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There have been a lot of researches about algebric analysis of AES. In this paper, we

turned to quantum algorithm to analyze security of AES-128 against the modified HHL
algorithm, which is a quantum algorithm used to get classical solutions of multivariate

equation system. We constructed two types of equation systems of AES, and solved
them with several variants of HHL algorithms respectively. The resulting complexities

involved the condition number are given. We analyzed the reasons for the different

complexity of the two equation systems and their solution methods, and pointed out
that the combination of the boolean equation system and (the improved) BoolSol is

more threatening to AES. With a lower bound on the condition number presented by

Ding et al., we show that, for AES-128, HHL algorithm is difficult to achieve better
attack effect than Grover algorithm. Our results have some enlightening significance for

analyzing the post-quantum security of AES-like block ciphers.
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1 Introduction

Rijndael, which is a family of ciphers with different key lengths and block sizes, was chosen to

be Advanced Encryption Standard(AES) by NIST in 2001[1]. As an extension of AES, Big

Encryption System(BES) was proposed in 2002. Through a bijective mapping, AES can be

embeded into BES. The algebraic equations of BES are defined in the same finite field.

The algebraic attack can be traced back to 1949[2]. It aims to get the secret key by

solving an equation system derived from the encryption scheme. Compared with other crypt-

analysis methods, it only needs a few plaintext and ciphertext pairs corresponding to the

key. However, most of the equations established are not linear. We need to transform these

nonlinear equations into linear equations. The basic linearization techniques requires about

n2/2 equations, where n is the number of variables. In [3], Kipnis and Shamir announced

an improved linearization technique, called relinearization technique, to break HFE(Hidden

Field Equations) by solving the multiple-variable quadratic equation system. For sufficiently

overdefined systems, they conjectured that the algorithm has a polynomial time complexity,

and the number of equations required is about n2/10. In [4], Courtois, Klimov, Patarin,

and Shamir introduced an improved version of relinearization technique, called the eXtended

Linearization(XL) algorithm. Courtois and Pieprzyk analyzed the overdefined system and
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210 Quantum security of AES-128 under HHL algorithm

proposed the eXtended Sparse Linearization(XSL) attack on Rijindeal[5], however, there ex-

ists too many assumptions and premises in the attacking process, which makes its effectiveness

have been questioned[6]. As for the equation system describing BES, both linearization and

relinearization require too many equations to realize. The complexity of XL algorithm to

solve the equation system is much larger than that of the brute force attack[6].

Chen and Gao proposed two quantum algorithms based on HHL quantum algorithm, one of

which is called BoolSol for solving boolean equation systems[7] and another of which is called

FSol for solving equation systems over finite fields[8]. The BoolSol algorithm is used to analyze

the boolean equation system derived from AES-128 and the derived complexity is O(273.30κ2),

where κ is the condition number of coefficient matrix in the linear equation system. In [9],

Ding et al. improved the BoolSol algorithm by transforming the measurement of quantum

states outputed by HHL algorithm into the coupon collector problem. The Macaulay system

is changed into a boolean Macaulay system whose solving degree is only 1. Besides, Ding et al.

gave a lower bound on the condition number of the Macaulay system and boolean Macaulay

system.

In this paper, we firstly show that, in the equation system built by Chen and Gao[7], the

shiftrow procedure in the final round is missed and the sparseness of their second group of

equations is not accurate due to the lack of equations, which leads to the inaccurate result.

we reviewed the two improved quantum algorithms, BoolSol and Fsol, proposed by Chen and

Gao in a clear and concise way, and built two equation systems based on the literatures [10]

and [11]. The first one is a boolean equation system based on the result in [10], and the

second one is an equation system over GF (28)[11]. We obtained the number of equations, the

number of variables and sparseness of two equation systems by analyzing the inner structure

of the system and simulating the matrices of linear transformations in each round. For the

boolean equation system, the complexity of attacking 10-round AES-128 using BoolSol is

O(272.98κ2), and for the equation system over GF (28), the complexity of attacking 10-round

AES-128 using Fsol is O(289.96κ2). Furthermore, we analyzed the complexity of AES-128

against the improved BoolSol proposed in [9] by considering the boolean Macaulay system

and the corresponding lower bound on the condition number. The result illustrates that

the complexity of attacking AES-128 using HHL algorithm is larger than that using Grover

algorithm, that is, the effect of HHL algorithm attacking AES-128 will not be better than that

of Grover algorithm attacking AES-128. We further analyzed the complexity of the classical

and quantum algorithms for solving the condition number of a given matrix. It is shown that

it is difficult to determine the condition number when the matrix size is very large even we

have the quantum computation capability.

Our paper is organized as follows. In Section 2, two types of equation systems based on

the literatures [10] and [11] are introduced. We showed that, in the equation system built by

Chen and Gao, the shiftrow procedure in the final round of AES is missed and consequently

the sparseness of their second group of equations is not accurate. Section 3 introduces the

modified HHL algorithms. The scale of equation system derived from BES and complexity

of modified HHL algorithm are analyzed in Section 4. In Section 5, we get the complexities

of attacking AES-128 by using three modified HHL algorithms. In Section 6, we analyze

the classical and quantum algorithms to calculate the condition number and reviewed the

conntributions of Ding et al.. We show that, for the matrix derived from the equation system,
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it is difficult to determine it’s condition number. Section 7 concludes this paper.

2 Two Equation Systems

In order to simplify the algebraic analysis of AES, Murphy, Sean and Robshaw[11] proposed

BES, which changes the affine transformation from the finite field GF (2) to GF (28) using

polynomial interpolation. Then by introducing a bijective mapping, all the operations of

the algebraic equation system of BES can be defined over the finite field GF (28). Ferguson,

Schroeppel and Whiting showed how to present Rijndael using equations over GF (28) in

2001[12]. In 2002, the equation system over GF (2) was proposed[5]. In 2016, Dubois and

Fliol introduced a new method for establishing equations of AES over GF (2) by using the

truth table and Mobius transform[10]. Compared to the equation system of AES, the system

of BES over GF (28) is sparser and more regular[11], which is suitable for the HHL quantum

algorithm analysis[13]. To accurately evaluate the parameters of the equation system and the

final complexity, we give a brief description of the BES as follows[11].

2.1 Overview of BES

Define a mapping φ from GF (28) to a subset of GF (28)8, i.e.,

ã = φ(a) =
(
a20

, a21

, a22

, a23

, a24

, a25

, a26

, a27
)
,

and consider φ−1 : Im(φ) → GF (28) as an extraction mapping which recovers the first

component in the vector conjugate. Obviously, φ is a bijective mapping. Using this mapping,

both the internal state and subkeys of AES can be mapped into BES, so we can define vector

spaces of AES and BES as A = F16 and B = F128(F = GF (28)) respectively, where 16 and

128 are the number of bytes in vectors and every byte can be represented as a number in

GF (28).

The operations in BES are as follows.

(i) Inversion. For any nonzero element b ∈ B, define b→ b−1.

(ii) ShiftRow. This process can be considered as a permutation of the components in a

column vector a ∈ A. It can be represented as a multiplication of the state vector

a ∈ A by a 16 × 16 matrix RA. Consider the property of the embedded mapping, it

is straightforward to represent this operation in BES as a multiplication of the state

vector b ∈ B by a 128× 128 matrix RB, and we can easily get RB from RA.

(iii) MixColumn. In AES, this step is defined by a 4× 4 matrix CA, we rewrite it as
θ (θ + 1) 1 1
1 θ (θ + 1) 1
1 1 θ (θ + 1)

(θ + 1) 1 1 θ

 (1)

where θ = 0x2. So when the representation of the internal state in AES is changed into

a column vector, we need to transform CA into MixA = Diag4(CA). Now, consider
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the property of the embedded mapping again, we can get

CB
(k) =


θ2k

(θ + 1)2k

1 1

1 θ2k

(θ + 1)2k

1

1 1 θ2k

(θ + 1)2k

(θ + 1)2k

1 1 θ2k


where k = 0, · · · , 7. Obviously, CB

(0) = CA and we get

MixB = Diag(Diag4(CB
(0)), · · · , Diag4(CB

(7))).

(iv) AddRoundKey. This step in BES is identical to that in AES, i.e., if we have the state

vector and subkey of AES and BES which are denoted by

a ∈ A, (kA)i ∈ A

b ∈ B, (kB)i ∈ B,

then, this step can be represented by

a→ a + (kA)i,b→ b + (kB)i.

(v) KeySchedule. In the key shcedule of AES, a 16-byte AES key kA generates ten

subkeys, each of which is in A. So is BES. The key schedule procedure uses the same

operations as the encryption procedure, so we can realize key schedule of BES using

technologies introduced above. In this way, we have kB = φ(kA), then (kB)i = (φ(kA))i
for every round subkey, so the embedded images of an AES subkey sequence form a BES

subkey sequence.

2.1.1 Affine Transformation

In AES, this step is defined as a matrix LA. We define the mapping ψ as

ψ : GF (28)→ GF (2)8.

Then the affine transformation can be represented as

f(a) = ψ−1(LA(ψ(a))).

For the attacker, the maps ψ and ψ−1 make the analysis of AES complicated.

