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Temporal modes of photonic quantum states, intrinsically possess high dimensional
Hilbert spaces, provide a new framework to develop a robust free-space quantum key dis-

tribution (QKD) scheme in a maritime environment. We show that the high-dimensional
temporal modes can be used to fulfill a persistent communication channel to achieve high

photon-efficiency even in severe weather conditions. We identify the parameter regimes

that allow for a high-fidelity quantum information transmission. We also examine how
the turbulent environment affects fidelity and entanglement degree in various environ-

mental settings.
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1 Introduction

The past decades have seen a great deal of interest in photonic quantum communication [1]

from several motivations including the security of the quantum key distribution (QKD) in

the presence of environmental noise [2, 3, 4], the persistence of entanglement in terms of Bell

inequality violation [5], quantum network [6], and the transfer between flying qubits (photons)

and stationary qubits (atoms etc.) [7, 8]. From a more fundamental physics viewpoint,

the free-space quantum communication offers a great potential of distributing information

via photonic channels. In principle, unconditional security [9, 10, 11, 12] is is possible in

an idealistic case. However, in practice it has been shown in many realistic contexts for

deployment that the errors caused by noises or imperfections remain the major obstacles in

implementing a reliable long-distance quantum channel if the environmental factors are not

taken into account properly [3, 13, 14].

Several prominent quantum communication protocols have been focused on exploring the

aspects of photonic variables that allow efficient quantum state preparations, manipulations

and detections [2, 5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. For example, the photon

polarizations have been widely used in implementing quantum key distribution (QKD) scheme

in many interesting physical settings [2, 5]. However, apart from the well-known issues asso-

ciated with the photon generation, detection efficiency, and polarization imperfections, it also
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becomes clear that the low-dimensional states formed by photon polarizations may be vulner-

able to the effect of environmental noises. Hence, it may impose a limit on the capacity of the

free-space quantum communication channels when the associated environments become more

complicated. As such, recent research has extended to the high-dimensional spaces exploiting

the advantages of multi-state systems generally called qudits. In this context, several other

types of degrees of freedom of a single photon have been used to encode information including

orbital angular momentum (OAM) [15, 16, 17, 18, 19, 20], momentum-position[21], temporal

modes [22, 23, 24], and time-energy [25, 26, 27], to name a few. While the qudit systems

offer advantages in the photon information capacity with high levels of security, in practical

implementations, there are still some shortcomings to be overcome such as the reliable OAM

state generation and the perturbation sensitivity of scattering and absorption.

A maritime environment is notorious for causing various errors due to scattering, absorp-

tion, and turbulence. It is imperative that the focus of free-space quantum communication be

broadened to examine the feasibility of implementing high-dimensional photon states, which

are known to be sensitive to the atmospheric perturbation such as turbulence. In general,

the vulnerability of the photons in different frequency domains to the turbulence destruction

still remain under investigated. Most theoretical studies engaging photon free-space commu-

nication are usually conducted within the framework of weak scintillation, which cannot be

completely reliable if the near-sea-level implementation of the QKD scheme is needed. Sev-

eral approaches have been studied to overcome the reduction of implementation feasibility of

photon communication channel for high-dimensional angular OAM states in a maritime envi-

ronment, a focus on a systematic investigation on the temporal photonic mode propagation

in a turbulent scenario is clearly desirable.

In this paper, we will consider free-space temporal mode propagation encoded by either a

single photon or an entangled photon pair through a maritime environment. Our purpose is

to examine the robustness and practicality of implementing a QKD channel in the presence of

maritime noise sources such as scattering, absorption and turbulence. In particular, we will

employ the so-called infinitesimal propagation method to simulate the temporal mode prop-

agation in the atmospheric setting with varied turbulence strengths . We show by numerical

simulations that the temporal modes as the information carriers can be used to efficiently

generate quantum keys in certain frequency ranges even in the strong presence of turbulence.

We also identify some frequency ranges to be not an ideal choice for implementing a near-

sea surface quantum channel due to the scattering and absorption processes when a near-sea

surface implementation is needed.

