noise are given in turn. The execution of Qiskit code depends on the Python environment. So, 
first, we need install the software Anaconda, next in Anaconda prompt create a python environment. 
Then basing on the environment build a Qiskit package [2]. Finally typing ”python” to start the 
simulation. 

The circuit code for n=2                     
#the simulator has its basic gates of H, S, X, T, CNOT, TOFFOLI, U, U2, U3, etc 
#they are converted to one & two qubit  
gates to get the number of 79 
#5 qubit omitted the auxiliary bits in fig.5 instead of observing Reg. E and Reg. C directly 
#qubit 0 and 2 corresponds to Reg. E and    C respectively 
#qubit 3 and 1 Reg. B  
#qubit 4 Anc.2 
 
qreg q[5]; 
creg c[4]; 
 
#state b preparation 
h q[3]; 
x q[4]; 
x q[3]; 
h q[4]; 
cx q[3],q[1]; 
x q[3]; 
ch q[3],q[1]; 
#state b preparation done 
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#sin transform 
cx q[4],q[3]; 
cx q[4],q[1]; 
ccx q[4],q[1],q[2]; 
cx q[2],q[3]; 
ccx q[4],q[1],q[2]; 
cx q[4],q[1]; 
h q[4]; 
cu1(pi/2) q[3],q[4]; 
cu1(pi/4) q[1],q[4]; 
h q[3]; 
cu1(pi/2) q[1],q[3]; 
h q[1]; 
swap q[1],q[4]; 
cx q[4],q[1]; 
ccx q[4],q[1],q[2]; 
cx q[2],q[3]; 
ccx q[4],q[1],q[2]; 
cx q[4],q[1]; 
cx q[4],q[3]; 
#sin transform done 
 
#controlled Ry module 
x q[3]; 
ccx q[3],q[1],q[2]; 
ccx q[1],q[3],q[0]; 
cry(pi/8) q[1],q[2]; 
cry(pi/8) q[1],q[0]; 
cx q[3],q[1]; 
cry(-pi/8) q[1],q[2]; 
cry(-pi/8) q[1],q[0]; 
cx q[3],q[1]; 
cry(pi/8) q[3],q[2]; 
cry(pi/8) q[3],q[0]; 
x q[1]; 
x q[3]; 
cry(pi/6) q[1],q[2]; 
cry(pi/6) q[1],q[0]; 
cx q[3],q[1]; 
cry(-pi/6) q[1],q[2]; 
cry(-pi/6) q[1],q[0]; 
cx q[3],q[1]; 
cry(pi/6) q[3],q[2]; 
cry(pi/6) q[3],q[0]; 
x q[1]; 
cry(pi/8) q[1],q[2]; 
cry(pi/8) q[1],q[0]; 
cx q[3],q[1]; 
cry(-pi/8) q[1],q[2]; 
cry(-pi/8) q[1],q[0]; 
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cx q[3],q[1]; 
cry(pi/8) q[3],q[2]; 
cry(pi/8) q[3],q[0]; 
#controlled Ry module done 
 
x q[2]; #X module in Fig. 4 
cx q[4],q[3]; 
cx q[4],q[1]; 
ccx q[4],q[1],q[2]; 
cx q[2],q[3]; 
ccx q[4],q[1],q[2]; 
cx q[4],q[1]; 
swap q[1],q[4]; 
h q[1]; 
cu1(-pi/2) q[1],q[3]; 
h q[3]; 
cu1(-pi/4) q[1],q[4]; 
cu1(-pi/2) q[3],q[4]; 
h q[4]; 
cx q[4],q[1]; 
ccx q[4],q[1],q[2]; 
cx q[2],q[3]; 
ccx q[4],q[1],q[2]; 
cx q[4],q[1]; 
x q[2]; 
cx q[4],q[3]; 
h q[4]; 
x q[4]; 
measure q[3] -> c[3]; 
measure q[1] -> c[2]; 
measure q[2] -> c[1]; 
measure q[0] -> c[0]; 