In order to bypass the two mappings and simplify the analysis of AES, the polynomial

interpolation is introduced as follows.

f(a) =

7∑
k=0

λka
2k

for a ∈ F

where (λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (05, 09, f9, 25, f4, 01, b5, 8f)[11]. Using this technique,

the affine transformation of BES can be represented as an 8 × 8 matrix for every byte, that
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is,

LB =



(λ0)20

(λ1)20

(λ2)20

(λ3)20

(λ4)20

(λ5)20

(λ6)20

(λ7)20

(λ7)21

(λ0)21

(λ1)21

(λ2)21

(λ3)21

(λ4)21

(λ5)21

(λ6)21

(λ6)22

(λ7)22

(λ0)22

(λ1)22

(λ2)22

(λ3)22

(λ4)22

(λ5)22

(λ5)23

(λ6)23

(λ7)23

(λ0)23

(λ1)23

(λ2)23

(λ3)23

(λ4)23

(λ4)24

(λ5)24

(λ6)24

(λ7)24

(λ0)24

(λ1)24

(λ2)24

(λ3)24

(λ3)25

(λ4)25

(λ5)25

(λ6)25

(λ7)25

(λ0)25

(λ1)25

(λ2)25

(λ2)26

(λ3)26

(λ4)26

(λ5)26

(λ6)26

(λ7)26

(λ0)26

(λ1)26

(λ1)27

(λ2)27

(λ3)27

(λ4)27

(λ5)27

(λ6)27

(λ7)27

(λ0)27


(2)

Then we can represent the affine transformation as a 128×128 matrix LinB in BES, where

LinB = Diag16(LB).

2.1.2 Round Function of BES

By denoting the state and subkey of BES as b ∈ B and (kB)i ∈ B respectively, we can

represent the round function of BES as

RoundB(b, (kB)i) = MixB(RB(LinB(b(−1)))) + (kB)i

= MB · (b(−1)) + (kB)i
(3)

where MB is a 128×128 matrix for performing linear diffusion within the BES. Furthermore,

if we denote the state and subkey of AES as a ∈ A and (kA)i ∈ A, then we have

Round(a, (kA)i) = φ−1(RoundB(φ(a), φ((kA)i))).

2.2 Multivariate Quadratic System

We denote the plaintext and the corresponding ciphertext by p ∈ B and c ∈ B respectively,

and denote the state vectors before and after the ith invocation of the inversion of S box by

wi ∈ B and xi ∈ B respectively. From the structure of BES, we can describe BES as the

following equation system 
w0 = p + k0

xi = w
(−1)
i 0 ≤ i ≤ 9

wi = MBxi−1 + ki 1 ≤ i ≤ 9

c = MB
∗x9 + k10

(4)

Because there is no MixColumn operation in the final round, we get MB
∗ = RB · LinB =

MB ·MixB
−1.

To make it clearer, we denote the (8j+m)th component of xi,wi and ki by xi,(j,m), wi,(j,m)

and ki,(j,m) respectively. From the structure of AES and the property of the embedded

mapping, we can easily see that 0 ≤ j ≤ 15 and 0 ≤ m ≤ 7, and rewrite the system as
w0,(j,m) = pj,m + k0,(j,m)

xi,(j,m) = w
(−1)
i,(j,m) 0 ≤ i ≤ 9

wi,(j,m) = (MBxi−1)j,m + ki,(j,m) 1 ≤ i ≤ 9

cj,m = (MB
∗x9)j,m + k10,(j,m)
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Furthermore, if we assume 0-inversion does not occur during the encryption and key schedule

procedure, this assumption is true for 53% of encryptions and 85% of 128 bit keys[11]. In this

case we can rewrite xi,(j,m) = w
(−1)
i,(j,m) as xi,(j,m)wi,(j,m) = 1. Now we rewrite the equation

system as


0 = w0,(j,m) + pj,m + k0,(j,m)

0 = xi,(j,m)wi,(j,m) + 1 0 ≤ i ≤ 9

0 = wi,(j,m) + (MBxi−1)j,m + ki,(j,m) 1 ≤ i ≤ 9

0 = cj,m + (MB
∗x9)j,m + k10,(j,m)

The MB and MB
∗ can be decomposed into column vectors as (α) and (β), then we get


0 = w0,(j,m) + pj,m + k0,(j,m)

0 = xi,(j,m)wi,(j,m) + 1 0 ≤ i ≤ 9

0 = wi,(j,m) +
∑
j′,m′ α(j,m),(j′,m′)xi−1,(j′,m′) 1 ≤ i ≤ 9

0 = cj,m + k10,(j,m) +
∑

(j′,m′) β(j,m),(j′,m′)x9,(j′,m′)

Finally, using the property of embedded mapping, we can get more equations, and classify

the system by writing linear and quadratic equations separately,i.e.,for 1 ≤ i ≤ 9, we have



0 = w0,(j,m) + pj,m + k0,(j,m)

0 = wi,(j,m) +
∑
j′,m′ α(j,m),(j′,m′)xi−1,(j′,m′)

0 = cj,m + k10,(j,m) +
∑

(j′,m′) β(j,m),(j′,m′)x9,(j′,m′)

0 = xi,(j,m)wi,(j,m) + 1

0 = x2
i,(j,m) + xi,(j,m+1)

0 = w2
i,(j,m) + wi,(j,m+1)

(5)

The BES encryption procedure can therefore be described as an overdetermined multivariate

quadratic systems and the problem of attacking AES can be transformed into the problem of

solving such an equation system of BES.

Chen and Gao also established the equation system used to describe AES based on [11].
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The equation system they established is as follows to describe AES-(Nk, Nr)[7]:

0 = w0,(j,m) + pj,m + x0,(j,m) (6)

0 = xi,(j,m) + wi,(j,m) +
∑
j′,m′

α(j,m),(j′,m′)xi−1,(j′,m′) for i = 1, · · · , Nr − 1 (6a)

0 = c(j,m) + wNr,(j,m) + yNr−1(5j mod 16,m) (6b)

0 = S(xi,(j,0), · · · , xi,(j,7), yi,(j,0), · · · , yi,(j,7)) for i = 1, · · · , Nr − 1 (6c)

0 = S(wi,(j,0), · · · , wi,(j,7), wi,(j,0), · · · , wi,(j,7)) for j = 4Nk − 4, · · · , 4Nk − 1

0 = wi(j,m) + wi−1(j,m) + wi−1(j + 13,m) + χ(mi) for j = 0, 1, 2

0 = wi(3,m) + wi−1(3,m) + wi−1(12,m) + χ(mi)

for Nk ≤ 6

0 = wi(j,m) + wi−1(j,m) + wi(j − 4,m) for j = 4, 5, · · · , 4Nk − 1

for Nk > 6

0 = S(wi,(j,0), · · · , wi,(j,7), wi,(j,0), · · · , wi,(j,7)) for j = 12, 13, 14, 15

0 = wi(j,m) + wi−1(j,m) + wi(j − 4,m) for j = 16, 17, 18, 19

0 = wi(j,m) + wi−1(j,m) + wi(j − 4,m) for j = 4, · · · , 15, 20, · · · , 4Nk − 1

where j runs from 0 to 4Nk−1, and m runs from 0 to 7. wi,(j,m), xi,(j,m) and yi,(j,m) are state

variables. wi,(j,m) are key variables, and S is a set of 39 equations in F2[x0, · · · , x7, y0, · · · , y7]

represents the Rijndeal S-box. χ is the round constant[7].

We take AES-128 as an example to analyze the encryption part of this equation system,

where Nk = 4 and Nr = 10. The first group of equations (6) denotes the initial addroundkey.

The second group of equations (6a) denotes the shiftrow, mixcolumn and addroundkey from

the first round to the ninth round. the third group of equations (6b) denotes the final ad-

droundkey procedure and the fourth equation (6c) denotes all the subbytes in the encryption

part.

We think that there are two flaws in the encryption part. Firstly, the shiftrow procedure

in the final round is missing. Secondly, Chen et al. said that in the second group of equations

(6a), exactly 640 of α(j,m, j′,m′) are 1 for given i[7], however, our analysis shows that the

actual sparseness of this part is 732, the details can be found in Appendix.

We further established a boolean equation system according to [10]. Details of equation

system and calculation process can be found in Appendix. We transformed and solved the

boolean equation system by using Boolsol, and illustrated that the complexity of attacking

10-round AES-128 is O(272.98κ2). In addition, we analyzed the complexity of attacking AES-

128 using the combination of boolean Macaulay system and improved BoolSol proposed by

Ding et al., which is O(poly(5152)κ(B̃)). However, for the equation system based on BES

over GF (28), we solved it by using FSol, and the complexity of attacking 10-round AES-128

is O(289.96κ2). We analyzed the reasons for the the difference in complexity caused by the

two methods in Section 5. Our results will help to more accurately evaluate the ability of

AES-128 to resist HHL quantum algebraic attacks.
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3 Macaulay System and Modified HHL algorithm

A nonlinear equation system to describe a stream cipher or a block cipher can be transformed

into a linear equation system. Compared with the classical algorithm, the speed of HHL

quantum algorithm in solving linear equation system may be exponentially improved. This

section reviews a general technique which is used to transform a nonlinear equation system

into a Macaulay linear equation system, then we review the HHL quantum algorithm and its

modified versions.

The original HHL algorithm requires a quantum state |b〉 as input, which greatly reduces

the application scope. Chen and Gao gave a method for generating |b〉 from the vector
−→
b

efficiently[14]. Secondly, the original HHL algorithm outputs a quantum state as the result,

however, if we want to get the solution in the classical state, we have to apply HHL algorithm

for at least N times, where N is the length of solution vector[13]. The modified HHL algorithm

solves the two problems. The following subsection comes from [13].

3.1 HHL algorithm

The input of HHL algorithm is a N ×N sparse Hermitian matrix and a unit vector
−→
b . We

aim to find −→x satisfying A−→x =
−→
b . The original HHL algorithm is as follows.

