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Spatial search occurs in a connected graph if a continuous-time quantum walk on the

adjacency matrix of the graph, suitably scaled, plus a rank-one perturbation induced by
any vertex will unitarily map the principal eigenvector of the graph to the characteristic

vector of the vertex. This phenomenon is a natural continuous-time analogue of Grover

search. The spatial search is said to be optimal if it occurs with constant fidelity and in
time inversely proportional to the shadow of the target vertex on the principal eigenvec-

tor. Extending a result of Chakraborty et al. (Physical Review A, 102:032214, 2020),

we prove a simpler characterization of optimal spatial search. Based on this characteri-
zation, we observe that some families of distance-regular graphs, such as Hamming and

Grassmann graphs, have optimal spatial search. We also show a matching lower bound
on time for spatial search with constant fidelity, which extends a bound due to Farhi

and Gutmann for perfect fidelity. Our elementary proofs employ standard tools, such as

Weyl inequalities and Cauchy determinant formula.

Keywords: Quantum walk, spatial search, spectral gap, perturbation.

1 Introduction

In the seminal work [1], Grover described a quantum algorithm with a provable quadratic speedup

for the ubiquitous search problem. It was realized later that his algorithm can be viewed as a

discrete-time quantum walk on the complete graph [2, 3]. In another fundamental work, Farhi and

Gutmann [4] proposed a continuous-time analog of Grover search. Their work was generalized

by Childs and Goldstone [5] to arbitrary graphs where the problem is known as spatial search.

Suppose G is an undirected and connected graph on n vertices with normalized adjacency

matrix A whose spectral decomposition is given by A =
∑d
r=1 θrEr, where 1 = θ1 > θ2 > . . . >
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Fig. 1. Grover search in continuous-time (see Farhi and Gutmann [4]): a continuous-time quantum
walk with H = γA(Kn) + eweTw can perfectly transfer the density matrix E1 = 1

n
Jn to the target

state eweTw, for some γ > 0, in time π
2

√
n. Here, ew denote the unit vector associated to vertex w

of the clique.

θd ≥ 0 and Er is the orthogonal projection onto the eigenspace corresponding to θr. We say G

has optimal spatial search if for any vector w (which may correspond to the characteristic vector

of a vertex of G), the continuous-time quantum walk

ρ(t) = e−itHρ(0)eitH

with the time-independent Hamiltonian H = γA + ww†, for a scaling factor γ > 0, maps the

density matrix ρ(0) = E1 to the target state ww† with a constant fidelity, that is,

f(t) := Tr(ww†ρ(t)) = Ωn(1),

in time t = On(1/ε1), where ε1 = ‖E1w‖ is the shadow of the target vertex on the principal

eigenspace of G.

Farhi and Gutmann [4] showed that the complete graphs have spatial search (which recovers

Grover’s result in the continuous-time setting). They also proved a time lower bound of Ωn(
√
n)

for any continuous-time quantum algorithm with unit fidelity on vertex-transitive graphs. As our

first result, we strengthen their time lower bound to Ωn(1/ε1) which holds for constant fidelity

(instead of perfect). This lower bound justifies the requirement that the optimal time is On(1/ε1).

Chakraborty et al. [6] observed a striking property: a constant spectral gap ∆2 is sufficient

for optimal spatial search. Here, ∆2 = θ1−θ2 is the distance between the two largest normalized

eigenvalues of the graph. In particular, this implies that random graphs exhibit spatial search

property almost surely. But, this does not explain why the n-cube has spatial search (studied by

Childs and Goldstone [5]) since the spectral gap vanishes as n grows.

Subsequently, Chakraborty et al. [7] improved the observation from [6] by showing a charac-

terization of optimal spatial search under the assumption of

ε1 �
S1S2

S3
and ε1 �

√
S2∆2, (1)

where Sk =
∑d
r=2 ‖Erw‖

2
(θ1 − θr)

−k, for k = 1, 2, 3, are spectral parameters related to the

graph G. Another crucial observation made in [7] is that S1 is the best choice for the scaling

parameter γ. As stated in [7], the unconditional characterization of graphs with optimal spatial

search is a longstanding open question.
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In this work, we improve the result of Chakraborty et al. [7] by showing a characterization of

optimal spatial search under the simpler assumption

ε1 �
√
S1∆2,

also under the choice of γ = S1. We show that our assumption is asymptotically similar to the

second condition in Equation (1) for the relevant ranges of interest. Our improvement is obtained

through tighter estimates on the leading eigenvalue perturbations derived from a determinant

formula of Cauchy. We also observe a critical condition (hidden in previous analyses) for the

strict interlacing between pairs of the two largest eigenvalues of the matrices, before and after

perturbation. For this, we explicitly require the second largest eigenvalue of the graph belong

to the eigenvalue support of the target vertex, and then appeal to Weyl inequalities to provide

strict interlacing.

We then apply the characterization to provide new examples of graphs with optimal spatial

search and to offer alternative proofs for existing families. For example, we observe that the

Hamming graphs H(n, q), for any constant q, have optimal spatial search. As a special case, this

include the binary n-cube H(n, 2) which was observed by Childs and Goldstone [5]. For another

example, we observe that strongly regular graphs have optimal spatial search since they also

have constant spectral gap. This confirms the observation of Janmark et al. [8] obtained using

degenerate perturbation theory.

For distance regular graphs with larger diameter, Wong [9] and then Tanaka et al. [10] proved

that the Johnson graphs J(n, k), for constant k ≥ 3, have spatial search. Since the constant

spectral gap condition holds for Johnson graphs, this provides an alternative and immediate proof

that they have optimal spatial search. Moreover, we also observe that Grassmann graphs and,

in fact, most bounded diameter distance-regular graphs with classical parameters have optimal

spatial search (see Figure 2). Both of these are again consequences of the constant spectral gap

condition.

Our original motivation for this work was to understand obstructions to optimal spatial

search. To this end, we found a collection of necessary conditions for spatial search which are

largely based on techniques used in [7]. Aside from being a crucial ingredient for proving the tight

characterization, these necessary conditions provide asymptotic explanations why certain families

of graphs lack the spatial search property. For example, they can be used to show explicitly why

cycles lack optimal spatial search – a well-known folklore result. These conditions can potentially

be adapted to other classes such as a small Cartesian product of cycles.

The proofs we employ are elementary as they only use basic tools from matrix theory which

do not appeal to perturbative methods. We nevertheless adopt standard asymptotic arguments

commonly used in random graphs and complexity of algorithms.

2 Background

We assume the standard inner product 〈v, w〉 over Cn. All vectors are assumed normalized under

the 2-norm defined by ‖w‖ =
√
〈w,w〉. The set of all n × n matrices with complex entries is

denoted Matn(C). As with vectors, we define the 2-norm of a matrix as ‖A‖ =
√
〈A,A〉, where

〈A,B〉 = Tr(A†B) is the inner product between matrices. The spectrum Spec(A) of a matrix A

is the set of its eigenvalues. In this work, we will focus primarily on Hermitian matrices whose

eigenvalues are guaranteed to be real. We adopt the notation λi(A) to represent the ith largest
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eigenvalue of the matrix A. We call a Hermitian matrix normalized if its spectrum lies in [0, 1]

and 1 is a simple eigenvalue; so, in this case 1 = λ1(A) > λ2(A) ≥ . . . ≥ λn(A) ≥ 0.

