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Quantum error correcting codes protect quantum computation from errors caused by
decoherence and other noise. Here we study the problem of designing logical operations
for quantum error correcting codes. We present an automated procedure that generates
logical operations given known encoding and correcting procedures. Our technique is to
use variational circuits for learning both the logical gates and the physical operations
implementing them. This procedure can be implemented on near-term quantum com-
puters via quantum process tomography. It enables automatic discovery of logical gates
from analytically designed error correcting codes and can be extended to error correct-
ing codes found by numerical optimization. We test the procedure by simulating small
quantum codes of four to fifteen qubits showing that our procedure finds most logical
gates known in the current literature. Additionally, it generates logical gates not found
in the current literature for the [[5,1,2]] code, the [[6,3,2]] code, the [[8,3,2]] code, and
the [[10,1,2]] code.
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1 Introduction

Quantum errors stem from undesired interactions with an outside environment. There are
many different interactions that may occur and their nature as well as their strength depend
on the particular hardware architecture. It was shown by Shor that despite the existence
of quantum errors, we can preserve quantum information by using quantum error correcting
codes [1]. The main idea is similar to what is done in classical error correction: redundancy
is introduced by encoding some number of qubits &k into a larger number of physical qubits n.
This is done by mapping the states of the k logical qubits into non-local degrees of freedom
of a highly entangled state of the physical qubits. A construction due to Calderbank, Shor
and Steane (CSS) generates a quantum code from two linear classical codes |2, 3].

In quantum computation, in addition to preserving quantum information, we need to
manipulate quantum states. This is done by using a small set of unitary operators called the
quantum gates. Quantum gates applied to the encoded qubits are called logical gates. As
the application of gates is prone to errors itself we would like to implement the logical gates
using shallow depth circuits, meaning that only a few gates are being applied to the physical
qubits to produce the logical gate. Finding such circuits is a major challenge in quantum error
correction and has thus far been done on a case-by-case basis. For example, codes which are
generated by the CSS construction (CSS codes) and encode a single logical qubit are known
to have a fault-tolerant CNOT gate: it can be implemented on two copies of the same code
by applying a CNOT between all pairs of physical qubits.

Here we apply the technique of variational circuit optimization to find fault tolerant logical
gates for a given quantum error correcting code. Variational circuits have been used to
parametrize wavefunctions, i.e. parametrize a unitary circuit transforming the |0) initial state.
This approach has been used successfully to perform quantum chemistry calculations on Noisy
Intermediate-Scale Quantum (NISQ) computers [1-8]. The popular basic building blocks,
called wunit cells, of these variational circuits are rotational gates R, R,, R, and CNOT
gates (see the nomenclature and notation section of Ref. [9] for a definition). The specific
mathematical properties of these gates makes optimizing the variational circuit relatively
easy [10, 11]. In our case, we propose using variational circuits to find fault-tolerant logical
gates for a given quantum error correcting code. Our procedure finds logical gates and their
quantum circuit implementations by numerically optimizing the variational circuit ansatz for
both logical gates and their physical implementations (Fig. 1).

Our procedure offers several benefits and much flexibility. The ansatz used for the physical
operation can be tailored to take advantage of the properties of a specific quantum computing
architecture. The ansatz for the logical gate is variational and thus our procedure automates
the discovery of logical gates given a quantum error correcting code. The procedure can also
target a specific logical gate when we fix the ansatz to this gate. Therefore, for stabilizer codes
and in particular for non-CSS codes, our procedure provides a straightforward first choice to
find logical gates. Furthermore, the procedure can be implemented on a quantum computer
using quantum process tomography and is resource friendly for quantum codes requiring a
small number of physical qubits. It is hence feasible for an implementation on near-term
quantum computers.

We note that in the literature, previous research has applied numerical optimization tech-
niques to the field of quantum error correction for different purposes. Work in Ref. [12-15]
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used optimization algorithms (mostly convex optimization algorithms) to find error correcting
quantum channels. Work in Ref. [16] demonstrated learning a circuit for preserving quantum
information using a variational ansatz circuit. In Ref. [17, 18] authors constructed quantum
error correcting codes using neural networks. There is also a body of research using neural
networks for decoding [19-23]. In this work, we applied similar optimization techniques to
the novel problem of finding logical operators for quantum error correcting codes.