(i) Representing
−→
b as a quantum state |b〉 =

∑N
i=1 bi|i〉.

(ii) By using the Hamiltonian simulation, we apply eiAt to |b〉 for a superposition of different

times t. This ability to exponentiate A is translated, via the well known technique of

phase estimation, into the ability to decompose |b〉 in the eigenbasis of A and to find the

corresponding eigenvalues λj . Furthermore, if we denote |b〉 =
∑N
j=1 βj |uj〉, where uj is

the eigenbasis of A, then the state of system after this step is close to
∑N
j=1 βj |uj〉|λj〉.

(iii) Performing the linear map which transforms |λj〉 into Cλ−1
j |λj〉, where C is a normaling

constant. As this operation is not unitary, it has some probability of failing.

(iv) If the last step succeeds, we uncompute the |λj〉 register, and the quantum state are left

with a state proportional to
∑N
j=1 βjλ

−1
j |uj〉 = A−1|b〉 = |x〉.

Theorem 1 [7]

Given an s sparse matrix A ∈ CM×N with the condition number κ, singlar values λ1, · · · , λn,

and a unitary quantum state |b〉 ∈ CM . Let |vj〉(|uj〉) be the eigenvectors of A†A(AA†) with

respect to the nonzero eigenvalues λ2
j of A†A(AA†). Then the singular value decomposition

of A is A =
∑n
j=1 λj |uj〉〈vj |. For the linear equation system A|x〉 = |b〉, HHL algorithm will

give an approximation to the solution state |x〉 for the following vector

x̃ =

n∑
j=1

|vj〉〈vj |b〉

in time O(log(N +M)sκ2/ε) with error bounded by a given ε ∈ (0, 1).

In the following equations, the logq notation refers to the logarithm in base 2 of q.

3.2 Modified HHL algorithm

The main idea of Chen and Gao’s modification[7] is to add equations
−→
0 x =

−→
1 and

−→
0 x =

−→
0

to the initial system to enlarge both the length of 1 in
−→
b and total length of

−→
b to power of 2,
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then |b〉 can be prepared efficiently[14]. It is obvious that adding
−→
0 x =

−→
0 doesn’t change the

solution. When it comes to
−→
0 x =

−→
1 , if the added equations are placed at the end of equation

system, we have A†A = (A′)†A′, where A′ is the coefficient matrix of equation system with

equations
−→
0 x =

−→
1 . By the property of the HHL quantum algorithm and A†A = (A′)†A′,

the added equation
−→
0 x =

−→
1 will not affect the returned quantum state.

3.3 Macaulay Linear System

As the original HHL algorithm was proposed to solve linear equation system, we firstly give

a breif introduction on the Macaulay linear system.

Lexicographic monomial order is used for x1 > x2 > · · · > xn, and let m≤d be the set of

all monomials which are factors of xd1x
d
2 · · ·xdn, then we sort

m≤d = {md,0,md,1, · · · ,md,(d+1)n−1}

in ascending lexicographic monomial ordering. Obviously we have

1 + C1
n × d+ C2

n × d2 + · · ·+ Cnn × dn = (d+ 1)n.

Denote the aimed boolean system by F = {f1, · · · , fr}, where di = deg(fi) is the degree of

each fi and ti = #fi is the number of terms of each fi. To establish Macaulay system, we

choose a D ∈ N with D ≥ maxri=1di. Let d be the minimal integer satisfying d ≥ D−minidi
and d + 1 = 2δ for certain δ ∈ N. Set D to be the minimal integer satisfying D ≥ D and

D+1 = 2∆ for certain ∆ ∈ N. The parameters d and D are introduce to make the complexity

of BoolSol easier to be simplified in Section 4.3.

For i = 1, 2, · · · , r and each md,j ∈ m≤d with deg(md,j) ≤ D − di, md,jfi could be

considered as a linear function of the monomials in m≤D. For deg(md,j) > D−di, we replace

md,jfi by 0. Introduce the following notation:

md,j,i =

{
md,j if deg(md,j) ≤ D − di
0 if deg(md,j) > D − di

The zero rows are added so that the Macaulay matrix can be efficiently queried.

Then Macaulay system can be given as follows

mD,1 < · · · < mD,(D+1)n−1 mD,0 = 1

md,0,1f1

...
md,(d+1)n−1,1fr

md,0,2f2

...
md,(d+1)n−1,rfr


· · ·
· · ·
· · ·
· · ·
· · ·
· · ·




mD,1

mD,2
...

mD,(D+1)n−1

 =



−f1(0)
...

−fr(0)
0
...
0


(7)

Denote it as

MF,DmD = bF,D

By increasing all the orders of fi in F , we introduce more equations and transform F into a

linear system. Next we discuss the sparseness of Macaulay system.
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(i) As we can see, each row in MF,D consists of the coefficients of the polynomial in F or

that of the polynomials multiplied by a monomial. If a polynomial is multiplied by a

monomial, then its sparseness remains unchange. So the upper bound of row sparseness

of MF,D is maxiti.

(ii) We arrange all monomials in mD with the lexicographic order and view every polynomial

as an vector. Then, multiplying a polynomial by a monomial in mD is equivalent to

shifting the polynomial vector to the right, and the steps of shifting depends on the

mulitiplied monomial. Using this technique, we can estimate the upper bound ofMF,D’s

column sparseness. For a polynomial, the column sparseness achieves the maximum

value when all the nonzero coefficients are placed in a same column. Therefore, the

upper bound of the column sparseness of MF,D is given as T =
∑r
i=1 ti.

It is obvious that the scale of Macaulay matrix is (r(d+ 1)n)× ((D + 1)n − 1).

The following theorem is used to determine the upper bound of the solving degree D =

Sdeg(F) for the nonlinear system F .

Theorem 2 [7] Let X = {x1, x2, · · · , xn}, and I be an ideal in C[X] generated by F =

{f1, · · · , fr} of degrees d1, · · · , dr such that d1 ≥ d2 ≥ · · · ≥ dr. Choose any graded monomial

order. If F satisfies Lazard’s condition[15], then Sdeg(F) ≤ d1 + · · · + dn+1 − n + 1 with

dn+1 = 1 if r = n.

Furthermore, if we denote d = maxidi, then Sdeg(F) ≤ (n+ 1)(d− 1) + 2 under Lazard’s

condition.

Chen and Gao showed that the solving degree is not large enough for monomial solving

with the Macaulay and proposed complete solving degree(CSdeg(F)). They also showed that

if we consider the following equation system

F = F1 ∪ F2 ⊂ C[X]

where F1 is the reduced Grobner basis of F such that ∀i(lm(fi) = xdii , di ≥ 1),F2 =

f1, f2, · · · , fr, we have CSdeg(F) ≤ d− 2n+ 2
∑n
i=1 di.[7]

3.4 Boolean Macaulay System

Ding et al. proposed a boolean Macaulay System based on Macaulay system[9]. More specif-

ically, if we reorder the monomials elaborately and then perform row operation to simplify

the Macaulay matrix, a boolean Macaulay system can be obtained as a submatrix of the

simplified result. The following is a concise description.

Firstly, each column in the Macaulay matrix is labeled by a monomial. The columns of

Macaulay matrix can be partitioned into the left side part and the right side part. The labels

on the right side are multilinear monomials and ordered in ascending order with respect to

the integer represented by the exponent vector of the multilinear mononmial, and the labels

in the left side are the nonmultilinear monomials and ordered under any monomial order.

The resulted Macaulay matrix can be written as

M̃ =

[
L1 R1

L2 R2

]
where L1 and R1 denote the rows generated by F1, L2 and R2 denote the rows generated

by F2.
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Finally, Ding et al. proved that, using row operation, Macaulay matrix can be simplified

to

M̃′ =

[
0 B̃
I2 B2

]
where B̃ is the boolean Macaulay matrix.

The column of B̃ is labeled by multilinear monomials and the number of multilinear

monomials is 2n. The number of rows of M is r(d + 1)n and the matrix I2 is of dimension

(D+1)n−1−2n, so the number of rows of B̃ is r(d+1)n−(D+1)n+1+2n = r2σn−2∆n+1+2n,

which is usually greater that the number of columns.

The boolean Macaulay system has an amazing property that its solving degree(max degree)

is 1, while the Macaulay system proposed by Chen et al[7]’s solving degree is 3n, where n is

the number of variables.

3.5 A quantum algorithm to find boolean solutions

Chen and Gao proposed a modified HHL algorithm to solve boolean equation systems, and

the returned result is a classical solution of the equation system[7]. We call the algorithm

BoolSol.

Let X = {x1, x2, · · · , xn}, the BoolSol algorithm takes F = {f1(X), · · · , fr(X)} with

T =
∑r
i=1 #fi, di = deg(fi), and ε ∈ (0, 1) as input, and the output is a boolean solution

a ∈ VC(F ,HX) or ∅ with success probability at least 1 − ε, where VC(F ,HX) denotes the

common zeros of polynomials in {F ,HX} and HX = {x2
1 − x1, · · · , x2

n − xn}.

(i) Test whether
−→
0 and

−→
1 are the solutions of the equation system.

(ii) According to the property of boolean variables, we replace xmi with xi for all i and

m ∈ N. The new variable set is written as Y and the new equation system is denoted

by F1.

(iii) As described in Theorem 2, let F2 = F1 ∪HY satisfy Lazard’s condition, then we will

get the upper bound of solving degree, i.e., D = Sdeg(F2).

(iv) Denote the Macaulay system by MF2,DmD = bF2,D, then we apply modified HHL

algorithm to obtain a quantum state |m̃〉 with the error bound
√
ε1/n. When it comes

to classical state, the error bound becomes ε1/n. Later in this algorithm, we can prove

that the loop from step 3 to step 9 will run at most n times, so the upper bound of

error of step 3 to step 9 is ε1.