The circuit code for n=3 
#9 qubit and 217 one & two qubit  
gates 
#qubit 0 Anc 
#qubit 1, 2 and 4, 6 corresponds to Reg. E and C respectively 
#qubit 3, 5, 7 Reg. B  
#qubit 8 Anc.2 
qreg q[9]; 
creg c[4]; 
 
#state b preparation 
h q[5]; 
h q[7]; 
x q[8]; 
x q[5]; 
x q[7]; 
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h q[8]; 
ccx q[7],q[5],q[3]; 
x q[5]; 
x q[7]; 
cry(pi/4) q[5],q[3]; 
cx q[7],q[5]; 
cry(-pi/4) q[5],q[3]; 
cx q[7],q[5]; 
cry(pi/4) q[7],q[3]; 
x q[5]; 
cry(pi/4) q[5],q[3]; 
cx q[7],q[5]; 
cry(-pi/4) q[5],q[3]; 
cx q[7],q[5]; 
cry(pi/4) q[7],q[3]; 
x q[5]; 
x q[7]; 
cry(pi/4) q[5],q[3]; 
cx q[7],q[5]; 
cry(-pi/4) q[5],q[3]; 
cx q[7],q[5]; 
cry(pi/4) q[7],q[3]; 
x q[7]; 
#state b preparation done 
 
#sin transform 
cx q[8],q[7]; 
cx q[8],q[5]; 
cx q[8],q[3]; 
ccx q[3],q[8],q[4]; 
ccx q[4],q[5],q[6]; 
cx q[6],q[7]; 
ccx q[4],q[5],q[6]; 
cx q[4],q[5]; 
ccx q[3],q[8],q[4]; 
cx q[8],q[3]; 
h q[8]; 
cp(pi/2) q[7],q[8]; 
cp(pi/4) q[5],q[8]; 
cp(pi/8) q[3],q[8]; 
h q[7]; 
cp(pi/2) q[5],q[7]; 
cp(pi/4) q[3],q[7]; 
h q[5]; 
cp(pi/2) q[3],q[5]; 
h q[3]; 
swap q[3],q[8]; 
swap q[5],q[7]; 
cx q[8],q[3]; 
ccx q[3],q[8],q[4]; 
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cx q[4],q[5]; 
ccx q[4],q[5],q[6]; 
cx q[6],q[7]; 
ccx q[4],q[5],q[6]; 
ccx q[3],q[8],q[4]; 
cx q[8],q[3]; 
cx q[8],q[5]; 
barrier q[5]; 
cx q[8],q[7]; 
#sin transform done 
 