Paper structure. In Section 2, we describe our procedure for finding logical gates. We
then discuss the numerical experiments on a classical computer where we apply the procedure
to several CSS codes and non-CSS codes in Section 3. We present in detail the experiment
configurations (ansatz circuit structure and optimization algorithm) and the logical gates
we found using our method. Among these results there are several new logical gates for
the [[5,1,2]] code, the [[6,3,2]] code, the [[8,3,2]] code, and the [[10,1,2]] code, which to our
knowledge have not appeared previously in the literature, and which we discuss in detail in
the Section 3.2. Finally, we make several comments on the benefits and disadvantages of our
procedure in Sec 4, where we mention specifically the scalability of our procedure. The new
logical gates we found are attached with this paper in the Supplementary Materials.

2 Method

Here we present the procedure to find circuits that implement logical gates for error correcting
codes. The procedure is inspired by the idea of circuit learning and uses ansatz circuits for
both the logical gate and the physical operations that implement this logical gate in the
encoded Hilbert space. Before we define this procedure, we first introduce the notation that
we use throughout this paper.

Commonly, an error correcting code encodes logical qubits (whose corresponding Hilbert
space will be denoted as Ha), into the subspace, denoted by L, of another Hilbert space
H' = Hy ® Hg. This mapping is unitary and is denoted as F : Hy — L C H'. We call G a
physical operation implementing the logical gate g if it is a unitary automorphism on L such
that E~YGE |[v) = g |¢) for states |¢) € Ha.

Now we present the procedure. We first describe how the procedure can be performed
via simulation on a classical computer, and we describe its extension to quantum computer
afterwards. On a classical computer, we simulate the encoding F, the physical operation, and
the inverse encoding E~!. While the encoding/inverse encoding circuit is fixed by the choice
of a particular error correcting code, we use ansatz circuits for both the physical operation G
and the logical gate g. For the physical operation we choose an ansatz that we know is fault-
tolerant for the code under consideration. In most cases this is just a transversal gate, i.e.,
a gate that does not couple physical qubits within the same code block. The ansatz for the
physical operation is variational and may map logical states outside the logical space. Because
of this possibility, we apply a projector onto the codespace after the physical operation.
This is achieved by measuring the stabilizer generators and applying a correction, where
the correction is the minimum weight error compatible with the observed syndrome. The
stabilizer measurements and corrections are simulated classically as a unitary circuit acting
on the extended Hilbert space H' ® Hg. Here the qubits in the Ho are all initialized to the
|0) state. We use a variational circuit as the ansatz for the logical gate, to enable automatic
discovery of logical gates for the quantum error correcting code. Alternatively, we can set a
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fixed unitary gate as the logical gate, and try to vary the ansatz for physical operation to find
an implementation for this unitary gate.

Our goal is to optimize the parameters for the ansatz circuits such that the for all possible
input quantum states, a physical operation G together with the encoding, syndrome removal,
and decoding circuit, act in the same way as a logical operation g (See Fig.1). Specifically,
we minimize a loss function £ defined by

L(O1,02) =Y (1= F (rmpeme (61:000il) 023X d2.1)). (1)

7

Here ¢} (¢2) is the output of the trial logical circuit (comparison circuit) (see Fig.1). The
input states {1;}» form a tomographically complete set (the particular set of states we used
in simulation is described in the Section 3.1). The trace (tr) is taken over the Hilbert space
Hp® Hg. For two quantum states p and o, we measure the distance between them by F(p, o).
In our case, we define F' to be the fidelity between two input density matrices:

Fip.o) = 5t [~ 0P 2)

When the minimization is successful and the average distance is zero excluding floating-point
errors, the procedure succeeds in finding a logical gate for this code.