(v) Measure the quantum state |m̃〉, then we will get a state |ek〉. Because the F2 is

restricted in the Boolean form, from the state |ek〉, we can get a classcial state easily by

using a unitary operator.

(vi) The quantum state collapses to |ek〉 implies that the kth element of mD is 1. In other

words, if we denote the kth element of mD as mk =
∏uk

i=1 yni
, then for F1 ⊂ C[Y] we

have yni = 1, i = 1, · · · , uk. So we can get the values of at least one variable in every

loop, i.e. the loop from step 3 to step 9 will run at most n times.

(vii) The found solution can be back substituted into F1, which is simplified, then the variable

set is refreshed as Y = Y\{yni
|i = 1, · · · , uk}.

(viii) Because there is an error probability for the returned result of modefied HHL algorithm,

we have to give a test for the solution we got. It is enough to test whether
−→
1 is the

solution of simplified system, because if the solution of the simplified system is
−→
1 , then
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−→
1 is also the solution of the initial system. However, the test in step 1 has indicated

that
−→
1 is not the solution of initial system. A contradiction appears, then we turn to

step 11.

(ix) Test if F1 6= ∅. Here F1 6= ∅ means that the system have not been solved completely,

then test whether F(
−→
0 ) =

−→
0 , i.e., test whether

−→
0 is the solution of simplified system.

If neither of the test holds, then we have to go to step 3 to further solve the simplified

system.

(x) Return (a1, · · · , an) where if yi ∈ Y, then ai = 0, else ai = 1.

(xi) Let ` be the number of loops from step 3 to step 9. If dlogε1εe < `, output ∅, else let

` = `+ 1 and turn to step 2.

Remark 1 We have to test if dlogε1εe < ` because ε1/n is the upper error bound of the loop

from step 3 to step 9 and ε is the upper error bound of entire algorithm, so if F does have

boolean solutions, this algorithm return ∅ with probability less than 1−(1−ε1/n)n < ε1, which

means that the probability that the algorithm runs to step 11 is smaller than ε1. What’s more,

the loop from step2 to step11 will run at most dlogε1εe times because ε
dlogε1

εe
1 < ε.

Chen and Gao have proved that CSdeg(F1∪CX) ≤ d−2n+2
∑n
i=1 di ≤ 3n. Furthermore,

they used two techniques in [7], one of which is used to control the sparseness of equation

system, called s-sparse split set, and another of which is used to transform equation system

over finite field into that over C.

Using the s-sparse split set technique, we can transform a polynomial with the sparseness t

into a polynomial system, in which each polynomial has the sparseness s. This technique can

result in a sparse polynomial system which can be suitable for the HHL quantum algorithm.

(i) s-sparse split set. For a polynomial f =
∑t
i=1mi with the sparseness t, given

a positive integer s, we can define St = d t−ss−2e and introduce new variables Uf =

{u1, u2, · · · , uSt
}. Then we have

S(f, s) =

{
{f} if t ≤ s
{f̃1, · · · , f̃St+1} otherwise

where 
f̃1 =

∑s−1
k=1mk + u1

f̃j =
∑j(s−2)+1
k=(j−1)(s−2)+2mk + uj−1 + uj j = 2, · · · , St

f̃St+1 =
∑t
k=St(s−2)+2mk + uSt

S(f, s) is called the split set of f . We can see that the upper bound of sparseness of

new polynomial generated by f is s. If we denote the number of elements in {f} by #f

, then we have

#U(f, s) = St = d t− s
s− 2

e,

#S(f, s) = d t− s
s− 2

e+ 1.

Apply this technique to all polynomials in F , then

S(F , s) =
⋃
f∈F

S(f, s), and U(F , s) =
⋃
f∈F

U(f, s).
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Furthermore

#S(F , s) = #F +
∑
i

d ti − s
s− 2

e,

#(X ∪U(F , s)) = n+
∑
i

d ti − s
s− 2

e.

(ii) Transformation. If all elements in F = {f1, · · · , fr} are boolean polynomials with

#fi = ti, let

Fi =

bti/2c∏
k=fi(0)

(fi − 2k)

C(F) = {F1, · · · , Fr} ∪HX

we can see that there is a bijective mapping between VF2
(F) and VC(C(F)), so this

technique can transform the system over finite fields into that over C.

3.6 Solving MQ system over finite field

It is well known that, by introducing new variables, a polynomial system over finite fields can

be represented as an MQ systems, so we only discuss how to solve the MQ system over finite

fields by using the modified HHL algorithm. A transformation procedure is given in [8]. For

completeness, we give a brief description as follows.

Firstly,we transform the MQ system into a new Boolean system B(F) by rewriting every

variable in MQ system as its binary representation. Because every variable is defined over

GF (p) and the system is an MQ system,we have #B(F) = nlogp and TB(F) = O(TF (logp)2)

where TF denotes the sparseness of MQ system.

Then, we use the s-sparse split set technique to control the sparseness of B(F) and trans-

form the new variables in U into their binary representations. Denote the resulted system by

Sbit(B(F)), we have #Sbit(B(F)) = O(nlogp+ TF (logp)3) and TSbit(B(F)) = O(TF (logp)3).

Finally, since Sbit(B(F)) is defined over GF (p), we need to transform Sbit(B(F)) into a

system over C in order to apply BoolSol. Denote the final system by P (F), then we have

#P (F) = O(nlogp+ TF (logp)3) and TP (F) = O(TF (logp)5).

The quantum algorithm to solve polynomial systems over Fp is given as follows[8].

Input. F = {f1, · · · , fr} and error bound ε ∈ (0, 1).

Output. A solution a ∈ VFp
(F) or ∅.

(i) Using the procedure described above, we transform the MQ system over GF (p) into

boolean systems over C, that is,

F1 = P (Q(F)) ⊂ C[Xbit, Vbit, Ubit].

(ii) Because the solution of F1 does exist,we find the solution
−→
b of F1 by using the quantum

algorithm BoolSol, that is, −→
b = BoolSol(F1, ε).

(iii) By expressing the
−→
b as follows,

−→
b = (X̂bit, V̂bit, Ûbit)
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where

X̂bit = (x̂10, · · · , x̂1blogpc, x̂20, · · · , x̂nblogpc)

then the solution of the initial MQ system is

(

blogpc∑
k=0

x̂1k2k, · · · ,
blogpc∑
k=0

x̂nk2k)mod p

In this algorithm, the MQ system over GF (p) is firstly transformed into the boolean system

over C, then the BoolSol is used to find a solution for the boolean system. Finally, the

boolean solution is transformed into a solution over GF (p). In the rest of this paper, we call

this algorithm FSol.

3.7 Improved BoolSol by Ding et al.

In section 3.5 and 3.6 we reviewed two variants of HHL algorithm to solve Macaulay system.

In this section, we introduce a new variant of HHL algorithm proposed by Ding et al. which

is used to solve boolean Macaulay system.

Ding et al. thinks that the measurement of quantum states outputed by HHL algorithm

can be regared as the coupon collector problem. More precisely, if S ⊂ X is a set containing

all the variables whose solutions are all equal to 1, and Sd be the set containing all nonempty

subsets of S of size at most d. When applying the HHL algorithm to the boolean Macaulay

system, the output quantum state can be represented as |x〉 = 1√
|Sd|

∑
R∈Sd

|R〉.
Ding et al. proved that, after measuring O((|S|/d) log(|S|/ε)) copies of quantum superpo-

sition state, the set S can be computed with probability at least 1− ε[9]. And if |S|k ≤ d ≤ n,

where k is a positive integer, only O(log |S|) copies is needed.

However, in actual application, we have no information about |S|, so the upper bound

O(log n) will be used because n ≥ |S|. Their algorithm is as follows[9]:

(i) Apply HHL algorithm to the boolean Macaulay system B̃−→x =
−→
b of total degree n(the

number of variables) and get the solution in quantum state

|x〉 =
1√
|Sd|

∑
R∈Sd

|R〉

(ii) Perform measurement on the quantum state and get outcome |R〉, then let all the

variables in the set R be 1.

(iii) Repeat step1 and step2 O(log n) times, and then set all left remaining variables to 0.

(iv) Return the solution.

In consequence, Ding et al. proved that the complexity of their variant of HHL algorithm is

O(poly(n)κ(B̃)), where κ(B̃) denotes the condition number of the matrix B̃.

4 Complexity analysis

We will analyze the parameters such as the number of equations and the number of variables

of BES equation system. Furthurmore, we will use the same technique to analyze the system

including key schedule. The result will serve for the complexity analysis of solving this

equation systems using modified HHL algorithm.
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4.1 Scale of equation system

To estimate the attack complexity, we have to consider the number of equations and variables

for the n-th round of AES. The analysis will be decomposed into two parts: the encryption

part and the key schedule part.

(i) The encryption part. In equation (4), all of the variables appeared in the encryption

part are wi,xi and ki, and the numbers of each of which are shown in the following

Table 1.

Table 1. Number of Variables

variable number
wi 128Nr
xi 128Nr
ki 128(Nr + 1)

The equation (5) is obtained by expanding equation (4) and is added some equations

by considering the conjugate property. Since the added equations do not introduce new

variables, the number of variables of two equations are equal.

Similarly, the numbers of different types of equations are shown in Table 2.