The structure of the paper is organized as follows. First, in Sec. 2, we make a brief

summary of our numerical simulations on the feasibility of the frequency ranges in the optical

communication in a maritime environment when the scattering and absorption processes

are taken into account. Such a general survey is useful in putting our investigation into

perspective, and may be used to identify the frequency ranges that will underpin the persistent

photonic communication in a maritime environment. In Sec. III, we study the feasibility of

the temporal mode implementations under the influence of turbulence. We conclude in Sec.

IV., while some technical details are left in Appendix A.
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2 Photonic communication in a generic maritime environment

To begin, we first investigate through numerical simulations how a maritime environment

affects the photon propagation in various parameter regimes. For a free-space optical com-

munication system, there are many atmospheric factors that can significantly impact photon

propagation including scattering, absorption and turbulence. The previous work on study-

ing the free-space optical communication channels has shown that the environmental noises

may affect the photon propagation at every stage of the process, from the generation of

photons, propagation, to ultimately their detection by receivers. In particular, in the propa-

gation process, the loss of photons due to scattering or absorption may reduce the efficacy of

communication to such a level to make a reliable communication impossible. Therefore, the

successful implementation of a theoretical concept of optical communication protocol requires

a deeper understanding of how the photon beams with different wavelengths interacting with

an atmospheric environment.

Such an investigative survey through numerical simulations of pulsed photon beam prop-

agation in the maritime atmosphere will provide an useful picture about the environment-

system interaction as a whole, and will be the first step for pinpointing some optimal pa-

rameter regimes that underpin reliable high efficiency free-space communication. For this

purpose, we have tested and conducted a Monte-Carlo method to study the generic influence

of atmospheric aerosols on the photon communication in a maritime setting. For the pro-

cesses involving molecule scattering and absorption, we have used the 1976 U.S. Standard

atmospheric model [28]. Moreover, we have employed Mie scattering theory in our analysis

[29, 30] and we have extensively used the aerosol parameters from the Advanced Navy Aerosol

Model (ANAM) [31, 32].

Without loss of generality, we assume that the heights of the transmitter and receiver are

both at 19 m for a 30 km propagation range, the photon beams emitted at this height have

at least 1.36 m clearance from the ocean surface, therefore, the photon beams are, by and

large, well above the ocean waves in their propagation processes. Since the environmental

impacts caused by atmospheric extinction between the transmitter and receiver may have very

large variations, it is desirable to describe the dynamical processes beyond a naive statistical

average approach. Moreover, in order to make our numerical simulations more dependable

for the implementation of real-world quantum communication protocols, we have considered

a wide parameter range including high relativity humidity, large air mass parameters and

large wind speeds to reflect the severe weather conditions. The major findings based on

our numerical simulations are summarized in Fig. (1), which exhibits a paradigmatic case

involving a Gaussian beam with 10 km Rayleigh range, and the assumption that the receiver

is placed at zf = 30 km. Among many informative results, the simulations have indicated

that the wavelength at 3.95 µm is a desirable choice for the implementation of maritime

optical communication. The numerical survey has paved the way for further investigations

of the QKD implementation in a maritime environment. It should be emphasized, excluding

some wavelengths that are known to prone to the water absorption, that there exist other

wavelength ranges (e.g., 2−2.5 µm, 9−10 µm) that might be equally feasible for the maritime

QKD realization. However, transmittances of low wavelength ranges are not good candidates

in the low visibility (VIS) condition as shown in Fig. (1). For the high wavelength ranges,

one should note that the lack of a reliable long-wave length single photon source and the



236 High-dimensional temporal mode propagation in a turbulent environment

detection inefficiency are major reasons for hindering their applications. Throughout our

numerical simulations, we have selected
ωp

2 = 2πc
λ ≈ 477 THz as our center frequency.