Our method can be adapted to run on a quantum computer in order to find logical gates
for larger error correcting codes and to tailor the ansatz to the specific quantum comput-
ing architecture. We briefly outline such an extension here. The main change in regard to
the classical implementation concerns the encoding and inverse encoding circuits. Instead of
implementing a (non fault-tolerant) encoding circuit, we need a certain method of reliably
preparing encoded Pauli eigenstates on the quantum computer. Given these states, we apply
the logical operation ansatz in the same way as the classical implementation. We can also
implement an error correcting procedure after applying the logical operation ansatz. Finally,
instead of implementing the inverse encoding circuit, we envisage performing logical measure-
ments of the encoded states in the X, Y and Z bases. Using these measurement outcomes, we
perform logical state tomography [9, 24] on the output states, and compare the tomography
results with the unencoded states obtained via classical simulation, using an analogous loss
function to the one shown in Eq. (1).

The requirements of implementing our method on a quantum computer are relatively
minor, as long as the number of logical qubits in the code is modest. The only subroutines we
would need to implement on the quantum computer are: preparing encoded Pauli eigenstates,
applying a physical operation ansatz, and measuring Pauli observables. However, the number
of required logical Pauli measurements grow exponentially in the number of logical qubits,
which might be a bottleneck of our proposed method. Potentially one can redefine the distance
function F in the loss function (Eq. (1)) to be the infidelity between two density matrices, and
utilize a swap test [25, 26] for calculation of the loss function. Specifically, we may prepare in
another error-corrected quantum computer the unencoded states, and analogously calculate
the loss function in Eq. (1) by a cross-device swap test. We emphasize that our procedure
can be applied to any code that can prepare encoded Pauli eigenstates and measure Pauli
observables, i.e. it is not limited to qubit stabilizer codes.
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Fig. 1. Learning logical gates

To learn logical gates, we optimize angles 1 and 02 such that the trial logical circuit and the comparison
circuit perform effectively the same unitary as measured by our loss function £. Inside the trial logical
circuit (Fig. 1a), the encoding/inverse encoding circuit £/E" maps input states {wZ}le into/out of the logical
space. The ansatz G(61) performs a series of physical operations and the circuit C' performs the stabilizer
measurements and minimum weight error correction. In the comparison circuit (Fig. 1b), only the ansatz
circuit g(62) for the logical gate is performed. The whole procedure starts by randomly initializing the two
angles in both circuits, and then a tomographically complete set of quantum states are fed to the two
circuits as inputs. Their outputs are gathered and fed to the loss function £. The calculated loss function
values are fed to a minimization algorithm, which outputs new angles for §; and 2. Then we rerun the trial
logical circuit and the comparison circuit again and the whole loop continues until £ is zero excluding float
point errors, in which case the circuit G(61) will perform the logical gate g(02) on the encoded space.

3 Numerical experiments for small codes

We applied our procedure to a variety of small codes, as summarized in Table 1. Of particular
interest are the cases where non-Pauli logical gates were found by the experiment. In this
section, we first describe the detailed experimental configurations for all the numerical exper-
iments, and then we highlight the results of the experiments for the following codes: [[8,3,2]],
[8,2,2]], [[6,3,2]], and [|7,1,3]] surface code with a twist.

3.1 Ezxperiment configurations

Ansatz: We start with transversal ansatz for physical operations for most of the simulation
experiments shown on Table 1, except for the [[5,1,2]] code and the [[10,1,2]] code. A transver-
sal ansatz is a natural starting point for experimentation because it is naturally fault-tolerant.
A transversal ansatz is formed by using three single qubit rotation gates (Rj = e~97i/2 where
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Table 1.

variety of small quantum error correcting codes.