#controlled Ry module 
x q[5]; 
x q[7]; 
cry(pi/4) q[7],q[6]; 
cry(pi/4) q[7],q[4]; 
cx q[3],q[7]; 
cry(-pi/4) q[7],q[6]; 
cry(-pi/4) q[7],q[4]; 
cx q[3],q[7]; 
cry(pi/4) q[3],q[6]; 
x q[7]; 
cry(pi/4) q[3],q[4]; 
cry(pi/8) q[5],q[6]; 
x q[7]; 
cry(pi/8) q[5],q[4]; 
cx q[3],q[5]; 
cry(-pi/8) q[5],q[6]; 
cry(-pi/8) q[5],q[4]; 
cx q[3],q[5]; 
cry(pi/8) q[3],q[6]; 
cry(pi/8) q[3],q[4]; 
x q[5]; 
cry(pi/8) q[3],q[6]; 
cry(pi/8) q[3],q[4]; 
cx q[7],q[5]; 
cry(pi/4) q[5],q[2]; 
cry(pi/4) q[5],q[1]; 
cx q[3],q[5]; 
cry(-pi/4) q[5],q[2]; 
cry(-pi/4) q[5],q[1]; 
cx q[3],q[5]; 
cry(pi/4) q[3],q[2]; 
cx q[7],q[5]; 
cry(pi/4) q[3],q[1]; 
cry(pi/6) q[5],q[6]; 
x q[7]; 
cry(pi/4) q[3],q[2]; 
cry(pi/6) q[5],q[4]; 
x q[7]; 
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cry(pi/4) q[3],q[1]; 
x q[3]; 
cx q[3],q[5]; 
cry(-pi/6) q[5],q[6]; 
cry(-pi/6) q[5],q[4]; 
cx q[3],q[5]; 
cry(pi/6) q[3],q[6]; 
cry(pi/6) q[3],q[4]; 
cry(pi/4) q[7],q[2]; 
cry(pi/4) q[7],q[1]; 
ccx q[3],q[5],q[7]; 
cry(-pi/4) q[7],q[2]; 
cry(-pi/4) q[7],q[1]; 
ccx q[3],q[5],q[7]; 
cry(pi/8) q[5],q[2]; 
x q[7]; 
cry(pi/8) q[5],q[1]; 
cry(pi/6) q[7],q[6]; 
cx q[3],q[5]; 
cry(-pi/8) q[5],q[2]; 
cry(-pi/8) q[5],q[1]; 
cx q[3],q[5]; 
cry(pi/8) q[3],q[2]; 
cry(pi/8) q[3],q[1]; 
cry(pi/8) q[5],q[2]; 
cry(pi/8) q[5],q[1]; 
cx q[3],q[5]; 
cry(-pi/8) q[5],q[2]; 
cry(-pi/8) q[5],q[1]; 
cx q[3],q[5]; 
cry(pi/8) q[3],q[2]; 
x q[5]; 
cry(pi/8) q[3],q[1]; 
cry(pi/6) q[7],q[4]; 
x q[3]; 
x q[3]; 
cry(pi/6) q[7],q[2]; 
cry(pi/6) q[7],q[1]; 
ccx q[3],q[5],q[7]; 
cry(-pi/6) q[7],q[6]; 
cry(-pi/6) q[7],q[4]; 
cry(-pi/6) q[7],q[2]; 
cry(-pi/6) q[7],q[1]; 
ccx q[3],q[5],q[7]; 
cry(pi/12) q[5],q[6]; 
cx q[8],q[7]; 
cry(pi/12) q[5],q[4]; 
cry(pi/12) q[5],q[2]; 
cry(pi/12) q[5],q[1]; 
cx q[3],q[5]; 
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cry(-pi/12) q[5],q[6]; 
cry(-pi/12) q[5],q[4]; 
cry(-pi/12) q[5],q[2]; 
cry(-pi/12) q[5],q[1]; 
cx q[3],q[5]; 
cry(pi/12) q[3],q[6]; 
cry(pi/12) q[3],q[4]; 
x q[5]; 
cry(pi/12) q[3],q[2]; 
cry(pi/12) q[3],q[1]; 
crz(pi) q[1],q[0]; 
x q[3]; 
#controlled Ry module done 
 