Fig. 1. Near center transmittance of Gaussian beams with 10km Rayleigh length. Red: air mass

parameter p = 6, wind speed w = 10 m/s, height h = 20 m, relative humidity s = 0.8. Green: air
mass parameter p = 10, wind speed w = 10 m/s, height h = 19 m, relative humidity s = 0.95.

3 Photon propagation in a turbulence environment

3.1 Schmidt decomposition of bi-photon states

For implementing a quantum communication protocol, let us now consider, at the transmitter

part, a two-photon state, generated by a nonlinear crystal, represented by a Schmidt decom-

position. This situation under consideration is to assume that the down-converted beams are

constrained to be collinear with the pump beams through the use of pinholes. More explicitly,

a double-Gaussian spectral state may be written as [27],

|Ψ〉 =

√
2

πσaσb

∫
dω1

∫
dω2 exp

[
− (ω1 + ω2 − ωP )2

2σ2
a

]
· exp

[
− (ω1 − ω2)2

2σ2
b

]
|ω1〉|ω2〉 (1)

where σa is determined by the coherence time of the pump field, and σb is determined by the

phase matching bandwidth of the spontaneous parametric down-conversion (SPDC) source

[33]. For a typical SPDC source, the range of σb is on the order of hundreds of MHz to

several hundreds THz. Here, for our applications, the spatial mode of each frequency can be

treated as a Laguerre-Gaussian mode with the lowest radial and azimuthal indices (known as

Gaussian beams) [34].

For the above double-Gaussian state, an analytical expression for the Schmidt decompo-

sition is known as [35, 36],

|Ψ〉 =

∞∑
n=0

√
λn|fn〉|fn〉, (2)
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with the eigenvalues λn and the corresponding eigenstates |fn〉,

λn =
4σaσb(σa − σb)2n

(σa + σb)2(n+1)
, (3)

|fn〉 ≡
∫
dωfn(ω)|ω〉 (4)

=

∫
dω

(
2

σaσb

) 1
4 (

2nn!
√
π
)− 1

2 exp

[
−

(ω − ωP

2 )2

σaσb

]
·Hn

(√
2

σaσb
(ω − ωP

2
)

)
|ω〉, (5)

where Hn(x) is the nth Hermite polynomial of x. Note that λn → 0 very quickly for a large

n. Setting b = 2
σaσb

and ω̃ = ω − ωp

2 , as an illustration, the first four modes are given by,

|f0〉 =

∫
dω

(
b

π

) 1
4

e−
b
2 ω̃

2

|ω〉, (6)

|f1〉 =

∫
dω

(
4b3

π

) 1
4

e−
b
2 ω̃

2

ω̃|ω〉, (7)

|f2〉 =

∫
dω

(
b

64π

) 1
4

e−
b
2 ω̃

2

(4bω̃2 − 2)|ω〉, (8)

|f3〉 =

∫
dω

(
b3

768π

) 1
4

e−
b
2 ω̃

2

(8bω̃3 − 12ω̃)|ω〉. (9)

Note that the higher orders can also be obtained in a straightforward way. As it becomes

clearer later, the higher-order modes give negligible contributions to our analysis. Fig. 2 plots

the basic behaviors of these four functions.

The Schmidt number that characterizes the degree of photonic entanglement in the state

|Ψ〉 is given by

K =

( ∞∑
n=0

λ2n

)−1
=
σ2
a + σ2

b

2σaσb
. (10)

In our analysis, the condition σa � σb is generally valid, thus the Schmidt number can be

approximated as

K ≈ σb
2σa

. (11)

Clearly, the parameter σa of the pump laser is directly related to the number of modes

giving rise to a significant contribution to the Schmidt number.