In stating the spectral decomposition of a Hermitian matrix, say A =
∑d
r=1 θrEr, we always

assume the distinct eigenvalues are listed in decreasing order, that is, θ1 > θ2 > . . . > θd. Recall

that Er is the orthogonal projection onto the eigenspace corresponding to eigenvalue θr where

Er is Hermitian with E2
r = Er,

∑d
r=1Er = I, and ErEs = Er if r = s and is 0 otherwise. The

eigenvalue support of a vector w ∈ Cn with respect to A is defined as

SuppA(w) = {θr : ‖Erw‖ 6= 0}, (2)

which is the set of eigenvalues whose eigenspaces are not fully contained in the subspace w⊥. For

each positive integer k, we let

Sk =
d∑
r=2

‖Erw‖2

(θ1 − θr)k
. (3)

These are spectral parameters which will play an important role in characterizing optimal spatial

search. They originally appeared in Childs and Goldstone [5]. Further background on matrix

theory may be found in Horn and Johnson [11].

Asymptotics We use the standard asymptotic notation to compare the relative order of mag-

nitude of two sequences of numbers fn and gn depending on a parameter n → ∞. Our main

source is Janson et al. [12]. We assume fn, gn > 0 for sufficiently large n. We write:

• fn . gn or fn = On(gn) as n→∞ if there exist constants c, n0 > 0 such that fn ≤ cgn for

n ≥ n0.

• fn & gn or fn = Ωn(gn) as n→∞ if there exist constants c, n0 > 0 such that fn ≥ cgn for

n ≥ n0.

• fn � gn or fn = Θn(gn) as n→∞ if fn = On(gn) and fn = Ωn(gn).

• fn � gn or fn = on(gn) if fn/gn → 0 as n→∞.

• fn � gn or fn = ωn(gn) if gn/fn → 0 as n→∞.

• fn ∼ gn if fn/gn → 1 as n→∞.

We omit the expression “as n→∞” when it is clear from context. Given that most results are

asymptotic, we assume that n is sufficiently large without explicitly stating this.

Our focus is on a family of graphs {Gn}∞n=1 instead of individual graphs, and hence most

assertions are asymptotic in nature and will depend on n as it tends to ∞. When it is clear, we

simply write Gn for the family of graphs, and even simply G if n is understood from context.

Given a graph G = (V,E) that is undirected, its adjacency matrix A(G) is a matrix whose (u, v)-

entry is 1 if (u, v) ∈ E, and is 0 otherwise. In this work, we will allow the adjacency matrix be

a Hermitian matrix whose nonzero entries are complex valued, and will denote it as H(G). For

example, this may include the case of signed graphs (±1 entries) or complex oriented graphs (±i
entries).
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A continuous-time quantum walk on G with a Hermitian adjacency matrix H(G) is governed

by the Schrödinger equation defined by

ρ′(t) = −i[H(G), ρ(t)] (4)

where ρ(t) is a positive semidefinite matrix of unit trace (also called a density matrix). Here,

[A,B] = AB − BA denotes the commutator of two matrices A,B ∈ Matn(C). The solution of

the above equation is given by

ρ(t) = e−itH(G)ρ(0)eitH(G).

We adopt the density matrix formulation of the Schrödinger evolution since it leads to simpler

analyses overall (as global phase factors disappear, for example) and it can be easily generalized

to more realistic settings. For more background on quantum information, please see Nielsen and

Chuang [13]

Given that spatial search is heavily influenced by the seminal work [1], in the rest of this

paper we will call a graph with the optimal spatial search property Groverian.

Definition 1 Let {Gn} be a family of graphs with normalized adjacency matrix H(Gn) where

E1 is the orthogonal projection onto its principal eigenspace. We say Gn is γ-Groverian if for

any w ∈ Cn with ‖E1w‖ 6= 0, the density matrix evolution defined by

ρ(t) = U(t)ρ(0)U(t)−1, with ρ(0) = E1,

where U(t) = exp(−it(γH(Gn) + ww†)), there is a time τ = On(1/ ‖E1w‖) so that the fidelity

satisfies

f(τ) := Tr(ww†ρ(τ)) = Ωn(1). (5)

The family of graphs is Groverian if it is γ-Groverian for some γ > 0.

The condition on time is the quadratic speedup requirement that is the hallmark signature of

Grover search. This is because the probability of measuring w given the state E1 is ‖E1w‖2, and

hence generating w has a geometric time of 1/ ‖E1w‖2.

For a spatial search algorithm to be fully constructive, most previous works require the graphs

be vertex transitive. This assumption was made in Farhi and Gutmann [4] and in Childs and

Goldstone [5]. This guarantees that the choice of the scaling parameter γ and the time t in

Definition 1 are not dependent on the vertex w. But, as pointed out by Meyer and Wong [14], we

can also allow graphs whose automorphism group has a constant number of orbits. They observed

that the search algorithm can simply check each orbit separately as most of the relevant spectral

parameters are constant within each orbita. Note that a vertex transitive graph has only a single

orbit. In this work, we will place the same assumption on our graphs.

Given that most of our statements hold for Hermitian matrices, we will view graphs largely

through their Hermitian adjacency matrices. To that end, we fix a convenient terminology to

capture a triplet of a Hermitian matrix, a unit norm vector and a positive scalar that will play

a central role in all of our assertions.

aA pertinent example given in [14] is the barbell graph obtained from connecting two disjoint cliques Kn by a
single edge; this graph has two orbits with sizes 2 and 2n− 2, respectively.
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Assumption 2 We call (H,w, γ) a tuplet if the following (notational) assumptions hold.

(a) H ∈ Matn(C) is a normalized Hermitian matrix whose spectral decomposition is H =∑
r θrEr. Recall that as H is normalized, its eigenvalues lie in [0, 1] and 1 is a simple

eigenvalue.

(b) w ∈ Cn is a vector with unit norm which satisfies ‖E1w‖ 6= 0 and ‖E1w‖ = on(1).

Whenever it is clear from context, we will use the abbreviated notation ε1 := ‖E1w‖.

(c) γ ∈ R is a positive scalar whereby the perturbed matrix γH +ww† has the spectral decom-

position
∑
p ζpFp.

3 Time Lower Bounds

We motivate the condition on time in Definition 1. Farhi and Gutmann [4] proved that spatial

search with fidelity 1 on a vertex-transitive graph requires time Ωn(
√
n). We extend their result

to show a time lower bound of Ωn(1/ε1) for constant fidelity which applies to arbitrary graphs.