Summary of quantum gates found by our procedure using classical simulation for a

Code Logical gate found by Percentage of non-Pauli
the procedure gates
[14,1,2]] 127], [I8.2,3]] [24], Pauli group 0%
“&3’3” [ o ]a
[11,5.3]] [50], [[12.6,3]] [25],
[[13,7,3]] [25], [[14,8,3]] [25],
[[15,7,3]] [2, 30]
([4,2,2]] [32, 33] Pauli group, CNOT N/A
[[5,1,2]] [34] Pauli group, ST, H 71.4%
[[5,1,3]] (Five-qubit Pauli group, e”™/4SH, 88.0%
code) [35, 30] BT/ X HX ST,
e BTAXHXS, e "/*HST,
e~ mASTH e~ BT/ASXHX,
eBT/AST X HX
[[6,3,2]] [28] Pauli group, H12CZ12H;5 60.0%
[[7,1,3]] (Steane code) [2, 3]  Pauli group, Generators for N/A
the group generated by H
and S
[[7,1,3]] (Surface code with ~ Pauli group, 11.1%
a twist) [37] e BT/ASXHX,
eBT/ASTXHX
[[8,2,2]] (Projective plane Pauli group, CZ, 20.0%
2D color code) [38] H®2CZH®?, H®2SW AP
[[8,3,2]] [39, 40] Pauli group, CZ5, CZ3, 71.4%
CZy;, CCZ
[[10,1,2]] [34] Pauli group, ST, TT 51.6%

! The new logical gates we found, which have not been reported in the literature, are
highlighted in blue and in boldface. For these logical gates, the parity check matrix of
the corresponding quantum code and the physical operations which implement them are

provided in OpenQASM |

| format in the Supplementary Materials.

2 The exact experimental configuration and optimization algorithm we used is discussed in

Section 2.

3 We found a generating set of logical Pauli gates for the codes that we have labeled Pauli
group in the column Logical gate found by the procedure.
4 In the third column, we list the percentage of non-Pauli gates founded among all opti-
mization runs. Note that repeated discoveries of the same logical gate count towards the
percentage. Entries equal to ‘N/A’ are cases where we set the logical gate ansatz to specific

gates.
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{0;}j==,y,» are the three Pauli matrices) on each physical qubit, where each rotation gate has
its own angle that can be adjusted independently of other rotation gates. An illustration of
transversal ansatz is provided in Fig. 2. For the parameterization of the logical gate g(6s),
we use the ansatz that parametrizes an arbitrary unitary transformation on the Hilbert space
H 4. Denote the number of qubits in H4 as n,. When n, = 1, the ansatz is simply the three
single qubit rotation gates mentioned before. When n, = 2, the ansatz is the circuit shown
in Fig.2 in Ref. [42]. When n, = 3, we obtain a circuit parameterization for arbitrary three
qubit unitary gates using the QSD decomposition provided by Ref. [43]. It consists of 17 CNOT
gates and 69 single qubit rotation gates whose rotation angles can be adjusted independently.
A visualization of the circuit parameterization where the 69 parameters are labelled with
integers from 0 to 68 is available online [14]. When n, > 3, only the first three qubits are
selected on which we apply the three qubit ansatz mentioned previously. This is because the
exponential increase of the possible ansatz circuits makes experimentation infeasible.

The rationale behind our choice of ansatz for the different values of n, is the following. We
want to give our procedure as much freedom as possible in finding logical gates. Therefore,
the ansatz for the logical gate is always a parameterization of arbitrary unitary gates on n,
qubits. This way we make no assumptions about the structure of the code and the fault-
tolerant logical gates it admits. In addition, the parameterization is based on a gate library
consisting of single qubit rotation gates and fixed two qubit gates, which makes it possible
to use Rotosolve optimization algorithm. We expect that we would obtain similar results if
we used different parameterizations of arbitrary unitary gates as long as satisfy the condition
required by the Rotosolve algorithm, but we have not experimentally confirmed this.

Fig. 2. An illustration of a transversal ansatz on three qubits. It is formed by using three single
qubit rotation gates (R; = e~*%3/2, where {0;};j—zy,» are the three Pauli matrices) on each
physical qubit. Each rotation gate has its own angle that can be adjusted independently of other
rotation gates.