Table 2. Number of Equations

equation number
0 = w0,(j,m) + pj,m + k0,(j,m) 128

0 = wi,(j,m) +
∑
j′,m′ α(j,m),(j′,m′)xi−1,(j′,m′) 128(Nr − 1)

0 = cj,m + k10,(j,m) +
∑

(j′,m′) β(j,m),(j′,m′)x9,(j′,m′) 128

0 = xi,(j,m)wi,(j,m) + 1 128Nr
0 = x2

i,(j,m) + xi,(j,m+1) 128Nr
0 = w2

i,(j,m) + wi,(j,m+1) 128Nr

So, we have 128(3Nr + 1) variables and 128(4Nr + 1) equations in the encryption part

totally.

(ii) The key schedule part.

Because the subword procedure is divided into inversion and transformation, and in

every round of key schedule, only a quarter of the round keys takes part in the subword

procedure, so there are 32 variables needed to be introduced to generate equations in

every round which will be denoted as k′. These variables will simplify the equations and

reduce the sparseness. We list the equations of key generation in AES-128 as follows:
ki,(j+13,m)k

′
i,(j,m) = 1 j = 0, 1, 2

ki,(12,m)k
′
i,(3,m) = 1

ki+1,(j,m) = LinBk′i+1,(j,m) + ki,(j,m) j = 0, 1, 2, 3

ki+1,(j,m) = ki+1,(j−4,m) + ki,(j,m) j = 4, · · · , 15

For simplicity, we omitted Rcon (in Fig.1) in the third equation, because constant term

will not affect the total sparseness and complexity. So there are 32Nr new variables will

be introuced to generate 128Nr + 32Nr equations.
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So, the equation system built for the key schedule contains 128(5Nr +1)+32Nr equations

and 128(3Nr + 1) + 32Nr variables. When n = 10, the MQ system have 6848 equations and

4288 variables.

In order to estimate the complexity of attacking MQ system, we need to give the upper

bound of total sparseness of the equation system. The sparseness of the whole equation system

is illustrated in the following Table 3.

Table 3. Sparseness of Equations

equation sparseness
0 = w0,(j,m) + pj,m + k0,(j,m) 128× 3

0 = wi,(j,m) +
∑
j′,m′ α(j,m),(j′,m′)xi−1,(j′,m′) 128(Nr − 1)× 13

0 = cj,m + k10,(j,m) +
∑

(j′,m′) β(j,m),(j′,m′)x9,(j′,m′) 128× 14

0 = xi,(j,m)wi,(j,m) + 1 128Nr × 2
0 = x2

i,(j,m) + xi,(j,m+1) 128Nr × 2

0 = w2
i,(j,m) + wi,(j,m+1) 128Nr × 2

The values of 128(Nr − 1) × 13 and 128 × 14 in the second and third rows are obtained

from a simulation result, which shows that the sparseness of MB in subsection 2.2.2 and M∗B
in subsection 2.3 is 12. The sparseness of other equations can be obviously obtained from

what they look like. Therefore, the sparseness of the equation system in the encryption part

is 128n× 19 + 128× 4.

We have discussed the number of equations and variables derived from the key schedule,

which contains 128Nr linear equations and 32Nr quadratic equation. If we take the key

schedule into account, the upper bound of sparseness is

32Nr × 14 + 128Nr × 2.

So the upper bound of total sparseness is

128Nr × 19 + 128× 4 + 32Nr × 14 + 128Nr × 2

= 128Nr × 21 + 32Nr × 4 + 128× 4.

4.2 Scale of Macaulay system

As we discussed above, the scale of Macaulay system is (r(d+ 1)n)× ((D + 1)n − 1).

If we take the key schedule part into account, in which the number of variables is 128(3n+

1) + 64(n+ 1), and the number of equations is 128(6n+ 1), then we can get the upper bound

of complete solving degree D ≤ 3× [128(3n+ 1) + 64(n+ 1)]. The scale of Macaulay system

for AES achieves (r(D + 1)n) × ((D + 1)n − 1), approximately 265421 × 265408 when n = 10.

The linear system is too large for classical computer to be dealed with, so quantum algorithm

is necessary.

The ideas of the following subsection 4.3 and 4.4 come from [7] and [8]

4.3 Complexity of Solving System by BoolSol

We know that the scale ofMF2,D is (r(d+1)n)× ((D+1)n−1) and it is (2n+T )-sparseness,

where 2n comes from HY, so according to the complexity of modified HHL algorithm, the

complexity of step 4 in BoolSol algorithm is given as

clog(N +M)TF2
κ2/ε = clog((r(d+ 1)n) + ((D + 1)n − 1)(2n+ T )κ2

√
n/ε1.
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In Section 3.4, we have also analyzed that the loop of step 3 to step 9 will run at most n times

and the loop of step 2 to step 11 will run at most dlogε1εe times, if we let ε1 = 1/2, then the

complexity of first loop in BoolSol algorithm is given as

n−1∑
j=0

(clog((r(d+ 1)n) + ((D + 1)n − 1)(2(n− j) + T )κ2
√
n/ε1)

= clog((r(d+ 1)n) + ((D + 1)n − 1)(n(n+ 1) + nT )κ2
√
n/ε1.

The complexity of second loop in BoolSol algorithm is given as

clog((r(d+ 1)n) + ((D + 1)n − 1)(n(n+ 1) + nT )κ2
√
n/ε1dlogε1εe

= clog((r(d+ 1)n) + ((D + 1)n − 1)n1.5(n+ 1 + T )κ2
√

2dlog1/εe.

Notice that D ≤ 3n and D + 1 ≤ 2D + 1.Further more, this inequality can be simplified as

follows
log((r(d+ 1)n) + ((D + 1)n − 1))

≤ log((r + 1)(D + 1)n)

≤ log(r + 1) + nlog(D + 1)

≤ log(r + 1) + nlog(2D + 1)

≤ log(r + 1) + nlog(6n+ 1)

Then the complexity is given as follows,

clog((r(d+ 1)n) + ((D + 1)n − 1))n1.5(n+ 1 + T )κ2
√

2dlog1/εe

≤
√

2c(logr + nlog(6n+ 1))n1.5(n+ 1 + T )κ2dlog1/εe
= O(n2.5(n+ T )κ2log1/ε).

Furthermore, we will show how complexity changes if we consider the s-sparseness split set

and transformation technique in Section3.4.

(i) s-sparseness split set. If the initial equation system with total sparseness T contains n

variables, after applying s-sparseness split set, where s = 3 in [7], the upper bound of

its number of variables is n+ T and the upper bound of its total sparseness is 2T .

(ii) Transformation. After applying transformation technique, the number of variables re-

mains unchange and the upper bound of total sparseness changes from 2T to 4T , because

the sparseness of f(f − 2) can be bound by 6 according to [7], where f is an equation

with sparseness 3.

So after applying these two techniques, the complexity is

O((n+ T )2.5(n+ 4T )κ2log1/ε). (8)

which is more accurate compared to the complexity

O((n3.5 + T 3.5)κ2log1/ε) (9)

in [7]. We will use this equation (8) instead of the equation (9) in [7] to estimate the complexity

of attacking AES-128.
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4.4 Complexity of Solving System by FSol

Let D′ = n +
∑n
i=1maxjblog(degxi

(fj))c, d = max{2, log(degxi
(fj)), i = 1, · · · , n, j =

1, · · · , n}, and let Q(F) be the multi-variable quadratic equation system transformed from

the original equation system F , Chen and Gao in [8] have shown that

#Q(F) ≤ (TF + 1)(

n∑
i=1

blogdic) + (n− 2)TF .

From the expression of D′, we can get D′ − n =
∑n
i=1blogdic, so we have

#Q(F) ≤ (TF + 1)(D′ − n) + (n− 2)TF ,

and

TQF ≤ (2TF + 2)(D′ − n) + (2n− 3)TF .

In Section 3.5, we have shown that

#P (F) = O(nlogp+ TF (logp)3),

and

TP (F) = O(TF (logp)5).

Then, by replacing F with Q(F), we have,

#P (Q(F)) = O((#Q(F))logp+ TQF (logp)3)

= O(((TF + 1)(D′ − n) + (n− 2)TF )logp+ ((2TF + 2)(D′ − n) + (2n− 3)TF )(logp)3)

= O(TFD
′(logp)3),

and
TP (Q(F)) = O(TF (logp)5)

= O(((2TF + 2)(D′ − n) + (2n− 3)TF )(logp)5)

= O(TFD
′(logp)5).

We can rewrite D′ as D′ = n+
∑n
i=1maxjblog(degxi

(fj))c = O(nlogd), then we have

#P (Q(F)) = O(TFD
′(logp)3) = O(nTF logd(logp)3),

and

TP (Q(F)) = O(TFD
′(logp)5) = O(nTF logd(logp)5).

Since P (Q(F)) can be viewed as the Boolean expression of F , we can solve P (Q(F)) with

the algorithm BoolSol, so the compelxity to solve F is as follows

CFSol = O(#P (Q(F))2.5(#P (Q(F)) + TP (Q(F)))κ
2log1/ε)

= O((TFD
′(logp)3)2.5(TFD

′(logp)3 + TFD
′(logp)5)κ2log1/ε)

= O(T 3.5
F D′

3.5
logp12.5κ2log1/ε),

or

CFSol = O(n3.5T 3.5
F logd3.5logp12.5κ2log1/ε).
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Furthermore, if the initial system F is an MQ system, then F1 = P (F) and

#F1 = O(TF (logp)3)

TF1
= O(TF (logp)5)

The complexity to solve F1 with FSol is given as follows

CFSol = O(#F2.5
1 (#F1 + TF1

)κ2log1/ε)

= O((nlogp+ TF (logp)3)3.5(nlogp+ TF (logp)3 + TF (logp)5)κ2log1/ε)

= O(T 3.5
F logp12.5κ2log1/ε).