Note that ε1 = 1/
√
n for vertex-transitive graphs whenever w denote the characteristic vector of

a vertex. This matching lower bound justifies the choice of the optimal time.

Theorem 1 Let (H,w, γ) be a tuplet where H is γ-Groverian at time τ . Then, τ = Ωn(1/ε1).

Proof. The first part of the proof follows [4] but in the density matrix language. Let Hw =

H0 + ww†, where H0 = γH. We compare two density matrix evolutions given by

ρ′w(t) = −i[Hw, ρw(t)], ρ′0(t) = −i[H0, ρ0(t)] (6)

with ρw(0) = ρ0(0) = E1. Note ρ0(t) = E1 for all t. Assume for now that the fidelity is one or

ρw(τ) = ww†. We will remove this assumption later.

The proof proceeds by analyzing bounds on ‖ρw(t)− ρ0(t)‖2. First, by taking derivative, we

have
d

dt
‖ρw(t)− ρ0(t)‖2 = −2〈ρw(t), ρ0(t)〉′.

From the product rule and Equation (6), we see that

〈ρw(t), ρ0(t)〉′ = 〈ρw(t), ρ′0(t)〉+ 〈ρ′w(t), ρ0(t)〉
= i〈[Hw, ρw(t)], E1〉
= i〈w, [E1, ρw(t)]w〉.

Now, notice that

|〈w, [E1, ρw(t)]w〉| ≤ 2|〈w,E1ρw(t)w〉|, as |x†[A,B]x| ≤ 2|x†(AB)x|
≤ 2 ‖E1w‖ ‖ρw(t)w‖ , since |〈a, b〉| ≤ ‖a‖ ‖b‖
≤ 2ε1, because ‖ρw(t)w‖ ≤ 1.

Putting these together, we get ∣∣∣∣ ddt ‖ρw(t)− ρ0(t)‖2
∣∣∣∣ ≤ 4ε1.
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By the Fundamental Theorem of Calculus, we obtain

‖ρw(τ)− ρ0(τ)‖2 =

∫ τ

0

(
d

dt
‖ρw(t)− ρ0(t)‖2

)
dt ≤ 4ε1τ. (7)

Since ρw(τ) = ww†, we have ‖ρw(τ)− ρ0(τ)‖2 = 2(1− ε21), and therefore

1− ε21 ≤ 2ε1τ,

which yields the lower bound τ = Ωn(1/ε1).

Finally, we remove the assumption ρw(τ) = ww†. Suppose that
∥∥ρw(τ)− ww†

∥∥2 ≤ δ, for

some δ ∈ (0, 1). Our strategy is to reduce this case to the former case by using the following

inequality.

Fact 2 (Triangle Inequality for Squared Norm) For matrices A,B,C ∈ Matn(C),

‖A− C‖2 ≤ 2 ‖A−B‖2 + 2 ‖B − C‖2 .

Proof. Squaring the triangle inequality, we get

‖A− C‖2 ≤ ‖A−B‖2 + ‖B − C‖2 + 2 ‖A−B‖ ‖B − C‖ .

Now, observe 0 ≤ (‖A− C‖ − ‖B − C‖)2.

Applying Fact 2, we see that

2 ‖ρw(τ)− ρ0(τ)‖2 ≥
∥∥ww† − ρ0(τ)

∥∥2 − 2
∥∥ρw(τ)− ww†

∥∥2 ≥
∥∥ww† − ρ0(τ)

∥∥2 − 2δ.

Thus, we have

‖ρw(τ)− ρ0(τ)‖2 ≥ (1− ε21 − δ)

which can be combined with Equation (7) to obtain τ = Ωn(1/ε1).

4 Interlacing

We review some relevant tools from matrix theory and prove a few preliminary results.

4.1 Weyl Inequalities

A theorem of Weyl on eigenvalue interlacing is key to our analysis. Given that we restate the

theorem slightly, we prove it for completeness.

Lemma 1 (Subspace intersection, Lemma 4.2.3 in [11])

Let W1, . . . ,Wk be subspaces of Cn and let d = dimW1 + . . .+ dimWk − (k− 1)n. If d ≥ 1, then

dim(
⋂k
i=1Wi) ≥ d. In particular, there is a unit vector in W1 ∩ . . . ∩Wk.

Proof. Note that dim(W1 ∩W2) + dim(W1 +W2) = dimW1 + dimW2, which implies dim(W1 ∩
W2) ≥ dimW1 + dimW2−n. So, if dimW1 + dimW2−n ≥ 1, then W1 ∩W2 contains a nonzero

vector. The claim follows by induction.
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Theorem 3 (Weyl Interlacing, restatement of Lemma 4.3.1 in [11])

Let A,B be two n× n Hermitian matrices. For i = 1, . . . , n, we have

λi(A+B) ≤ λi−j(A) + λj+1(B), j = 0, . . . , i− 1 (8)

with equality if and only if there is v 6= 0 so that (A + B)v = λi(A + B)v, Av = λi−j(A)v, and

Bv = λj+1(B)v, and we have

λi+j(A) + λn−j(B) ≤ λi(A+B), j = 0, . . . , n− i (9)

with equality if and only if there is v 6= 0 so that (A + B)v = λi(A + B)v, Av = λi+j(A)v, and

Bv = λn−j(B)v.

Proof. For i = 1, . . . , n, let zi, xi, and yi be orthonormal eigenvectors of A, B, and A + B,

respectively, corresponding to their ith largest eigenvalues.

We define W1 = span{zi−j , . . . , zn}, W2 = span{xj+1, . . . , xn}, and W3 = span{y1, . . . , yi}.
Let d1 = dimW1 = n − i + j + 1, d2 = dimW2 = n − j, and d3 = dimW3 = i. Since

dim(W1 ∩W2 ∩W3) = d1 + d2 + d3− dim(W1 +W2 +W3) ≥ d1 + d2 + d3− 2n = 1, the subspace

W1 ∩W2 ∩W3 contains a nonzero vector v. For any nonzero v ∈W1 ∩W2 ∩W3, we have

λi(A+B) ≤ v†(A+B)v ≤ λi−j(A) + λj+1(B), for j = 0, . . . , i− 1. (10)

Equality is achieved for i, j if and only if there is a nonzero v ∈ W1 ∩ W2 ∩ W3 for which

(A+B)v = λi(A+B)v, Av = λi−j(A)v, and Bv = λj+1(B)v.

For the second inequality, observe that λi(−A) = −λn−i+1(A). Therefore,

−λn−i+1(A+B) = λi(−A−B) ≤ λi−j(−A) + λj+1(−B) = −λn−i+j+1(A)− λn−j(B) (11)

which implies

λn−i+j+1(A) + λn−j(B) ≤ λn−i+1(A+B). (12)

Now, rename n− i+ 1 to i and keep j (and hence n− i+ j + 1 to i+ j). This yields

λi+j(A) + λn−j(B) ≤ λi(A+B), for j = 0, . . . , n− i. (13)

Equality is achieved for i, j if and only if there is a nonzero v ∈ W1 ∩ W2 ∩ W3 for which

(A + B)v = λi(A + B)v, Av = λi+j(A)v, and Bv = λn−j(B)v with W1 = span{z1, . . . , zi+j},
W2 = span{x1, . . . , xn−j}, and W3 = span{yi, . . . , yn}.