We note that for the experiments on the [[4,2,2]] code, the encoder used only encodes
one of the two logical qubits, and we only experimented on this logical qubits. In addition,
as an early stage proof of principle that our procedure can find entangling gates, we targeted
the logical gate CNOT for this code [[4,2,2]] in one experiment. In this experiment, we
encoded a pair of qubits in two copies of the [[4,2,2]] code (one encoded qubit per code).
We then used a transversal two-qubit gate ansatz, where each gate coupled corresponding
qubits in the different codes. Using this ansatz, we were able to find a transversal logical
CNOT gate between the codes. The physical operation that implemented this logical gate
is simply CNOT gates between corresponding qubits in the different codes. This shows that
our method is capable of finding gates acting between separate codes.

In the case of the [[5,1,2]] code, we used a non-transversal but still fault-tolerant ansatz
for the logical gate. Specifically, we used a transversal ansatz (as described above) for the
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Fig. 3. Loss function value as optimization progress step-by-step for the experiments for the code
[[5,1,2]]. The inset plot shows the percentage distribution of the logarithm of loss function value
L in the last optimization step.

first three of the qubits, and a parameterization of arbitrary two-qubit unitary gates for the
final two qubits. This choice of ansatz was motivated by the structure of the code in Ref. [34].
The fact that we found logical gates (including non-Pauli gates, see Table 1) using this ansatz
shows that our procedure can work well with ansatz circuits that are tailored to a particular
code.

Similarly, for the [[10,1,2]] code, we also used a non-transversal but still fault-tolerant
ansatz for the logical gate. Specifically, we used a parameterization for arbitrary three qubit
unitary gates (obtained by the QSD decomposition in Ref. [43][44]) on qubits numbered 4, 6,
and 8. We used a transversal ansatz (as described above) for the rest of the qubits.

Optimization: We used the algorithm Rotosolve [10] to minimize £. Rotosolve special-
izes in minimizing any function whose dependency with respect to any of its variables z is
a sine function of the form asin(x + b) + ¢, where a, b and ¢ are constants. One particular
function of this form is f(0) = (0| U(8)THU(6) |0), where U is the unitary transformation of
a quantum circuit containing constant unitary gates and variational rotation gates Rx, Ry,
and Rz. It is easy to see the loss function defined in Eq. (1) follows the same form up to a
constant if we consider trancina(|®2,:)¢2.|) to be the H, and g(62) to be the U.

To confirm the success of optimization, we have plotted the value of loss function £
(Eq. (1)) for 21 optimization runs with random independent initial parameters for the code
[[5,1,2]] in Fig. 3. For experiments on other codes, their loss function plots look similar. We
can observe in Fig. 3 that the loss function quickly got close to the minimal value with the help
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of Rotosolve optimization algorithm. We also note that the loss function values after the
final step are within the range (10~7,107%). For comparison, we calculated the loss function
L using decomposition of known logical gates in the literature and found £ € (10~7,1079).
Therefore, we can conclude that for L ~ 10~7 or 1075, the optimization is successful. We
also believe that for L € (1075,107%), the loss function can be further decreased if we allow
optimization process to run with more iterations. However, in this case, we took a different
but more economical approach, in which we stopped the algorithm, took the last angle 6,
to give ¢g(#1) and G(6;), found the closest analytical expression for g(¢;) and G(61), and
tested the loss function £ using the analytical expressions. Typically, we can find analytical
expression using common Clifford gates, and the loss function calculated is 0. This shows
that the optimization is only correcting for the numerical errors in the last few steps.

We note that for performance purposes, the simulation was carried out using proprietary
software written by the author H.C. for Rahko Ltd.

Tomographically Complete Set: For calculating the cost function in Eq. (1), we need
to provide the initial tomographically complete set of quantum states, since for any quantum
channel &, its action on the any quantum state p can be uniquely determined by its action
on a tomographically complete set {1; }:[9].

A straight-forward example of a tomographically complete set is {1;} such that the set
{|¢i)(¥i|}, spans the vector space of all density matrices. In our case, we only need a set
S1 = {|[¥i)¢i]},; of one-qubit states such that S; spans all 2 x 2 density matrices, since for
2™ x 2™ density matrices representing n-qubit states, tensor products of the same set S of
one-qubit states will span the vector space of all n-qubit states.