By using the mode-selective detection on photon 1, we can collapse photon 2 (transmitting

photon) onto one of the Schmidt modes. For a high dimensional photonic state, the infor-

mation is encoded into the mode numbers. To be more specific, in the following discussions,

we may set σa = 10 THz and σb = 80 THz. For our purpose, we only consider the first four

modes for encoding the information to be transmitted through a noisy channel. It can be
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Fig. 2. Shapes of the first four Schmidt mode coefficients in frequeny domain: the coefficient of

the zeroth order mode f0 (blue solid line), the coefficient of the first order mode f1 (red dashed
line), the coefficient of the second order mode f2 (green dotted line) and the coefficient of the third

order mode f3 (yellow dash-dotted line).

easily shown that the probability λn of finding the state to be projected to those first four

modes is given by 0.395, 0.239, 0.145, and 0.087 respectively. As such, we see that only 13.4%

of modes are discarded in state generation step. The normalized output state from SPDC is

|Ψ〉 ≈ (1.15)

3∑
n=0

√
λn|fn〉|fn〉. (12)

Throughout this paper, in order to avoid the degeneracy, we always prepare the initial

state in the same transverse profile (Gaussian beam),

|fn〉 =

∫
dωfn(ω)|0ω〉. (13)

In the next subsection, we consider how an initial photonic state evolves in a noisy envi-

ronment.

3.2 Infinitesimal propagation equation

An infinitesimal propagation equation (IPE) method for a single photon with a fixed wave-

length passing through a turbulent media [37, 38, 39, 40, 41, 42] has been studied before in

the seminal work [43, 44, 45]. Under the monochromatic approximation, an arbitrary pure

state of a single photon can be expressed as (assuming the polarization is uniform and may

be ignored)

|ψ〉 =

∫
G(K, z)|K〉d

2K

4π2
. (14)

We use z to denote the propagation direction where {|K〉} is the two-dimensional mo-

mentum basis of the transverse plane, and G(K, z) is the two-dimensional momentum space
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wave function. The inverse Fourier transform of G(K) gives the position space wave function

g(x, y) in the transverse plane.

The equation of motion of the space wave function in the media can be written as

∇2E(x) + k2n2(x)E(x) = 0, (15)

where x is the three dimensional position vector, E(x) is the scalar part of the electric field,

k = ω
c is the wave number and n(x) is the index of refraction. In general, n(x) is also a

function of k. Since the differences of n(x) in the narrow frequency range considered in this

paper are negligible, we may treat the refractive index as a frequency-independent quantity

in our simulations without causing too much numerical inaccuracies.

The refractive index n(x) in a turbulent atmosphere may be split into two parts,

n(x) = 1 + δn(x). (16)

The second term δn(x) is spatially dependable, and it is typically small compared to the

first term (which is one). Thus, an approximate Helmholtz equation may be obtained from

Eq. (15),

∇2E(x) + k2E(x) + 2k2δn(x)E(x) = 0. (17)

Here, we have assumed that the beam is paraxial and propagates in the z-direction. If we

decompose E(x) ≡ g(x)e−ikz, we can get the following paraxial wave equation for g(x),

∇2
T g(x)− 2ik∂zg(x) + 2k2δn(x)E(x) = 0. (18)

Using the inverse two-dimensional Fourier transform

g(x) =

∫
G(K, z)e−iK·(x,y)

d2K

4π2
, (19)

we obtain

∂zG(K, z) =
i

2k
|K|2G(K, z)− ikN(K, z) ? G(K, z) (20)

where N(K, z) is the inverse two-dimensional Fourier transform of δ(x) and ? stands for the

convolution product.

The density operator for a fixed wavelength single photon state can be expressed in the

orbital angular momentum (OAM) basis,

ρ =
∑
m,n

ρm,n|m〉〈n|. (21)

where m,n are collective indices for both the radial (r) and orbital degrees (l) of the Laguerre-

Gaussian (LG) modes (m = {rm, lm}) and |m〉 =
∫
Gm(K, z)d

2K
4π2 .