Lemma 2 (Strict Interlacing) Let H be a normalized n × n Hermitian matrix with spectral

decomposition H =
∑
r θrEr. Let w ∈ Cn be a vector with unit norm where θ1, θ2 ∈ SuppH(w).

Then for any γ > 0, the two largest eigenvalues of γH+ww† are simple and they strictly interlace

the two largest eigenvalues of γH.

Proof. We apply Theorem 3 with A = γH and B = ww†. Note λ1(H) = λ1(ww†) = 1 are simple

eigenvalues, and λj(ww
†) = 0 for j = 2, . . . , n. From Equation (9), with i = 1 and j = 0, we get

λ1(γH) + λn(ww†) = λ1(γH) ≤ λ1(γH + ww†). (14)
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Similarly, from Equation (8), with i = 2 and j = 1, we get

λ2(γH + ww†) ≤ λ1(γH) + λ2(ww†) = λ1(γH). (15)

Both of the inequalities above are strict since λ1(H) is simple and E1w 6= 0 implies ww†z1 6= 0

where z1 is the principal eigenvector with z1z1
† = E1.

Next, we apply Theorem 3 with i = 2 and j = 0 in Equation (9), to get

λ2(γH) + λn(ww†) = λ2(γH) ≤ λ2(γH + ww†). (16)

Since θ2 ∈ SuppH(w), there exists an eigenvector z2 corresponding to λ2(H) so that ww†z2 6= 0.

For any nonzero vector v from the subspace W1∩W2∩W3 (as constructed in the proof of Theorem

3), with W1 = span{z1, z2}, we always have ww†z2 6= 0 and hence the inequality in Equation

(16) is strict.

4.2 Cauchy’s Equality

The next formula due to Cauchy can be derived from the determinant of bordered matrices (see

[11]).

Lemma 3 (Cauchy) For any n× n matrix A, any vectors x, y ∈ Cn, we have

det(A+ xy†) = det(A) + y†Adj(A)x. (17)

Moreover, if A is nonsingular, then

det(A+ xy†) = det(A)(1 + y†A−1x). (18)

We apply the above lemma to provide sharper estimates for the case when γ = S1 on the

locations of the two largest perturbed eigenvalues relative to the unperturbed principal eigenvalue.

Proposition 4 Let (H,w, S1) be a tuplet. Then

ε21 < ζ1 − S1 .
√
S1ε1. (19)

Moreover, if θ2 ∈ SuppH(w), then

0 < S1 − ζ2 .
√
S1ε1. (20)

Proof. Let H̃ = S1H+ww† and ∆r = 1−θr, for all r. Note that φ(H̃, t) = det((tI−S1H)−ww†).
Applying Lemma 3 and assuming mr is the multiplicity of θr, we get

φ(H̃, t) = det(tI − S1H)(1− w†(tI − S1H)−1w)

=

(∏
r

(t− S1θr)
mr

)(
1−

∑
r

‖Erw‖2

(t− S1θr)

)
.

The bound ζ1 − S1 > ε21 follows by verifying that φ(H̃, S1 + ε21) is negative. Observe that if

φ(H̃, S1 + β) > 0, then ζ1 − S1 ≤ β. We write the condition φ(H̃, S1 + β) > 0 as

1 >
∑
r

‖Erw‖2

S1∆r + β
=

ε21
β

+
∑
r 6=1

‖Erw‖2

S1∆r + β
.
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Because ∆r ≤ 1, for each r, it follows that (1 + β/S1)−1 is an upper bound for the sum∑
r 6=1 ‖Erw‖

2
/(S1∆r + β). So, to satisfy the previous inequality, it suffices to require

1 >
ε21
β

+
1

1 + β/S1
.

After straightforward calculations, we obtain β2 − ε21β − S1ε
2
1 > 0. The roots of this quadratic

equation are given by

β± =
1

2
(ε21 ±

√
ε41 + 4S1ε21).

The positive root is given by β+ = On(
√
S1ε1), since ε1 � 1, which proves Equation (19).

We denote δ− = ζ2 − S1. By Lemma 2, |δ−| > 0. Now, observe that if φ(H̃, S1 − β) > 0 then

|δ−| ≤ β. As above, we write the condition φ(H̃, S1 − β) > 0 as

1 <
∑
r

‖Erw‖2

S1∆r − β
= −ε

2
1

β
+
∑
r 6=1

‖Erw‖2

S1∆r − β
.

This yields ∑
r 6=1

‖Erw‖2

S1∆r

1

1− β/(S1∆r)
> 1 +

ε21
β
.

As ∆r ≤ 1, for r ≥ 2, we note that 1/(1 − β/S1) is a lower bound for the expression on the

left-hand side. Therefore, we may require instead

1

1− β/S1
> 1 +

ε21
β

which simplifies to β2 + ε21β − S1ε
2
1 > 0. The maximum root of the quadratic polynomial is

given by

β =
1

2
(−ε21 +

√
ε41 + 4S1ε21) ∼

√
S1ε1

which proves Equation (20).

5 Necessary Gaps

We describe necessary conditions for graphs to be Groverian, but first we derive some useful

preliminary observations. Our analysis borrows heavily ideas from Chakraborty et al. [7].

We start by restating the machinery in [7] (specifically, Theorem 4) using our notation for

the sake of consistency and to point out certain explicit assumptions that are required. Given a

tuplet (H,w, γ), for each p, we have (γH + ww†)Fp = ζpFp or

ww†Fp = (ζpI − γH)Fp, (21)

which implies

‖Fpw‖2 w = (ζpI − γH)Fpw. (22)

If ζp 6∈ Spec(γH) holds, it clearly guarantees

Fpw

‖Fpw‖2
= (ζpI − γH)−1w, (23)
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which further yields
1

‖Fpw‖2
=
∑
r

‖Erw‖2

(ζp − γθr)2
. (24)

Moreover, Equation (23) yields an expression of unity

1 =

d∑
r=1

‖Erw‖2

ζp − γθr
. (25)

Returning to Equation (22), after multiplying both sides by E1, we derive

‖Fpw‖2E1w = (ζp − γ)E1Fpw. (26)

By Theorem 3, since ‖E1w‖ 6= 0, we have strict interlacing where ζ2 < γ < ζ1. Furthermore,

γ 6= ζr, for all r = 1, . . . , n. This allows us to write

E1Fpw =
‖Fpw‖2

ζp − γ
E1w, p = 1, . . . ,m. (27)

Now, analyzing the fidelity of the quantum walk with the Hamiltonian H̃ = γH + ww†, we

get

f(t) = Tr(ww†e−itH̃E1e
itH̃) =

∑
p,q

e−it(ζp−ζq)w†FpE1Fqw. (28)