Now we try to construct S; from well-known quantum states. Consider the vector space
of one-qubit density matrices as a subspace of C*. When S spans the whole vector space C*,
clearly S; will span the smaller subspace of one-qubit density matrices. Then, it suffice to
check whether the elements of the set S;, when considered as vectors in C*, could span the
whole vector space C*.

Now we describe the six states, which we call the siz Bloch states, which we use as the
initial states for our experiments. These states are:

S = {10XO[, [, X =X [l | =a)(—i - (3)

It is easy to check that the six Bloch states, considered as six 4-dimensional vectors, span
the whole C* space, by checking the rank of the matrix formed by putting each of the six
density matrices into a column of the matrix. We have therefore used tensor products of the
six Bloch states to construct the tomographically complete set for inputs to our loss function
Eq. (1).

We note that with hindsight, we could have reduced the size of the tomographically com-
plete set for n-qubits from 6™ to 4™ by keeping only four out of the six Bloch states, i.e.
S1 = {|0X0], [IX1], [+ )X+, |+i)X+i]}. It is easy to check that this remaining four states also
span C*.

3.2 Illustrative results on small codes

From all the logical gates found in Table 1, we highlight the results for a few codes here.
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[[8,3,2]]: The [[8,3,2]] code is the smallest non-trivial 3D color code [39, 40]. We found three
transversal Clifford gates for this code which (to the best of our knowledge) have not previously
appeared in the literature: C'Z12, CZ13, and C'Zs3, where C'Z;; denotes a logical C'Z acting
on logical qubits ¢ and j. Our optimization procedure also provided a simple implementation
of these gates, which we now explain.

Logical gates in the [[8,3,2]] code can be understood geometrically. Suppose we place
qubits on the vertices of a cube, as shown in Fig. 4. The stabilizer group of the [[8,3,2]]
code can be generated by an operator consisting of Pauli-X operators acting on every qubit,
alongside operators that are associated with the faces of the cube, i.e. for each face, f, we have
an operator Il,¢crZ,, where Z, denotes a Pauli-Z operator acting on the qubit on vertex v.
With this definition, the logical X operators of the code are associated with the faces of the
cube (X = II,e¢ X, etc.) and the logical Z operators are associated with the edges of the
cube. We note that opposite faces support logical X operators that act on the same encoded
qubit, and the corresponding logical Z operators are supported on the edges linking these
faces.

To implement a logical ﬁij gate, we apply S = diag(1,4) and ST gates in an alternating
pattern to the vertices of a face that supports X . We show this operator in Fig. 4b and we
denote it by U. We now show that U implements a ﬁij gate: namely it maps X; to Yi7j7
and has no effect on all other logical operators. First, we note that all operators that consist
exclusively of Pauli-Z operators are unaffected by U because S and Z commute. Therefore,
Z-type stabilizers and logical Z operators are mapped to themselves by U. Next we consider
operators that contain Pauli-X, which are transformed by S as follows: SXST =Y =iXZ.
Consider the X stabilizer of the code (X on all the qubits). It is straightforward to see that U
maps this operator to a product of itself and a Z stabilizer associated with the face where we
applied U (the alternating pattern causes the factors of ¢ and —i to cancel). Finally, consider
X; (the blue face in Fig. 4b). This operator is mapped to a product of itself and a Z; operator
with support on an edge that links the X; faces (the green edge in Fig. 4b). Similarly, X is
mapped to X;Z;

In addition, our procedure found a transversal implementation of CCZ for the [[8,3,2]]
code. This gate was known previously [39, 40], however the fact that our procedure found a
non-Clifford gate (CCZ) with no prior knowledge about the structure of the code is notable.
It is often relatively straightforward to implement Clifford gates and Pauli measurements in
error correcting codes. Such operations are classically simulable, but they can be promoted
to universality by adding a single non-Clifford gate. However, codes with transversal non-
Clifford gates are rare, and understanding the structure of such codes is an active area of
research [38, 39, 45-47]. Most examples of constructions of code families with non-Clifford
gates exploit some specific structure of the code family, such as tri-orthogonality [48-50].
Our procedure may be capable of finding fault-tolerant non-Clifford gates for codes whose
structure is opaque to us. In particular, the structure of non-CSS codes with non-Clifford
gates is poorly understood, so our procedure may be able to shed some light on this area
given enhanced computational resources.