(10)

4.4.1 Solving polynomial equations over Fq

We have discussed how to solve a polynomial equation system over Fp, where p is a prime. In

this subsection, we will extend our conclusion to that over Fq, where q = pm. Let Fq = Fp(θ),

where θ is a root of ξ(x) = 0, and ξ(x) is a monic irreducible polynomial with deg(ξ) = m.

For any g ∈ Fq[X] = Fp[θ,X], we let xi =
∑m−1
j=0 xijθ

j , c =
∑m−1
j=0 cjθ

j , and g can be

rewritten as g =
∑m−1
j=0 gjθ

j , where gj ∈ Fp[Xθ], Xθ = {xij |i = 1, · · · , n, j = 0, · · · ,m − 1}.
If we define

G(g) = {g0, g1, · · · , gm−1} ⊂ Fp[Xθ]

and

G(F) =
⋃
f∈F

G(f) ⊂ Fp[Xθ],

then we have a bijective mapping as follows∏
q

: VFp(G(F))→ VFq (F),

where ∏
q

(xij) = (

m−1∑
j=0

x1jθ
j , · · · ,

m−1∑
j=0

xnjθ
j).

Now the conslusion on VFp(F) is also ture on VFq (F). The algorithm FSol can solve the

polynomial equation system over Fq too. The following focuses on the complexity of FSol

dealing with the system over Fq.

It is obvious that #G(F) = m#F = mr,#Xθ = m#X = mn. For any element in an MQ

system, it can be expressed as one of the following form,

c, cx, cxy,

Since the sparseness of the constant and the linear terms over Fq are bounded by m and m2,

all that we have to do is to analyze the terms with the form of cxy. We have TG(cxy) ≤ m3,

furthermore, TGF ≤ m3TF . Therefore,

#Q(F) ≤ r + (TF + 1)(

n∑
i=1

blogdic) + (n− 2)TF

= r + (TF + 1)(D′ − n) + (n− 2)TF

= O(TFD
′),
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and

TQF ≤ (2TF + 2)

n∑
i=1

blogdic+ (2n− 3)TF

= (2TF + 2)(D′ − n) + (2n− 3)TF

= O(TFD
′).

We have

#G(Q(F)) = O(mTFD
′),

and

TG(Q(F)) = O(m3TFD
′).

With the complexity in equation (10), we get

O((m3TFD
′)3.5logp12.5κ2log1/ε)

= O(m10.5T 3.5
F D′

3.5
logp12.5κ2log1/ε)

If the initial system is an MQ system, the complexity is

O(m10.5T 3.5
F logp12.5κ2log1/ε)

Furthermore, if q = 2m, the complexity can be rewritten as

O(m10.5T 3.5
F κ2log1/ε)

This complexity will be used in the next section for the complexity analysis of attacking AES

by using the modified HHL algorithm.

5 Complexity of attacking AES using modified HHL algorithms

5.1 Complexity of attacking AES-128 using BoolSol

In Section 4.3, we have shown that the complexity of solving the boolean equation system

with sparseness T using BoolSol is

O((n+ T )2.5(n+ 4T )κ2log1/ε).

From the Appendix we can see that for AES-128 with Nr round, the number of equations is

128 × 4Nr and the number of variables is 128 × 4Nr. Equations can be divided into three

parts according to their sparseness.

(i) The keyExpansion part. There are 128Nr equations with sparseness 16528Nr.

(ii) The subBytes and shiftRow part.There are 128Nr equations with sparseness 16208Nr.

(iii) The mixColumn part. There are 128(Nr − 1) equations with sparseness 732Nr.

(iv) The AddRoundKey part. There are 128(Nr + 1) equations with sparseness no more

than 3× 128(Nr + 1).

So the total sparseness is T = 16528Nr + 16208Nr + 732(Nr − 1) + 384Nr for different

round Nr. Obviously, the sparseness is much larger than the number of the variables n.

Taking ε = 1%, we illustrate the complexity of attacking AES-128 using BoolSol in Table 4.
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From this table, we can see that the complexity of attacking 10-round AES-128 is O(272.98κ2),

which is different from O(273.30κ2) in [7]. We think that the following reasons lead to different

complexity. The first one is the equation system in [7] is different from ours, and we made

some improvements during the equation establishment process. The second one is that we

calculated the complexity according to the equation (8) which is more accurate than that in

[7].

Table 4. Complexity of Attacking AES-128 using BoolSol

Round Number of Eqs. Number of Vars. TF Complexity
1 512 512 33504 O(261.32κ2)
2 1024 1024 67356 O(264.84κ2)
3 1536 1536 101208 O(266.89κ2)
4 2048 2048 135060 O(268.35κ2)
5 2560 2560 168912 O(269.48κ2)
6 3072 3072 202764 O(270.40κ2)
7 3584 3584 236616 O(271.18κ2)
8 4096 4096 270468 O(271.86κ2)
9 4608 4608 304320 O(272.45κ2)
10 5120 5152 338172 O(272.98κ2)

5.2 Complexity of attacking AES-128 using FSol

In Section 4.4, we have shown that the complexity of FSol is

O(m10.5T 3.5
F κ2log(1/ε))

by using the original HHL algorithm. Under the condition that the initial system is an MQ,

m = 8, ε = 1%, and TF is total sparseness of equation system derived from BES, we illustrate

the complexity of attacking AES-128 as follows,

Table 5. Complexity of Attacking AES-128 using FSol

Round Number of Eqs. Number of Vars. TF Complexity
1 800 544 3328 O(279.09κ2)
2 1472 960 6144 O(282.19κ2)
3 2144 1376 8960 O(284.09κ2)
4 2816 1792 11766 O(285.47κ2)
5 3488 2208 14592 O(286.55κ2)
6 4160 2624 17408 O(287.44κ2)
7 4832 3040 20224 O(288.20κ2)
8 5504 3456 23040 O(288.86κ2)
9 6176 3872 25856 O(289.44κ2)
10 6848 4288 28672 O(289.96κ2)

The equation system in this paper is defined over GF (28). We sovled it by using FSol, and

considered the variation of the number of variables, sparseness and the number of equations

during the transformation process. From Table 4 and Table 5, we found that, for a full-round

AES-128,the attacking compleixty based on HHL algorithm is always higher than that based
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on Grover algorithm no matter how small the parameter κ is. That is, AES-128 has a good

performance in resisting the quantum algebraic attack using HHL algorithm.

We found that complexity of attacking AES-128 using FSol is larger than that of BoolSol,

here are two reasons.

(i) FSol includes more steps than BoolSol. When an equation system over finite field is

solved by FSol, it is required to firstly transformed into an equation system over C with

controlled sparseness, then solved by BoolSol. We think that only when the parameters

of equation system over finite field, such as number of variables and sparseness, is much

better than that of boolean equation system, can FSol perform better than BoolSol.

(ii) Two equation systems are different. The boolean equation system is derived from [10]

and the equation system over finite field is derived from [11]. Although both are built

mainly according to algebraic structure of AES, the BES mapped one byte of AES to

an array of 8 bytes, which increases the number of variables and sparseness.

5.3 Complexity of attacking AES-128 using the improved BoolSol

In Section 3.7, we showed that the complexity of the variant of BoolSol is

O(poly(n)κ(B̃))[9]

where κ(B̃) is the condition number of Macaulay matrix. As we have analyzed the number of

variables in our equation system, so we illustrate the complexity of attacking AES-128 using

the variant of BoolSol proposed in [9] in Table 6.

Table 6. Complexity of Attacking AES-128 using the variant of BoolSol

Round Number of Vars. Complexity

1 512 O(poly(512)κ(B̃))

2 1024 O(poly(1024)κ(B̃))

3 1536 O(poly(1536)κ(B̃))

4 2048 O(poly(2048)κ(B̃))

5 2560 O(poly(2560)κ(B̃))

6 3072 O(poly(3072)κ(B̃))

7 3584 O(poly(3584)κ(B̃))

8 4096 O(poly(4096)κ(B̃))

9 4608 O(poly(4608)κ(B̃))

10 5152 O(poly(5152)κ(B̃))

From the table we can see that the complexity of attacking AES-128 using the variant

of BoolSol is mainly dependent on the condition number κ(B̃). And the complexity seems

smaller than that derived from the BooSol. There are mainly two reasons.

(i) The scale of boolean Macaulay matrix is smaller than that of Macaulay matrix while

their sparseness are both s[9].

(ii) In the variant of BoolSol, the original HHL algorithm only need to be repeated for log n

times, while in BoolSol it need to be repeated at least n times, where n is the number

of all varables introduced in the equations.
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Ding et al. considered the truncated quantum linear system condition number as κ−→
b

(M) =

||M|| ||M
†−→b ||
||
−→
b ||

, which is viewed as the lower bound of κ(M)[9]. We will give an estimate on the

complexity by means of the lower bound. In the algebraic attack, the equation system built

from the AES has a unique solution vector. So, if we denote the solving degree as D, and the

hamming weight of the solution vector as h, then κ(M) ≥ κ−→
b

(M) ≥
√

((D + 1)h − 1).

Furthermore, when it comes to the boolean equation system, the lower bound will be much

smaller. As we analyzed in Section 3.4, the solving degree of boolean Macaulay system is 1

while the solving degree of Macaulay system is 3n. Then we can get κ−→
b

(B) ≥
√

(2h − 1).