After expanding w†FpE1Fqw to (w†FpE1)(E1Fqw) since E2
1 = E1, we use Equation (27) to

substitute E1Fqw and (E1Fpw)† to get

f(t) =
∑
p

e−itζp
‖Fpw‖2

ζp − γ
∑
q

eitζq
‖Fqw‖2

ζq − γ
‖E1w‖2

since (w†E1)(E1w) = ‖E1w‖2. Thus,

f(t) = ε21

∣∣∣∣∣∑
p

e−itζp
‖Fpw‖2

(ζp − γ)

∣∣∣∣∣
2

. (29)

By triangle inequality, the above becomes

f(t) ≤ ε21

(∑
p

‖Fpw‖2

|ζp − γ|

)2

. (30)

Finally, from Equation (29) at the time of origin t = 0, we get another expression of unity,

1 =

∣∣∣∣∣∣‖F1w‖2

ζ1 − γ
−
∑
p≥2

‖Fpw‖2

γ − ζp

∣∣∣∣∣∣ (31)

since the first term ‖F1w‖2 /(ζ1−γ) and the subsequent terms ‖Fpw‖2 /(ζp−γ), for p ≥ 2, differ

in sign because ζ1 > γ > ζp. As |A − B| ≥ |A| − |B| by triangle inequality, the last equation

immediately implies the following pair of inequalities:∑
p≥2

‖Fpw‖2

γ − ζp
≤ ‖F1w‖2

ζ1 − γ
+ 1,

‖F1w‖2

ζ1 − γ
≤
∑
p≥2

‖Fpw‖2

γ − ζp
+ 1. (32)
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Using the above, we are ready to observe some necessary conditions for a graph G to be

Groverian. In the next theorem, we show some conditions on ε1 in relation to the eigenvalue

gaps between the largest unperturbed eigenvalue of γH(G) and the perturbed eigenvalues ζm of

γH(G) + ww†. In particular, for a graph G to be Groverian, ε1 must be asymptotically equal

to the first gap δ+ := ζ1 − γ, it must be asymptotically greater or equal to the second gap

δ− := γ − ζ2, and it must be asymptotically equal to some gap γ − ζp, for some p ≥ 2, but not

necessarily the second gap. Recall that by strict interlacing, we know that γθ2 < ζ2 < γ < ζ1,

where θ2 is the second largest eigenvalue of H(G).

The first two observations in the following theorem are implicit in the proof of Theorem 4 in

[7] but it will be useful to restate them in our notation below. The third observation appears to

be new.

Theorem 5 For a tuplet (H,w, γ), suppose one of the following conditions holds:

(i) ε1 6� ζ1 − γ (equivalently, ε1 � ζ1 − γ or ε1 � ζ1 − γ), or

(ii) ε1 � γ − ζ2, or

(iii) γ − ζp−1 � ε1 � γ − ζp, for some p ≥ 3.

Then, H is not γ-Groverian.

Proof. We treat each condition as a separate case.

Case (i): Denote δ+ := ζ1−γ and assume that δ+ 6� ε1. From Equation (30), we apply Equation

(32) to obtain the following upper bound

f(t) ≤ ε21

(
2 ‖F1w‖2

δ+
+ 1

)2

=

(
2
ε1
δ+
‖F1w‖2 + ε1

)2

, (33)

which shows that fidelity goes to zero if ε1 � δ+. For the opposite direction, apply Equation

(24) with p = 1 to get

1

‖F1w‖2
=

d∑
r=1

‖Erw‖2

(ζ1 − γθr)2
.

But, the sum is bounded from below by its first term, and so ‖F1w‖2 ≤ δ2
+/ε

2
1. Returning to

Equation (33) and using the preceding upper bound,

f(t) ≤
(

2δ+
ε1

+ ε1

)2

, (34)

which shows that fidelity goes to zero if δ+ � ε1.

Case (ii): Let δ− := ζ2 − γ. We start with Equation (30) and use Equation (31) to rewrite a

term in the upper bound as

∑
p

‖Fpw‖2

|γ − ζp|
≤ 1 + 2

∑
p≥2

‖Fpw‖2

γ − ζp
≤ 1 + 2

(1− ‖F1w‖2)

|δ−|
, (35)
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since |δ−| ≤ γ − ζp for each p ≥ 2. Thus, we derive an upper bound on the fidelity,

f(t) ≤
(

2ε1
|δ−|

(1− ‖F1w‖2) + ε1

)2

, (36)

which shows that fidelity tends to zero if ε1 � |δ−|.

Case (iii): Starting with Equation (21), after multiplying by E1, we derive

E1ww
†Fp = (ζp − γ)E1Fp.

Taking a product with itself but for index q, we get

ε21Fqww
†Fp = (ζq − γ)(ζp − γ)FqE1Fp.

Upon taking the trace, this yields

ε21 ‖Fpw‖
2

= (ζp − γ)2〈Fp, E1〉. (37)

By Equation (28), we have∑
p,q

e−it(ζp−ζq)w†FpE1Fqw =
∑
p,q

e−it(ζp−ζq)
ε1

(ζp − γ)

ε1
(ζq − γ)

‖Fpw‖2 ‖Fqw‖2 ,

where we have used Equation (27) twice (for both p and q). Now, note we may apply Equation

(37) to “flip” one of the ratios as follows:∑
p,q

e−it(ζp−ζq)
ε1

ζp − γ
ζq − γ
ε1

‖Fpw‖2 〈Fq, E1〉.

This allows us to partition the sums around m based on whether ε1 � ζp − γ or ε1 � ζp − γ. In

all cases, the corresponding terms tend to 0 as n→∞.

5.1 Failure around S1

We describe necessary conditions on γ relative to S1. First, we show failure whenever γ is too

large relative to S1 (which is an alternate restatement of the first half of Theorem 4 in [7]).

Theorem 6 For a tuplet (H,w, γ), if ε1S1 � γ − S1, then H is not γ-Groverian.

Proof. Starting with Equation (25) with p = 1, we see

1 =

d∑
r=1

‖Erw‖2

ζ1 − γθr
=

ε21
δ+

+

d∑
r=2

‖Erw‖2

γ(1− θr) + δ+
≤ ε21

δ+
+
S1

γ
.

After minor rearrangements, we obtain

δ+ ≤ ε21
γ

γ − S1
= ε21

(
1 +

S1

γ − S1

)
� ε1(1 + on(1)) (38)

which proves the claim by appealing to Theorem 5, case (i).

Next, we show failure conditions when γ is centered around S1. We will use this later to show

that cycles are not Groverian.
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Theorem 7 Let (H,w, γ) be a tuplet where there is a constant c > 0 so that ‖Erw‖ ≤ cε1,

for all r ≥ 2. Let

Iα = {r ≥ 2 : γ < εα1 (1− θr)−1}.