From [43, 44, 45], we get

∂zρu,v(z) = Sm,u(z)ρm,v − Sv,n(z)ρu,n

+ Lm,n,u,v(z)ρm,n − LT ρm,n. (22)
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The first two non-dissipative terms in the above equation describe the free-space propaga-

tion, whereas the last two dissipative terms delineate how the turbulence causes the transition

among the LG modes through scattering processes. The operator that represents the free-

space propagation without loss is given by,

Sp,q(z) =
i

2k

∫
|K|2Gx(K, z)G∗y(K, z)

d2K

4π2
. (23)

More explicitly, the dissipative terms of the evolution are given by

LT = k2
∫

Φ1(K)
d2k

4π2
, (24)

Lm,n,u,v(z) = k2
∫

Φ1(K)Wm,u(K, z)W ∗n,v(K, z)
d2K

4π2
, (25)

with

Wp,q(K, z) =

∫
Gp(K1, z)G

∗
q(K1 −K, z)

d2K1

4π2
. (26)

It should be noted, in the above equations, that the propagation vector K = (kx, ky) represents

the two-dimensional projection of the three-dimensional propagation vector k = (kx, ky, kz)

and the function Gp(K, z) is the two-dimensional momentum space wave function.

The formalism presented here is valid for an arbitrary power spectral density. In Kol-

mogorov turbulence theory [citation] if we ignore the effect of the inner scales and use the

von Karman power spectral density, the refractive index power spectral density Φ1(K) can

be written as,

Φ1(K) =
0.033(2π)3C2

n(z)

(|K|2 + κ20)
11
6

, (27)

where κ0 is the lager outer scale parameter and C2
n(z) is the refractive index structure constant

at point z.

Substituting Eq. (27) into Eq. (24), we get

LT = (30.86)C2
nλ

2κ
− 5

3
0 , (28)

Lm,n,u,v(z) =

∞∑
j1,j2=0

δmuδnνLT + 8.1δlm−lu,ln−lv l(z)

· 2j1+j2Γ

[
j1 + j2

2
− 5

6

]
cm,u,j1c

∗
m,u,j2 , (29)

with

l(z) = C2
n(z)λ−2w

5
3
0

(
1 + (

λz

πw2
0

)2
) 5

6

(30)

∝

{
w

5
3
0 λ
−2 z � zR =

πw2
0

λ

w
− 5

3
0 λ−

1
3 z � zR =

πw2
0

λ

. (31)
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where the relation λ = 2π
k is used. cm,u,j1 are the coefficients (for explicit expressions, see

Appendix A). It is easy to check that LT diverges for large outer scales (κ0 → 0). Note that

Lm,n,u,v(z) contains a counter term to cancel LT . Besides, the non-zero terms of Lm,n,u,v(z)

exist only when lm − lu − ln + lv = 0.

In [43, 44, 45], Roux has shown that the integral in Eq. (23) is non-zero only if the

azimuthal indices are equal and the radial indices differ at most by one,

Sm,n(z) =



i(1+|l|+2r)
2zR

{
lm = ln = l

rm = rn = r

i(1+|l|+r)
1
2 (1+r)

1
2

zR


lm = ln = l

|rm − rn| = 1

r = min{rm, rn}
0 otherwise,

(32)

where zR is the Rayleigh range of the LG modes. rm and lm are the radial and orbital degrees

of mth LG mode, respectively.

From Eq. (22) we can see that high order modes will be involved even if the initial state

only contains one lowest mode (Gaussian beam) and δn(x) = 0 (without scintillation). The

reason is that Roux treated the evolution function ∂zρu,v(z) = Tr[(∂zρ(z))|u〉〈v|] for transverse

planes around z = z0 and kept |m〉 =
∫
Gm(K, z0)d

2K
4π2 unchanged. In order to simplify the

process, we treat ∂zρu,v(z) = ∂zTr[ρ(z)|u〉〈v|] and keep z-dependent basis, the first terms in

Eq. (22) vanish. New IPE can be written as

∂zρu,v(z) = Lm,n,u,vρm,n − LT ρm,n. (33)

If we reorganize the density matrix ρ into a column vector ρr by transposing every rows

and ranging them one by one into a single column, we can have

∂zρ
r = Rρr. (34)

The elements of the new matrix R is obtained by Lm,n,u,v and LT .