[[8,2,2]]: We successfully found non-Pauli gates for codes related to 2D color codes: the
[[8,2,2]] code (2D color code defined on a projective plane [38]) and the [[6,3,2]] code (subcode
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7 5
3/ 1 X3
X
(X2 |
8 6
4 2

Fig. 4. CZ gates in the [[8,3,2]] code. Qubits are placed on the vertices of the cube. In (a),
we highlight three logical X operators of the code, namely X1 = X3 X2X5Xg (red face), X2 =
X1X2X3X4 (blue face), and X3 = X1 X3X5X7 (green face). Three corresponding logical Z
operators are: Z1 = Z1Z3, Z2 = Z1Zs, and Z3 = Z1Z2. (b) Suppose that we apply S and ST to

the qubits on the red face. This unitary maps X2 (blue face) to X2Z3 (blue face and green edge).
Likewise, X3 is mapped to X3Z2. Therefore, this unitary implements a logical C'Zo3 gate.

of a 2D color code defined on a hexagon [51]). For the [[8,2,2]] code, we found the gates that
we would expect to find in a 2D color code with two logical qubits: logical C'Z implemented
by transversal S and ST, logical H®2C'ZH®? implemented by transversal v/ X f and logical
H®2SW AP implemented by transversal H. And we found that the [[6,3,2]] code inherits one

of the transversal gates of its parent 2D color code (the [[6,4,2]] code [51]): CZ;12 implemented
by transversal S and ST.

10)

| =)
| +)

)

Fig. 5. An illustration of the Clifford gate K111 = e!™/4SH. This gate maps [0) — |+i),
|[4+i) — |+), and |[+) — |0) (up to global phases). It can be understood geometrically by considering
an octahedron embedded in the Bloch sphere. The operation performed by the gate is a clockwise
rotation of 27r/3 around the axis normal to the face marked with a red circle. The |+) state is at
the front unlabeled vertex of the octahedron.

[[7,1,3]]: Our procedure also found transversal Clifford gates for the [[7,1,3]] surface code
with a twist. As was noted in [37], this code has transversal implementations of the octahedral
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Clifford gates, which are defined as follows:

T
3v3

where z,y,z € {—1,1} (See Fig. 5 for an illustration of K 1.1). These gates cyclically permute
the Pauli operators. We can decompose these octahedral gates into products of more familiar
Clifford gates as follows:

Kyy.= exp{i (X +yY + zZ)}, (4)

K11 =¢™*SH, K. 4 1=e ™/*HST
Ky 11 =¢"*HS, K 11 1 =e 48T,
Kig 1 =e®4XHXS K | 1, = ®/4SXHX,
K 11 =e®*XHXS, Ky 11 =e®/4STXHX.

(5)

The specific gates we found in our experiments were transversal realizations of K_; _;; and
Ky 1 1.

4 Discussion and Conclusion

Here we discuss a few interesting properties of our method, and point to some potential future
research directions.

4.1 Fault-tolerance of the logical gate

In general, the ansatz for logical circuit G (Fig. 1) is not guaranteed to be fault-tolerant. To
bring the quantum state after the logical circuit back to code space, we apply the additional
stabilizer measurement and minimal weight error correction procedure (C') in simulation.
To adapt to a quantum computer, we suggest implementing a version of C' using a fault-
tolerant error correction protocol [52-55], applying a recovery operator conditioned on the
error syndrome.

Interestingly, we find empirically that when the loss function is minimized, our procedure
finds fault-tolerant logical gates GG, which we verify by computing the action of G on the
logical states.