cry(pi/2) q[1],q[0]; 
crz(pi) q[2],q[0]; 
cry(pi/2) q[2],q[0]; 
ccx q[4],q[6],q[0]; 
cry(-pi/2) q[2],q[0]; 
crz(-pi/2) q[2],q[0]; 
ccx q[4],q[6],q[0]; 
crz(-pi/2) q[2],q[0]; 
cry(-pi/2) q[1],q[0]; 
crz(-pi/2) q[1],q[0]; 
crz(pi) q[2],q[0]; 
cry(pi/2) q[2],q[0]; 
ccx q[4],q[6],q[0]; 
cry(-pi/2) q[2],q[0]; 
crz(-pi/2) q[2],q[0]; 
ccx q[4],q[6],q[0]; 
crz(-pi/2) q[2],q[0]; 
x q[6]; #X module 
crz(-pi/2) q[1],q[0]; 
x q[4]; #X module 
cx q[8],q[5]; 
rx(pi) q[0]; 
cx q[8],q[3]; 
x q[0]; 
ccx q[3],q[8],q[4]; 
ccx q[4],q[5],q[6]; 
cx q[6],q[7]; 
ccx q[4],q[5],q[6]; 
cx q[4],q[5]; 
ccx q[3],q[8],q[4]; 
cx q[8],q[3]; 
swap q[5],q[7]; 
swap q[3],q[8]; 
h q[3]; 
cp(-pi/2) q[3],q[5]; 
h q[5]; 
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cp(-pi/4) q[3],q[7]; 
cp(-pi/2) q[5],q[7]; 
h q[7]; 
cp(-pi/8) q[3],q[8]; 
cp(-pi/4) q[5],q[8]; 
cp(-pi/2) q[7],q[8]; 
h q[8]; 
cx q[8],q[3]; 
ccx q[3],q[8],q[4]; 
cx q[4],q[5]; 
ccx q[4],q[5],q[6]; 
cx q[6],q[7]; 
ccx q[4],q[5],q[6]; 
ccx q[3],q[8],q[4]; 
cx q[8],q[3]; 
cx q[8],q[5]; 
cx q[8],q[7]; 
h q[8]; 
x q[8]; 
measure q[7] -> c[3]; 
measure q[5] -> c[2]; 
measure q[3] -> c[1]; 
measure q[0] -> c[0]; 

The Qiskit code for ideal circuit simulation without noise 
# preparation for execution 
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute,Aer 
from qiskit.visualization import plot_histogram 
from numpy import pi 
 
#Put Qiskit circuit code for n=2 or n=3  
 
#execute the circuit 
backend=Aer.get_backend('qasm_simulator') 
job=execute(circuit,backend,shots=16384) 
result = job.result() 
counts = result.get_counts(circuit) 
plot_histogram(counts).show() 

The n=2 Qiskit code for device backend noise model mimicked IBMQ_SANTIAGO  
#preparation for execution 
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute 
from qiskit.providers.aer import QasmSimulator 
from qiskit.visualization import plot_histogram 
from qiskit.test.mock import FakeSantiago 
from numpy import pi 
 
#Put Qiskit circuit code for n=2 
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#execute the circuit 
device_backend = FakeSantiago() 
Santiago_simulator=QasmSimulator.from_backend(device_backend) 
result=execute(circuit,Santiago_simulator).result() 
counts =result.get_counts(circuit) 
plot_histogram(counts).show() 

The n=2 Qiskit code for executing circuit on real quantum computer IBMQ_SANTIAGO 
#preparation for execution 
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute 
from qiskit.visualization import plot_histogram 
from numpy import pi 
from qiskit import IBMQ 
provider = IBMQ.load_account() 
backend=provider.get_backend('ibmq_santiago') 
 
#Put Qiskit circuit code for n=2 
 
#execute the circuit 
job=execute(circuit,backend,shots=8192) 
result = job.result() 
counts = result.get_counts(circuit) 
plot_histogram(counts).show() 
 

The Qiskit code of adding four common kinds of noise 
#preparation for execution 
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute,Aer 
from qiskit.visualization import plot_histogram 
from numpy import pi 
 
#Put Qiskit circuit code for n=2 or n=3  
 
#execute the circuit 
backend=Aer.get_backend('qasm_simulator') 
job=execute(circuit,backend,shots=16384) 
result = job.result() 
counts = result.get_counts(circuit) 
plot_histogram(counts).show() 

The n=2 Qiskit code for device backend noise model mimicked IBMQ_SANTIAGO  
#preparation for execution 
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute 
from qiskit.providers.aer import QasmSimulator 
from qiskit.visualization import plot_histogram 
from qiskit.test.mock import FakeSantiago 
from numpy import pi 
 
#Put Qiskit circuit code for n=2 
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#execute the circuit 
device_backend = FakeSantiago() 
Santiago_simulator=QasmSimulator.from_backend(device_backend) 
result=execute(circuit,Santiago_simulator).result() 
counts =result.get_counts(circuit) 
plot_histogram(counts).show() 