If γ = S1(1 + on(1)) and |Iα| ≥ 2c2, for some α ∈ (1, 2), then H is not γ-Groverian.

Proof. By Theorem 5, it suffices to show δ+ � ε1, where δ+ = ζ1 − γ. Let ∆r = 1 − θr.

Our plan is to prove δ+ = On(εα1 ) for the given α ∈ (1, 2). By Lemma 3, it is enough to show

φ(H, γ + εα1 ) > 0 or equivalently

1 >

d∑
r=1

‖Erw‖2

γ∆r + εα1
= ε2−α1 +

1

γ

∑
r≥2

‖Erw‖2

∆r + (εα1 /γ)
.

Let us focus on the last summation. After splitting the summation into two parts, we may bound

each part from above as follows,

∑
r≥2

‖Erw‖2

∆r + (εα1 /γ)
≤

∑
r≥2:

∆r<ε
α
1 /γ

‖Erw‖2

2∆r
+

∑
r≥2:

∆r≥εα1 /γ

‖Erw‖2

∆r
.

So, to prove the claim, it suffices to show that

1 > ε2−α1 +
1

γ

∑
r≥2

‖Erw‖2

∆r
− 1

2γ

∑
r≥2:

∆r<ε
α
1 /γ

‖Erw‖2

∆r
. (39)

Assume γ = S1 + β for some β = on(S1). Then, we require that

1 > ε2−α1 +
1

1 + (β/S1)

 1

S1

∑
r≥2

‖Erw‖2

∆r


︸ ︷︷ ︸

=1

− 1

2γ

∑
r≥2:

γ<εα1 /∆r

‖Erw‖2

∆r
, (40)

which is equivalent to

1

2γ

∑
r≥2:

γ<εα1 /∆r

‖Erw‖2

∆r
+ on(1) > ε2−α1 . (41)

Therefore, we may omit the on(1) term as it suffices to satisfy

1

2γ

∑
r≥2:

γ<εα1 /∆r

‖Erw‖2

∆r
> ε2−α1 or

∑
r≥2:

γ<εα1 /∆r

‖Erw‖2

ε21

εα1
γ∆r

> 2.

If ε1 ≤ c ‖Erw‖, for all r ≥ 2, the claim follows as |Iα| ≥ 2c2.
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5.2 Near Perfect Fidelity

When the fidelity is 1 − on(1), we show that the principal perturbed eigenspace must have a

significant overlap with the subspace spanned by the principal eigenspace and the target state.

Theorem 8 Let (H,w, γ) be a tuplet. If H is γ-Groverian with fidelity 1 − on(1), then the

principal eigenvector of γH + ww† is an equal superposition of w and the principal eigenvector

of H, up to on(1) terms.

Proof. Let z1 and y1 be the principal eigenvectors of H and γH + ww†, respectively. Thus,

E1 = z1z
†
1 and F1 = y1y

†
1. Starting with Equation (33) and then applying Equation (27) with

p = 1, we get

f(t) ≤ 4
‖F1w‖4

δ2
+

‖E1w‖2 = 4 ‖E1F1w‖2 = 4|〈y1, z1〉|2|〈y1, w〉|2.

If f(t) = 1 − on(1), we obtain 1 − on(1) ≤ 2|〈y1, z1〉||〈y1, w〉|. Since |〈y1, z1〉|2 + |〈y1, w〉|2 ≤
1 + on(1), we have 0 ≤ (|〈y1, z1〉| − |〈y1, w〉|)2 = on(1), which proves the claim.

6 Sufficient Gap

In this section, we prove our optimal characterization of S1-Groverian graphs under a simpler

assumption. First, we justify that the choice of γ = S1 is almost best possible. By Equation (25)

with p = 1, we have

1 =
ε21
δ+

+
∑
r 6=1

‖Erw‖2

δ+ + γ∆r
� ε1 +

∑
r 6=1

‖Erw‖2

δ+ + γ∆r

as ε1 � δ+ is a necessary condition due to Theorem 5(i). Recall that fn � gn denotes that fn
and gn are within constant factors of each other. Therefore,

1− ε1 �
1

γ

∑
r 6=1

‖Erw‖2

∆r

1

1 + (ε1/γ∆r)
.

If γ &
√
S1, since ε1 �

√
S1∆2, we have ε1/γ∆r = on(1). This shows

γ(1− ε1) �
∑
r 6=1

‖Erw‖2

∆r

1

1 + (ε1/γ∆r)
= S1(1 + on(1)).

As ε1 = on(1), we have γ � S1.

The next theorem is our main characterization for optimal spatial search for γ = S1.

Theorem 9 Let (H,w, γ) be a tuplet where θ2 ∈ SuppH(w). If ε1 �
√
S1∆2, then H is

S1-Groverian if and only if S2/S
2
1 � 1.

Proof. By Lemma 2, we know that ζ1 and ζ2 are simple and ζ1, ζ2 6∈ Spec(S1H). Therefore, let

y1 and y2 be their corresponding eigenvectors. Define δ+ = ζ1 − S1 and δ− = ζ2 − S1. Also, let

∆r = 1− θr. Using Equation (25) with p = 1, 2, we derive

1 =

d∑
r=1

‖Erw‖2

ζp − S1θr
=

ε21
δ±

+

d∑
r=2

‖Erw‖2

S1∆r

1

1 + δ±/(S1∆r)
. (42)
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Note (1 + α)−1 = 1 − α + α2(1 + α)−1 holds for all α 6= −1. Using α = δ±/(S1∆r), after

reorganizing and cancelling terms, we arrive at

ε21
δ2
±

=
1

S2
1

d∑
r=2

‖Erw‖2

∆2
r

S1∆r

δ± + S1∆r
. (43)

Thus far, this is similar to the first portion of the proof of Theorem 2 in [7]. But, now we exploit

the sharper estimates given by Proposition 4 which will considerably simplify the rest of our

proof.

Lemma 4 ε21/δ
2
± ∼ S2/S

2
1 .

Proof. Proposition 4 shows that |δ±| = On(
√
S1ε1), and as ε1 �

√
S1∆2, we get |δ±| � S1∆2.

Applying this to Equation (43) proves the claim.

Lemma 5 2ε21/δ
2
+ ∼ 1/ ‖F1w‖2 and 2ε21/δ

2
− ∼ 1/ ‖F2w‖2.

Proof. We apply Equation (24) to ζ1 and ζ2, and after some rearrangements, we get

1

‖Fpw‖2
=

ε21
δ2
±

+
1

S2
1

d∑
r=2

‖Erw‖2

∆2
r

1

(1 + δ±/(S1∆r))2
(p = 1, 2). (44)

Proposition 4 shows that |δ±| = On(
√
S1ε1), which combined with the assumption ε1 �

√
S1∆2

yields |δ±| � S1∆2. Applying this to Equation (44), we obtain

1

‖Fpw‖2
=

ε21
δ2
±

+
S2

S2
1

(1 + on(1)) ∼ 2ε21
δ2
±

(p = 1, 2), (45)

as ε21/δ
2
± ∼ S2/S

2
1 by Lemma 4.