Finally, we analyze the complexity of solving boolean Macaulay system using HHL al-

gorithm again. If we substitute the lower bound of κ−→
b

(B) into Table 6, we can get an

estimation on the lower bound of complexity, i.e., O(poly(n)
√

(2h − 1)). For 10-round AES-

128, the number of variables in the solution vector is 5152. Only when h is less than or equal

to 128, the lower bound of the complexity may be better than Grover algorithm. We consider

an extreme case, i.e., the all bits of the key are set to 0. Due to the function of S-box, the 0 in

the first round will be transformed into 63 in hexadecimal. The diffusion and confusion of the

block ciphers will make the subsequent bit be 1 with a probability of about 0.5. To a certain

extent, the new variables introduced in the equations reflected the feature. On the other

hand, Note that the real key of AES-128 is usually chosen randomly, hence the Hamming

weight of the key is about 64. It implies that the hamming weight of the remaining 5024 bits

in the solution vector needs to be less than 64 in order to achieve a better attack effect than

Grover’s algorithm. Let the probability that each introduced variable is 1 be p. If we take

p = 0.1, the probability that the number of 1s in 5024 bits is less than 64 is about 2−482.50

according to the binomial distribution. As p approaches 0.5, the probability becomes smaller.

It implies that the probability of h ≤ 128 can be neglected. Therefore, the attack effect of

variants of HHL algorithm based on boolean Macaulay matrix is difficult to be better than

Grover algorithm.

6 Classical and quantum algorithms to determine the condition number κ

This section looks through the existing methods for determining the parameter κ, which is

a key factor to determine the exact value of the attacking complexity. We show that, for a

large matrix, it is difficult to find the value of the condition number of the matrix by using

current either classical algorithms or quantum algorithms in existence.

6.1 Classical algorithms to estimate κ

Let the largest and the smallest eigenvalue of Macaulay matrixM be λ1 and λn respectively,

then κ = λ1/λn. In order to calculate λ1 and λn, we can solve (M− λE)x = 0, i.e. det(M−
λE) = 0, but the order of the Macaulay matrix is huge, which results in this corresponding

polynomial is too complex to be solved, so this method is infeasible.

Instead, we consider the iteration method. If we just want the largest and smallest eigen-

values, Lanczos method is most suitable. Sanjeev and Elad have proven that for an ` × `
matrix with the total sparseness T , Lanczos method’ complexity is Õ(min{N, `

1.5

εα } ·
√

`
ε )[16],

where ε is error bound and α is the initial guess value of the smallest eigenvalue. Obviously,

for the Macaulay matrix with ` ≥ 29208, the Lanczos method’s complexity is still too much.
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6.2 Quantum algorithms to calculate κ

It is known that for a unitary matrix U whose eigenvector can be represented as quantum

state |φ〉, Quantum Phase Estimation(QPE) algorithm can find a λ such that U|φ〉 = e2πiλ|φ〉
with high probability. As a subroutine of HHL algorithm, QPE was used for decomposing

vector in vector space constructed by eigenvalues of U . Suppose we have a quantum state

|b〉 =
∑
bi|φ〉 with bi 6= 0 for any i, then applying QPE to it, we can get

U|b〉 = U(
∑

bi|φ〉) =
∑

e2πiλibi|φi〉

where |φi〉 is eigenvector of U and λi is its corresponding eigenvalue[17].

When we want to search a disired quantum state, Grover algorithm comes into mind,

however there are two problems.

(i) Grover algorithm searches for the disired result which is hidden in quantum state, but

the largest eigenvalue λ1 and the smallest eigenvalue λn are hidden in amplitude.

(ii) Although Grover algorithm can exponentially improve the complexity, however, the

resulting complexity is still too much because the scale of Macaulay matrix is very

huge.

In chemistry, Quantum Variational Eigenvalue(QVE) algorithm was used to estimate the

ground energy of atoms and it can also be used to estimate the smallest eigenvalue of matrix.

By adjusting quantum state |ψ〉, the value of following equation tends to the ground energy

of Hamiltonian H(state of atom can be represented by Hamiltonian)

〈ψ|H|ψ〉 =
〈ψ|H|ψ〉
〈ψ|ψ〉

,

so if we use a sequence of parameters {−→t } to control the preparation of quantum state |ψ〉,
then apply Quantum Expection Estimation algorithm to it to get its average energy. After

that, an optimization method, the Nelder-Mead Search(NMS) algorithm, can be used to

optimize parameters {−→t } to get a better quantum state. Repeat these steps, the result will

approach ground energy gradually[18].

When it comes to our problem, Hamiltonian is equivalent to the coefficient matrix and

groud energy can be seen as the smallest eigenvalue, so QVE algorithm can be used to find

the smallest eigenvalue theoretically, we then sketch complexity of QVE algorithm.

The complexity of simulating Hamiltonian eiHt is O(log(N)s2t), where N and s are scale

and spaeseness of matrix H respectively. In every round, we need to repeat O(|hmax|Mp−2)

times in order to achieve the precision p , where |hmax| and M are the biggest coefficient

and number of terms of decomposition of H. The complexity of Nelder-Mead Search(NMS)

algorithm is O(log(N)(N2+N log(N)s2))[19]. So we can get the complexity of QVE algorithm,

i.e.,

O(|h|maxM log2(N)s2tp−2)(N2 +N log(N)s2),

in which t = 1 in actual implemention.

We can see that, for a matrix with a very large size, the condition number is difficult to

find out whether using the classical algorithm or the quantum algorithm. Unless an algorithm

with an exponential improvement is proposed, it is hard to determine the exact value of

the condition number of the corresponding Macaulay matrix derived from the two equation

systems.
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7 Conclusion

This paper discussed the quantum security of AES-128 against HHL algorithm. We perfected

the equation system built in [7]. Furthermore, we built two types of equation system, a

boolean equation system based on [10] and an equation system over GF (28) based on [11],

and investigated the number of variables, sparseness and the transformation process of two

types of equation systems. And then, we analyzed the complexity of solving two types of

equation systems by using BoolSol, FSol and improved BoolSol respectively.

Our result shows that complexity of attacking AES-128 using HHL algorithm is larger

than that of Grover algorithm. The complexity of quantum algebraic attack on a crypto-

graphic algorithm depends on the equation system of the cryptographic algorithm and the

corresponding quantum solution algorithm.
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Appendix A

Our boolean equation system is derived from [10] by using the truth table and Mobius trans-

formation. We will take an example to illustrate this as follows.

Suppose that we have the following truth table:

A2 A1 A0 f
0 0 0 x0

0 0 1 x1

0 1 0 x10

0 1 1 x11

1 0 0 x100

1 0 1 x101

1 1 0 x110

1 1 1 x111

Then we can get an expression used to describe this truth table as follows:

f = x0(1 +A0)(1 +A1)(1 +A2)

+ x1A0(1 +A1)(1 +A2)

+ x10(1 +A0)A1(1 +A2)

+ x11A0A1(1 +A2)

+ x100(1 +A0)(1 +A1)A2

+ x101A0(1 +A1)A2

+ x110(1 +A0)A1A2

+ x111A0A1A2
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which can be simplified as

f = x0

+ (x0 + x1)A0

+ (x0 + x10)A1

+ (x0 + x100)A2

+ (x0 + x1 + x10 + x11)A0A1

+ (x0 + x1 + x10 + x101)A0A2

+ (x0 + x10 + x100 + x110)A1A2

+ (x0 + x1 + x10 + x11 + x100 + x101 + x110 + x111)A0A1A2

To make it clearer, we denote f =
∑7
k=0 ykak, then the relationship of xk and yk can be

expressed as a matrix:

−→y = −→x



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


where−→y =

[
y0, y1, y10, y11, y100, y101, y110, y111

]
and−→x =

[
x0, x1, x10, x11, x100, x101, x110, x111

]
.

Denote this matrix as T3 and it can be blocked as

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1



0
1
10
11
100
101
110
111

→
→
→
→
→
→
→
→

{}
{A0}
{A1}
{A0, A1}
{A2}
{A0, A2}
{A1, A2}
{A0, A1, A2}

If we denote the corresponding variable subset of the i− th row and j − th column as Si and

Sj , respectively, we have

T (i, j) =

{
1 if Si ⊆ Sj
0 otherwise

Through this example we can see that, when we want to transform a truth table to its

corresponding ANF, we have two choices. 1. Build matrix T and do a matrix multiplication.

2. According to the property of block matrix T3 we can see that recursion can be used to

deal with the truth table to get the corresponding ANF.

A.1 Build Boolean Equation System

The boolean equation system can be divided into the encryption part and key schedule part.

In this section, B and b will be used to denote byte and bit, respectively, and the output will

be denoted as B′ and b′.
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A.1.1 Boolean Equation System of Encryption part

Several procedures are included in the encryption part, which are subBytes, shiftRow and

mixColumn.

(i) SubBytes[10]. Input and output of subBytes are both of length 8, so we can easily get

a truth table of every output bit and then get its ANF using Mobius transformation.