In general, Eq. (33) represents a set of coupled first-order differential equations. The

couplings allow transitions between two different modes. So even when the initial state con-

tains only a few lower order modes, the turbulence will couple those lower order modes to

all the other modes. Truncating this set of coupled equations, one may get rid of some cou-

plings among the participating modes. Moreover, our numerical results have shown that the

transitions become important when the following conditions hold,
lm − lu = ln − lv = 0, |rm − ru| = |rn − rv| = 0

lm − lu = ln − lv = 0, |rm − ru|+ |rn − rv| = 1

lm − lu = ln − lv = ±1, |rm − ru| = |rn − rv| = 0

lm − lu = ln − lv = ±1, |rm − ru|+ |rn − rv| = 1, 2

(35)

In particular, the first three cases give the most contributions. It is interesting to know

that when the azimuthal indices are unchanged, we can barely see both |rm−ru| and |rn−rv|
to be equal to one. In Fig. (3), we find that, for the OAM modes the transitions mostly
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Fig. 3. Example of the operator R when z = zR. All azimuthal indices go from −2 to 2 and all

radical indices go from 0 to 2. Here we set L0,0,0,0 − LT = 1. (Jet colormap)
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Fig. 4. Example of a Gaussian beam with a wavelength λ = 3.95 µm and Rayleigh length zR =

10 km propagating in a turbulent medium. Y axis means the probability of finding the fundamental
Gaussian mode while lI =

∫ zf
0 dz l(z) is a combination of multi parameters, including refractive

index structure constant, distance, wavelength (waist size can be calculated). All azimuthal indices

go from −N to N and all radical indices go from 0 to N . For solid lines, we adapt the cut-off of
Eq. (33), where N goes from 0 to 5 from the bottom to the top; For dash lines, we use the cut-off

of Eq. (36), where N goes from 0 to 5 from the top to the bottom.

occur among their neighboring modes, and the transition between high order and lower order

modes are practically impossible. Thus, the truncation used in IPE will contain enough useful

information about the propagation. Now we use a different Lindblad form of IPE, written as

∂zρu,v(z) = Lm,n,u,vρm,n −
1

2
Ln,n,m,uρm,v

− 1

2
Lm,m,v,nρu,n. (36)

Eq. (33) and Eq. (36) are exactly equal since
∑
n Ln,n,m,u = δm,uLT , and

∑
m Lm,m,v,n =

δv,nLT . In Fig. (4), we plot the transition probabilities for the two different cut-off approxima-

tions. It can be seen that the two methods converge with increasing cut-off orders, indicating

that both methods are consistent in giving good approximate solutions. More specifically, we

set the cut off at N = 4 for Eq. (33).

The density operator of an general spectro-temporal single photon in the OAM basis can

be expressed as,

ρ =

∫ ∫
dω1dω2Σmω1 ,nω2

ρmω1 ,nω2
|mω1

〉〈nω2
|, (37)

where mωj , uωj are collective indices for both the radial and orbital degrees of Laguerre-

Gaussian (LG) modes with frequency ωj(kj). Then the equation of motion is given by,

∂zρuω1 ,vω2
(z) = Lmω1 ,nω2 ,uω1 ,vω2

(z)ρmω1 ,nω2

− (LT )ω1,ω2ρuω1
,vω2

, (38)
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with

(LT )ω1,ω2
= k1k2

∫
Φ1(K)

d2K

4π2
, (39)

Lmω1
,nω2

,uω1
,vω2

(z) = k1k2

∫
Φ1(K)Wmω1

,uω1
(K, z)

·W ∗nω2
,vω2

(K, z)
d2K

4π2
. (40)

We note that more general cases can be dealt with similarly the above results after some

necessary modifications.