The use of density matrices simplifies the proof of the following result as most arguments

involving phase factors are no longer necessary.

Lemma 6 If t = On(
√
S2/S1ε1), then f(t) = Ωn(S1/

√
S2).

Proof. By Equation (26), we have E1Fpw = ‖Fpw‖2E1w/(ζp − S1). For p = 1, 2, using Lemma

5 to replace ‖Fpw‖2, we obtain

‖E1Fpw‖ = ‖Fpw‖2
ε1
|δ±|

∼ |δ±|
2ε1

. (46)
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Let δ = (ζ1 − ζ2)/2. Then, the fidelity is given by

f(t) = Tr(ww†
∑
p,q

e−it(ζp−ζq)FpE1Fq)

=
∑
p,q

e−it(ζp−ζq)〈E1Fpw,E1Fqw〉

=
∑
p,q

e−it(ζp−ζq)ε21
‖Fpw‖2

ζp − S1

‖Fqw‖2

ζq − S1

=
1

2
(1− cos(2δt))

δ2

ε21
+ ε21

∑
p,q 6=1,2

e−it(ζp−ζq)
‖Fpw‖2

S1 − ζp
‖Fqw‖2

S1 − ζq

≥ δ2

ε21
, by setting t = π

2 δ
−1.

Now, note that δ = 1
2 (δ+ + |δ−|) � ε1.

We have shown that if S2
1/S2 = Θn(1) then H is S1-Groverian. It remains to show the

converse.

Lemma 7 If f(t) = Ωn(1), for some t = On(1/ε1), then S2/S
2
1 = Θn(1).

Proof. We prove the contrapositive. If S2/S
2
1 6� 1, or equivalently, ε21 6� δ2

+ by Lemma 4, then H

is not Groverian by Theorem 5(i). Note ε21 � δ2
+ if and only if ε1 � δ+.

Lemma 6 and 7 completes the proof of the theorem.

Remarks. We now compare Theorem 9 in the context of the known results in [6, 7]. Notice that

Theorem 9 implies the main result (Lemma 1) in Chakraborty et al. [6]. Their result requires

the constant gap condition ∆2 = Ωn(1) which is a stronger assumption because of the following

observation. In what follows, we denote ε2 = ‖E2w‖.

Fact 10 Suppose ε1 = on(1). If ∆2 = Ωn(1), then S1∆2 = Θn(1).

Proof. Note ε22 + ∆2(1 − ε21 − ε22) ≤ S1∆2 ≤ 1 − ε21. The upper bound S1∆2 = On(1) holds

immediately. If ε2 = on(1), then S1∆2 = Ωn(1) follows as ∆2 = Ωn(1). Otherwise, S1∆2 = Ωn(1)

holds from ε2 = Ωn(1).

We also note the following relation between S1 and S2 (which can be compared to Lemma 5

in [7]).

Fact 11 S2
1/S2 ≤ 1− ε21.

Proof. Consider a random variable Z where Z = 1/∆r with probability ε2r/(1 − ε21), for r =

2, . . . , d. Then, E[Z] = S1/(1− ε21) and E[Z2] = S2/(1− ε21). Now, E[Z2] ≥ E[Z]2 since variance

is always nonnegative.

Next, observe that S1 ≥ 1 − ε21. If S1 ≤ 1, then both S1 and
√
S1 are constant; otherwise,√

S1 ≤ S1. To summarize, it is clear that
√
S1 . S1 .

√
S2.

As for the main result in Chakraborty et al. [7], their theorem requires the assumption ε1 �
S1S2/S3 and ε1 �

√
S2∆2. In Theorem 9, we replace these two assumptions with a single
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assumption ε1 �
√
S1∆2. The latter assumption is only slightly stronger than ε1 �

√
S2∆2

since under the regime of interest, namely, S2/S
2
1 = Θn(1), they are asymptotically equivalent.

7 Examples

We analyze some examples of well-known families of graphs (see Figure 2). In order to simplify

the calculations, we normalize the matrices as H/ ‖H‖ which places the eigenvalues in [−1, 1]

(instead of [0, 1]). Since the two normalizations are equal up to a factor of 2, this will not affect

our asymptotic conclusions.

Graph Family Groverian? ε1 ∆2 S1 Comment

Clique Kn Yes n−1/2 1 1 ∆2 = 1

Expander Yes n−1/2 1 - ∆2 = 1

Strongly Regular Graph Yes n−1/2 1 - ∆2 = 1

Hamming H(n, q) Yes q−n/2 1/n 1 ε1 �
√
S1∆2

Johnson J(n, k) Yes n−k/2 1/k 1 ∆2 = 1

Grassmann Gq(n, k) Yes q−k(n−k)/2 1− 1/q - ∆2 = 1
Distance Regular Graph with

classical parameters (d, q, α, β) Yes 1/
√
|V (G)| 1− 1/q + α/qβ - ∆2 = 1

Cycle Cn No n−1/2 n−2 n ε1 6�
√
S1∆2

Fig. 2. Examples of graph families and S1-Groverian (or optimal spatial search) properties. As-

sume q, k, d are constants and α � β. The expressions involving ε1, ∆2, and S1 are asymptotic
in nature. Some entries are missing as they do not impact the property.

Cliques The normalized eigenvalues of Kn are 1 (with multiplicity 1) and −1/(n − 1) (with

multiplicity n− 1). So, cliques are Groverian (in fact, with fidelity 1) since ∆2 is constant. This

was, of course, the original observation of Farhi and Gutmann [4].

Expanders A graph G = (V,E) is called an (n, d, c)-expander if G has n vertices, maximum

degree d, and for each set of vertices W of size |W | ≤ n/2, we have |N(W )| ≥ c|W |, where

N(W ) is the set of vertices not in W but is adjacent to some vertex in W . Here, c is called the

expansion which is required to be constant. It is known that if G is d-regular on n vertices, then

it is a (n, d,∆2/2)-expander provided ∆2 = Θn(1) (see [15]). So, expanders are Groverian since

∆2 is constant. This is the main observation of Chakraborty et al. [6].

Strongly Regular Graphs A graph Gn is called strongly regular with parameter (n, k, a, c) if

it is a k-regular on n vertices where every pair of adjacent vertices have a common neighbors and

every pair of non-adjacent vertices have c common neighbors. Let θ1 > θ2 be the non-principal

eigenvalues. Then, k − c = θ1(−θ2), which implies θ1 = (k − c)/(−θ2). If Gn is primitive but

not a conference graph, then −θ2 ≥ 2. Therefore, θ1 ≤ (k − c)/2 < k/2. This shows that ∆2 is

constant. On the other hand, if Gn is a conference graph then k = (n−1)/2 and θ1 = (
√
n−1)/2

which implies ∆2 = 1 − on(1). Thus, strongly regular graphs are Groverian. This provides an

alternative proof of the result due to Janmark et al. [8].
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Fig. 3. Some distance-regular graphs that are Groverian: Hamming graphs H(n, q) and Grassmann

graphs Gq(n, k), where q and k are constants. Left: Hamming graph H(3, 3). Right: Grassmann

graph G2(4, 2).