(ii) ShiftRow[10]. Accroding to shiftRow operation defined in AES we can directly get the

following equations.

x0 = x0 x1 = x1 x2 = x2 x3 = x3

x4 = x4 x5 = x5 x6 = x6 x7 = x7

x8 = x40 x9 = x41 x10 = x42

x11 = x43 x12 = x44 x13 = x45 x14 = x46 x15 = x47

x16 = x80 x17 = x81 x18 = x82

x19 = x83 x20 = x84 x21 = x85 x22 = x86 x23 = x87

x24 = x120 x25 = x121 x26 = x122 x27 = x123

x28 = x124 x29 = x125 x30 = x126 x31 = x127

x32 = x32 x33 = x33 x34 = x34 x35 = x35

x36 = x36 x37 = x37 x38 = x38 x39 = x39

x40 = x72 x41 = x73 x42 = x74 x43 = x75

x44 = x76 x45 = x77 x46 = x78 x47 = x79

x48 = x112 x49 = x113 x50 = x114 x51 = x115

x52 = x116 x53 = x117 x54 = x118 x55 = x119

x56 = x24 x57 = x25 x58 = x26 x59 = x27

x60 = x28 x61 = x29 x62 = x30 x63 = x31

x64 = x64 x65 = x65 x66 = x66 x67 = x67

x68 = x68 x69 = x69 x70 = x70 x71 = x71

x72 = x104 x73 = x105 x74 = x106 x75 = x107

x76 = x108 x77 = x109 x78 = x110 x79 = x111

x80 = x16 x81 = x17 x82 = x18 x83 = x19

x84 = x20 x85 = x21 x86 = x22 x87 = x23

x88 = x56 x89 = x57 x90 = x58 x91 = x59

x92 = x60 x93 = x61 x94 = x62 x95 = x63

x96 = x96 x97 = x97 x98 = x98 x99 = x99

x100 = x100 x101 = x101 x102 = x102 x103 = x103

x104 = x8 x105 = x9 x106 = x10 x107 = x11

x108 = x12 x109 = x13 x110 = x14 x111 = x15

x112 = x48 x113 = x49 x114 = x50 x115 = x51

x116 = x52 x117 = x53 x118 = x54 x119 = x55

x120 = x88 x121 = x89 x122 = x90 x123 = x91

x124 = x92 x125 = x93 x126 = x94 x127 = x95

(iii) MixColumn. MixColumn in AES is defined as follows:
B′i
B′i+1

B′i+2

B′i+3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



Bi
Bi+1

Bi+2

Bi+3


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If we take B′15 as an example, we get

B′15 = 03 ·B12 +B13 +B14 + 02 ·B15

Write B12, B13, B14, B15 as polynomial as follows

B12 = b96x
7 + b97x

6 + b98x
5 + b99x

4 + b100x
3 + b101x

2 + b102x+ b103

B13 = b104x
7 + b105x

6 + b106x
5 + b107x

4 + b108x
3 + b109x

2 + b110x+ b111

B14 = b112x
7 + b113x

6 + b114x
5 + b115x

4 + b116x
3 + b117x

2 + b118x+ b119

B15 = b120x
7 + b121x

6 + b122x
5 + b123x

4 + b124x
3 + b125x

2 + b126x+ b127

The prime polynomial of AES is x8 + x4 + x3 + x+ 1, then we can calculate

03 ·B12 = (x+ 1)(b96x
7 + b97x

6 + b98x
5 + b99x

4 + b100x
3 + b101x

2 + b102x+ b103)

= b96x
8 + (b96 + b97)x7 + (b97 + b98)x6 + (b98 + b99)x5 + (b99 + b100)x4

+ (b100 + b101)x3 + (b101 + b102)x2 + (b102 + b103)x+ b103

= (b96 + b97)x7 + (b97 + b98)x6 + (b98 + b99)x5 + (b99 + b100 + b96)x4

+ (b100 + b101 + b96)x3 + (b101 + b102)x2 + (b102 + b103 + b96)x+ (b103

+ b96)

and

02 ·B15 = x(b120x
7 + b121x

6 + b122x
5 + b123x

4 + b124x
3 + b125x

2 + b126x+ b127)

= b120x
8 + b121x

7 + b122x
6 + b123x

5 + b124x
4 + b125x

3 + b126x
2 + b127x

= b121x
7 + b122x

6 + b123x
5 + (b124 + b120)x4 + (b125 + b120)x3 + b126x

2

+ (b127 + b120)x+ b120

If we denote B′15 = b′120x
7 +b′121x

6 +b′122x
5 +b′123x

4 +b′124x
3 +b′125x

2 +b′126x+b′127, then

the corresponding coefficients are equal, and the following equation can be obtained:

b′120 = b96 + b97 + b104 + b112 + b121

b′121 = b97 + b98 + b105 + b113 + b122

b′122 = b98 + b99 + b106 + b114 + b123

b′123 = b99 + b100 + b107 + b115 + b124 + x96 + x120

b′124 = b100 + b101 + b108 + b116 + b125 + x96 + x120

b′125 = b101 + b102 + b109 + b117 + b126

b′126 = b102 + b103 + b110 + b118 + b127 + x96 + x120

b′120 = b103 + b111 + b119 + x96 + x120

The ANF of other bytes can be obtained similiarly.

Then we describe how to get the ANF used to describe a full round, where the full round

means the rounds include mixColumn, this technology can also be applied to the final round.

Denote the input and output of a round as B = (b1, · · · , b128) and B′ = (b′1, · · · , b′128),

respectively, we have

B′ = MixColumn(ShiftRow(SubBytes(B)))
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If we take b′0 as an example, the ANF of mixColumn of b′0 is

b′0 = b9 + b16 + b8 + b1 + b24

the ANF of shiftRow of b9, b16, b8, b1, b24 are

b9 = b41 b16 = b80 b8 = b40 b1 = b1 b24 = b120

then the ANF of b′0 becomes

b′0 = b1 + b40 + b41 + b80 + b120

we can finally substitute the ANF of subBytes of b1, b40, b41, b80, b120 to get the ANF of b′0
which is used to describe a full round.

A.1.2 Boolean Encryption System of Key Schedule part

Fig. A.1. Key Schedule of AES-128

For AES-128, if we denote the initial key and the output of i− th round of key schedule as

K =


k00 k10 k20 k30

k01 k11 k21 k31

k02 k12 k22 k32

k03 k13 k23 k33


and

Ki =


ki00 ki10 ki20 ki30

ki01 ki11 ki21 ki31

ki02 ki12 ki22 ki32

ki03 ki13 ki23 ki33


respectively, denote the first element in round constant of i− th round as rconi[1], we can get

following equations which is used to describe the first column

k1
00 = k00 + S(k31) + rconi[1]
k1

01 = k01 + S(k32) + rconi[2]
k1

02 = k02 + S(k33) + rconi[3]
k1

03 = k03 + S(k30) + rconi[4]
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furthermore, the equation of second column can be represented as

k1
10 = k10 + k1

00

k1
11 = k11 + k1

01

k1
12 = k12 + k1

02

k1
13 = k13 + k1

03

using same technique, we can get all 128 equations which are used to describe one round of

key schedule.

A.2 Analyze Boolean Equation System

Plaintext
AddRoundKey

Introduce 128 new variables Generate 128 equations
SubBytes ShiftRow

Introduce 128 new variables Generate 128 equations
MixColumn

Introduce 128 new variables Generate 128 equations
AddRoundKey

Introduce 128 new variables Generate 128 equations
SubBytes ShiftRow

Introduce 128 new variables Generate 128 equations
MixColumn

Introduce 128 new variables Generate 128 equations
AddRoundKey

Introduce 128 new variables Generate 128 equations
SubBytes ShiftRow

Introduce 128 new variables Generate 128 equations
MixColumn

Introduce 128 new variables Generate 128 equations
AddRoundKey

Introduce 128 new variables Generate 128 equations
SubBytes ShiftRow

Introduce 128 new variables Generate 128 equations
MixColumn

Introduce 128 new variables Generate 128 equations
AddRoundKey

Introduce 128 new variables Generate 128 equations
SubBytes ShiftRow

Introduce 128 new variables Generate 128 equations
MixColumn

Introduce 128 new variables Generate 128 equations
AddRoundKey

Introduce 128 new variables Generate 128 equations
SubBytes ShiftRow

Introduce 128 new variables Generate 128 equations
MixColumn

Introduce 128 new variables Generate 128 equations
AddRoundKey

Introduce 128 new variables Generate 128 equations
SubBytes ShiftRow

Introduce 128 new variables Generate 128 equations
MixColumn

Introduce 128 new variables Generate 128 equations
AddRoundKey

Introduce 128 new variables Generate 128 equations
SubBytes ShiftRow

Introduce 128 new variables Generate 128 equations
MixColumn

Introduce 128 new variables Generate 128 equations
AddRoundKey

Introduce 128 new variables Generate 128 equations
SubBytes ShiftRow

Introduce 128 new variables Generate 128 equations
MixColumn

Introduce 128 new variables Generate 128 equations
AddRoundKey

Introduce 128 new variables Generate 128 equations
SubBytes ShiftRow

Introduce 128 new variables Generate 128 equations
AddRoundKey

Ciphertext Generate 128 equations

We can see that, 128 × 29 = 3712 variables are introduced to generate 128 × 30 = 3840

equations in the encryption part, in the key schedule part, 128 × 11 = 1408 variables are

introduced to generate 128 × 10 = 1280 equations. So there are totally 5120 variables and

5120 equations.

The equations can be divided into four parts according to their sparseness.
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(i) The key schedule part. There are 1280 equations with sparseness 16528× 10 = 165280.

(ii) The MixColumn part. There are 128 × 9 = 1152 equations with sparseness 732 × 9 =

6588.

(iii) The SubBytes and ShiftRow part. There are 128×10 = 1280 equations with sparseness

16208× 10 = 162080.

(iv) The AddRoundKey part. There are 128 = 1408 equations with sparseness no more

than 3 × 128 × 11 = 4224, because the plaintext and ciphertext are known and do not

increase sparseness.

So the total sparseness of this equation system is 338172. The complexity of solving this

equation system using BoolSol is

O((n+ T )2.5(n+ 4T )κ2log1/ε) = O(272.98κ2)

where we set ε = 1/100.