The n=2 Qiskit code for executing circuit on real quantum computer IBMQ_SANTIAGO 
#preparation for execution 
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute 
from qiskit.visualization import plot_histogram 
from numpy import pi 
from qiskit import IBMQ 
provider = IBMQ.load_account() 
backend=provider.get_backend('ibmq_santiago') 
 
#Put Qiskit circuit code for n=2 
 
#execute the circuit 
job=execute(circuit,backend,shots=8192) 
result = job.result() 
counts = result.get_counts(circuit) 
plot_histogram(counts).show() 
 

The Qiskit code of adding four common kinds of noise 
#preparation for execution 

from qiskit import QuantumRegister, 
ClassicalRegister, QuantumCircuit, execute 
from qiskit.providers.aer import QasmSimulator 
from qiskit.providers.aer.noise import NoiseModel 
from qiskit.providers.aer.noise import QuantumError 
from qiskit.providers.aer.noise import amplitude_damping_error,  phase_damping_error,  depolarizing_error, 
pauli_error 
from qiskit.visualization import plot_histogram 
from numpy import pi 
 
#Put Qiskit circuit code for n=2 or n=3 
 
#select the type of noise to add and set the noise intensity 
p = 1e-04*pow(700,1)#set intensity noise  
error=amplitude_damping_error(p) 
error = phase_damping_error(p) 
error = depolarizing_error(p, 1) 
error = pauli_error([('X',p_error), ('I', 1 - p_error)]) 
 
#put selected noise on gates of the circuit 
error_gatec = error.tensor(error) 
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error_gateccx=error.tensor(error).tensor(error) 
noise_model = NoiseModel() 
noise_model.add_all_qubit_quantum_error(error, ["h"]) 
noise_model.add_all_qubit_quantum_error(error, ["x"]) 
noise_model.add_all_qubit_quantum_error(error_gatec, ["cx"]) 
noise_model.add_all_qubit_quantum_error(error_gatec, ["cry"]) 
noise_model.add_all_qubit_quantum_error(error_gatec, ["cu1"]) 
noise_model.add_all_qubit_quantum_error(error_gateccx, ["ccx"]) 
noise_model.add_all_qubit_quantum_error(error, "measure") 
 
#execute the noisy circuit 
noise_simulator=QasmSimulator(noise_model=noise_model) 
job = execute(circuit, noise_simulator) 
noisy_result = job.result() 
noisy_counts=noisy_result.get_counts(0) 
plot_histogram(noisy_counts).show() 

Appendix B     Date 

The detailed data on Figure 9 in the table below. 

                    Table.1 The deviation for n=2 under four types of noise 

i AD PD DE BF 

1 0.0341 0.0206 0.0175 0.0161 

2 0.0177 0.0275 0.0350 0.0293 

3 0.0543 0.0396 0.0848 0.1001 

4 0.0696 0.0310 0.0697 0.1184 

5 0.1588 0.0196 0.1288 0.2381 

6 0.2701 0.0412 0.2591 0.3782 

7 0.4608 0.0606 0.4171 0.5390 

8 0.6660 0.1504 0.5901 0.6528 

9 0.8118 0.2412 0.7074 0.7047 

                     Table.2 The deviation for n=3 under four types of noise 

i AD PD DE BF 

1 0.0745 0.0625 0.0310 0.0778 

2 0.1205 0.0498 0.1069 0.1580 

3 0.1363 0.0372 0.1471 0.2116 

4 0.2031 0.0842 0.2183 0.3565 

5 0.3497 0.0900 0.3481 0.5365 

6 0.4702 0.1781 0.4811 0.5875 

7 0.5709 0.1993 0.6183 0.6690 

8 0.6358 0.3257 0.5904 0.6736 

9 0.7105 0.4825 0.6418 0.6212 
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Further details  
1. See IBM Quantum. https://quantum-computing.ibm.com/ (2021)  
2. See https://qiskit.org/documentation/getting_started.html  

 