Hamming graphs The Hamming graph H(n, q), with q is constant, has (Z/qZ)n as its vertices

where two n-tuples are connected if they differ in exactly one dimension. As H(n, q) has qn

vertices with eigenvalues θr = n(q − 1)− qr with multiplicity mr =
(
n
r

)
(q − 1)r, for r = 0, . . . , n,

we have ∆2 = q/n(q−1) ∼ 1/n and ε1 = 1/qn/2. Since S1 = Θn(1), the Hamming graph H(n, q)

is Groverian as ε1 �
√
S1∆2. To see why S1 = Θn(1), notice that

S1 =
1

qn

n∑
r=0

(
n

r

)
n(q − 1)

rq
(q − 1)r ∼ 1

qn

∑
r

(
n+ 1

r + 1

)
(q − 1)r � 1.

For the n-cube or H(n, 2), this was observed by Childs and Goldstone [5].

Johnson graphs The Johnson graph J(n, k) has as its vertices the set of k-subsets of {1, . . . , n},
denoted

(
[n]
k

)
, where two k-subsets A and B are connected if |A ∩ B| = k − 1. So, J(n, k) has(

n
k

)
vertices with eigenvalues θr = (k − r)(n− k − r)− r with multiplicity mr =

(
n
r

)
−
(
n
r−1

)
, for

r = 0, . . . , k. Notice ε1 = 1/
√(

n
k

)
∼ n−k/2 and

∆2 =
θ0 − θ1

θ0 − θk
=

n

k(n− k + 1)
∼ 1

k

which is constant if k is. As ∆2 = Ωn(1), this shows that J(n, k), for k ≥ 3, is Groverian. This

recovers the results of Wong [9] and Tanaka et al. [10].

Grassmann graphs The Grassmann graph Gq(n, k) has as its vertices the set of k-subspaces

of the vector space Fnq where two k-subspaces A and B are connected if dim(A∩B) = k− 1. We

assume n ≥ 2k. The number of vertices of Gq(n, k) is

N =

[
n
k

]
q

∼ qk(n−k).
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The eigenvalues are given by

θr = qr+1

[
k − r

1

]
q

[
n− k − r

1

]
q

−
[
r
1

]
q

∼ qn−r−1

with multiplicity

mr =

[
n
r

]
q

−
[

n
r − 1

]
q

,

for r = 0, . . . , k. Notice ε1 = 1/
√
N and the normalized eigenvalue gap is

∆2 = 1− θ1

θ0
∼ 1− 1

q
,

which is constant if q is. As ∆2 = Ωn(1), this shows that Gq(n, k), for k ≥ 2, is Groverian. Note

k = 1 recovers the cliques.

Distance-regular graphs with classical parameters The eigenvalues of distance-regular

graphs with classical parameters (d, q, α, β) are given in Jurǐsić and Vidali [16] (see Lemma 2).

In particular, θ0 = [d]qβ and θ1 = [d− 1]q(β − α)− 1, which implies

∆2 = 1− [d− 1]q(β − α)− 1

[d]qβ
∼ 1− 1

q
+

1

q

α

β

is constant provided α� β.

Cycles The results from Section 5 can be used to prove that cycles are not Groverian. The

normalized eigenvalues of Cn are given by θr = 1
2 (1 + cos(2π(r − 1)/n)), r = 1, . . . , n. Using

cos(x) ∼ 1 − x2/2, we have ∆r ∼ r2/n2, for small positive values of r. Since Cn is a circulant,

εr ∼ 1/
√
n for all r = 1, . . . , n. Note that

S1 =
1

n

n−1∑
r=1

1

1− cos(2πr/n)
∼ 2

∫ π−2π/n

2π/n

dx

1− cos(x)
= 2 cot(π/n) = Θn(n).

Next, we show spatial search fails as γ ranges over all values.

Case (i). γ = S1 + ωn(
√
n): Notice Theorem 6 applies since

√
n = ε1S1 � γ − S1 = ωn(

√
n).

Case (ii). γ = S1 ± on(n): Here, Theorem 7 applies since εα1 /∆r > S1 + β holds, for α ∈ (1, 2).

With |β| = on(n), evidently n−α/2 × n2 � cn± on(n).

Case (iii). γ = On(n): To apply Theorem 7, we rewrite Equation (39) as

1

2

∑
r≥2:

∆r<ε
α
1 /γ

ε2r
∆r

> γε2−α1 + S1 − γ, (47)

since γ > 0. Because γ = On(n), S1 = On(n), and ε1 = 1/
√
n, the right-hand side is at most

On(n). Next, we determine the set of indices r so that ∆r < εα1 /γ which are included in the

summation. The smallest the upper bound εα1 /γ can be is 1/n1+α/2. We have

∆r ∼
r2

n2
� 1

n1+α/2
, for r = On(1).
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Fig. 4. Sparsity is not a good indicator: for prime p, Cp is not Groverian, but Cp with the extra

“matching” x 7→ x−1 (mod p) is Groverian (as it is an expander, see Vadhan [17]). Left: C13.

Right: the nonsimple 3-regular expander C13 plus the modular inverse matching.

Thus, if we restrict the indices for which r ≤ B, for a large enough constant B, we get

∑
r≥2:

∆r<ε
α
1 /γ

ε2r
∆r

≥
B∑
r=2

ε2r
∆r

∼
B∑
r=2

n−1

r2n−2
= Ωn(n).

Thus, Equation (47) is satisfied provided B is large enough; whence spatial search fails.

8 Concluding remarks

In this work, we proved a simpler characterization of graphs with the optimal spatial search

property (therein called Groverian). This improves a previous characterization obtained by

Chakraborty et al. [7]. We applied this characterization to recover known results about some

families of Groverian graphs and also to find new families of Groverian graphs. Along the way,

we also proved a lower bound for spatial search on arbitrary graphs for constant fidelity. This

extends a known lower bound due to Farhi and Gutmann [4] which holds for vertex transitive

graphs and for fidelity that is one. We also developed a family of necessary conditions for a

graph to be Groverian. Our necessary conditions, which are built upon observations developed

by Chakraborty et al. [7], can be applied to provide rigorous proofs to show why some families

of graphs (for example, cycles) lack the spatial search property.

We conclude with some open questions from the present work:

1. Is the Groverian property determined by spectra? Moreover, is the condition ε1 �
√
S1∆2

necessary for optimal characterization?

2. Can a family of graphs be Groverian with non-constant S1? To the best of our knowledge,

all families of graphs known to be Groverian satisfy S1 = Θn(1).

3. When is the Groverian property (almost) periodic?
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4. How robust is the Groverian property against noise? Regev and Schiff [18] had ruled this

out for the discrete-time case.
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