Still, it is possible that for other error correction codes, after optimization one will have
cases where the combined action of G and C'is a logical gate, while G itself is not. In nearly
all fault-tolerant logical gate constructions, error correction is applied immediately after a
logical gate and so we argue that the combined action of G and (a fault-tolerant version of)
C would constitute a fault-tolerant logical gate.

4.2 Resource estimate of our method

We should note that our method does not scale well to larger codes. For the calculation of
the loss function in Eq. (1), we require either the full process tomography of the encoded
logical space, using at least O(4*) quantum circuits, or a noise-resilient way to implement a
cross-device swap test between two quantum computers.

However, we still believe our method can have wide potential applications. First, many
families of quantum codes have a (small) constant k& (surface codes, color codes, quantum
Reed-Muller codes ete. [56, 57]). In addition, even for codes that do have k growing with
the number of physical qubits n, there is usually a symmetry relating the logical operators.
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This means we only need to apply our method to a single representative with respect to this
symmetry, effectively reducing k inversely proportional to the size of the symmetry group.

Therefore, this cost is benign when £ is small and can be further mitigated by running
these circuits in parallel. It is worth noting that in the classical simulations we have done,
one optimization usually converged in less than 5 hours running on a commercially available
GPU (Nvidia RTX 2080 Ti).

Also, due to the fact that transversal ansatz is mostly likely to be used as the ansatz for
logical gates, we expect a friendly linear growth of the number of parameters which we need
to optimize with respect to the number of physical qubits (n) in Eq. (1).

4.3 Potential future research

Firstly, our optimization benefits from the use of Rotosolve [10] optimization algorithm,
which depends largely on the fact that the functional dependency of the lost function in
Eq. (1) is sinusoidal due to the parametrized rotation gates we have used for the ansatz
circuits (see Section 3.1 for details and numerical performance). Adapting our procedure for
specific quantum computation hardware might require a different set of parametrized gates
and might invalidate the use of Rotosolve. In this case, other optimization algorithms will
be needed for finding the logical gates.

Also, it would be interesting to penalize Pauli gates or in general logical gates that have
been discovered previously during the optimization of the loss function in Eq. (1). Such a
penalty would violate the requirement of Rotosolve algorithm and is therefore not explored
here. For reference, we have estimated the percentage of non-Pauli gates we would expect
to observe (assuming that all gates have equal probability, see Table 1), by comparing the
number of the Pauli gates generated with the total number of the logical gates generated by
optimization runs found for a specific code. However, the number of experiments for each
code is rather small (< 40) for the purpose of estimating whether there is a bias towards
finding Pauli gates (Table 1).

Finally, a promising future research avenue would be to use our procedure to explore
quantum codes that have not been as extensively studied as qubit stabilizer codes. Qudit
quantum codes are a natural example, where a qudit is the d-dimensional analogue of a qubit.
The stabilizer formalism can be extended to prime (or prime power) qudits [58], which means
that it would be straightforward to generalize our procedure to these cases. Considerably less
research has been done into implementing logical gates in qudit stabilizer codes compared
with qubit stabilizer codes, so we may be able to find more unknown fault-tolerant gates in
the qudit context. In addition, we emphasize that our procedure is not limited to stabilizer
codes, and can be applied to non-stabilizer codes e.g. the codes described in Ref. [59].

In summary, we have proposed a procedure to automate the discovery of logical gates
using shallow quantum circuits for a given quantum error correcting code. The ansatz for the
logical gate can be tailored to a specific quantum computing architecture to take advantage
of this architecture. We have shown that it can find logical gates available in the current
literature for a number of error correcting codes and it additionally produces new logical gates
for the [[5,1,2]] code, the [[6,3,2]] code, the [[8,3,2]] code, and the [[10,1,2]] code. Although
the procedure is simulated classically, we have proposed an extension of this procedure for
quantum computers, and we believe an implementation on near-term quantum computers for
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error correcting codes requiring a few qubits is feasible.
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