3.3 Gaussian beam propagation in turbulence

We will assume that the initial state is a Gaussian beam |0ω〉 (r = 0, l = 0, lowest LG mode)

with a fixed wavelength ω. When the high order modes are ignored in the propagation process,

the equation of motion is given by,

∂zρu,v(z) =

3∑
m,n,u,v=0

Lm,n,u,vρm,n −
3∑

m,n=0

LT ρm,n. (41)

In the limit of small κ0, one finds that the most essential term is given by

L0,0,0,0(z) ≈ LT − (54.11)l(z) (42)

We define a probability of finding a photon in the lowest LG mode at position z as

P (z) = ρ0,0(z). (43)

Having established the equation of motion (41), it is easy to show that the truncated

density matrix gives rise to a pure decay for weak turbulence or short distances, and the

probability in this regime is given by,

P (z) = e−(54.11)
∫ z
0
l(z′)dz′ (44)

Note that the strength of the scintillation is determined by C2
n with values ranging from

10−13 m−2/3 for strong turbulence to 10−17 m−2/3 for weak turbulence. To begin with,

we first assume that the refractive index structure constant C2
n does not vary along the

propagation path z. Then, from the analytical expression of l(z), one can show that, for

a given waist size, the average probability monotonically increases when the wavelength λ

increases. This observation is always valid independent of the propagation distance. For

a fixed wavelength and propagation distance, we have shown that the minimum value of

l(z) occurs when w0 = (λzπ )
1
2 and numerical simulations show that the maximum value of

probability P occurs at around the value w0 = 3
4 (λzπ )

1
2 (see Fig. (5)). It should be noticed that

it is important to understand these dynamic behaviors when we consider the superposition of

Schmidt modes, rather than one single transition mode.

When the propagation distance is significantly shorter than the Rayleigh range, the prob-

ability (43) may be further approximated by,

P ≈ e−(3.25)
(

w0
r0

) 5
3

, (45)
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where so-called Fried parameter r0 = 0.185
(
λ2

C2
nz

) 3
5

.

The average probability P of finding photons at the position z is shown to be an exponen-

tially decaying function of the refractive index structure constant C2
n. Therefore, it is difficult

to realize the long range communication in the strong scintillation regime (see Fig. (6)).

In general, C2
n(z) is highly sensitive to the propagation path height, but is relatively

insensitive to the wavelength. Our simulations for the turbulence are based on varieties of

parameter ranges to better reflect a real maritime environment.

It can be shown that when the wavelength is greater than 2 µm, the refractive index

structure constant is no longer dependent on the wavelength [46, 47]. Our simulations inves-

tigate the bad weather condition represented by high relative humidity, strong wind speed

and large air-sea surface temperature difference. Turbulence typically falls off sharply in the

first few meters above the sea surface, then it varies slowly with the increasing height. To

have a more accurate description of the long distance maritime communication, the Earth

curvature should be taken into account. In Fig. (7), we have plotted three cases about the

propagation path: the heights of the emitter and receiver are 19 − 19 m, 30 − 30 m, and

50 − 50 m, respectively. The results show that the strong turbulence may be avoided when

the emitter and receiver are well above the sea surface. For example, in the 19− 19 m case,

we see that the maximum refractive index structure constant along the propagation path C2
n

is about 2× 10−13 m−2/3, which makes practical communication impossible. Therefore, one

needs to use other paths.
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Fig. 8. Average probability P for both diagonal and cross terms. Propagation distance z = 30 km,

waist size w0 = 14.57 cm and the refractive index structure constant C2
n = 10−16 m−2/3.

3.4 Temporal mode propagation

For an initial state prepared in the nth temporal mode, the reduced density operator can be

written as

ρin =

∫ ∫
dω1dω2fn(ω1)fn(ω2)|0ω1〉〈0ω2 |, (46)

Since the infinitesimal propagation method also works for the cross terms |0ω1
〉〈0ω2

|(λj =
2πc
ωj

), we find that the modified l(ω1, ω2, z) takes the following form

l(ω1, ω2, z) ≈ C2
n(z)(λ1λ2)−1w

5
3
0

·
[
1 +

1

2
(
λ1z

πw2
0

)2 +
1

2
(
λ2z

πw2
0

)2
] 5

6

. (47)

The influence of scintillation will typically evolve the initial pure state into a mixed state.

For our purpose here, we only need to consider the lowest LG mode at the receive plane.

Therefore, the truncated final density matrix at the propagation distance z may be written

as,

ρfn =

∫ ∫
P (ω1, ω2)fn(ω1)fn(ω2)|0ω1

〉〈0ω2
|dω1dω2. (48)

Note the trace of the density matrix (48) denoted by Tn =
∫
P (ω, ω)|fn(ω)|2dω is not 1.

The decaying function Tn represents the information of the transition from the nth mode to

the other modes. The normalized density matrix ρNn is obtained by dividing Tn,

ρNn =
1

Tn

∫ ∫
P (ω1, ω2)fn(ω1)fn(ω2)|ω1〉〈ω2|dω1dω2. (49)
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One can show that the probability of finding the photon at the receiver position in the

mth mode is

Sn,m =
1

Tn

∫ ∫
P (ω1, ω2)fm(ω1)fm(ω2)

· fn(ω1)fn(ω2)|ω1〉〈ω2|dω1dω2. (50)

We have set the distance z=30 km, wavelength λ = 3.95 µm, and the refractive index

structure constant C2
n = 10−15 m−2/3 to test our approach. The total traces (probabilities of

finding this mode) of the first four modes are shown in Fig. (9). We have shown that for this

turbulence condition the transmittance of our time modes are still in an acceptable range (¡

40 dB).

More explicitly, the transition probabilities of the first four modes are given by the follow-

ing transmission matrix,

S =


0.9838 0.0161 0.0000 0.0000
0.0152 0.9538 0.0307 0.0003
0.0001 0.0289 0.9266 0.0438
0.0000 0.0003 0.0414 0.9018

 . (51)

Apparently, high-dimensional temporal modes can be sustained but their stabilities be-

come low, i.e., the probabilities of transferring to other modes increases.

3.5 Entangled photon propagation

In this subsection, we will discuss the entangled photon pair propagation in a turbulence

environment. To begin, we consider two entangled photons with the following initial state,

|ψ〉 =
1√
2

(|fm〉|fm〉+ |fn〉|fn〉), (52)
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Then, the reduced density operator is given by,

ρi =
1

2

∫ ∫ ∫ ∫
[fm(ω1)fm(ω′1) + fn(ω1)fn(ω′1)]

· [fm(ω1)fm(ω′1) + fn(ω2)fn(ω′2)]

· |0ω1
, 0ω′1〉〈0ω2

, 0ω′2 |dω1dω
′
1dω2dω

′
2. (53)

We must adjust l(z) to account for the cross terms |0ω1
, 0ω′1〉〈0ω2

, 0ω′2 |
(
λi = 2πc

ωi

)
l(ω1, ω2, ω

′
1, ω
′
2, z) ≈ πC2

n(z)(λ1λ2)−1w
− 5

3
0

·
{[

1 +
1

2
(
λ1z

πw2
0

)2 +
1

2
(
λ2z

πw2
0

)2
] 5

6

+

[
1 +

1

2
(
λ′1z

πw2
0

)2 +
1

2
(
λ′2z

πw2
0

)2
] 5

6
}
. (54)
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Fig. 10. Negativity and fidelity with different modes .

In order to investigate the entanglement evolution of high dimensional entangled photon

pairs in a random media, we choose the log negativity as an entanglement measure. Fig. (10)

is plotted with the parameters w0 = 14.57 cm and z = 30 km. We consider the strong

turbulence case, which is characterized by C2
n = 10−16 m−2/3 along the propagating path. We

are interested in the robustness of entangled photon pairs under the influence of turbulence.
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To be more specific, we fix the mode number m for one photon and vary the second photon’s

mode number n from 0 to 10. The blue squares are the negativities of the initial states and

the red circles are the log negativities of the final states at the receiving aperture. Solid lines

connect all the squares in every sub-figures where dash lines connect the circles. The red dot

lines connect all the diagonal crosses are the fidelities between the initial states and the output

states. We can see that, when the entangled photons propagate in a strong turbulence regime,

the entanglement measured by the negativity defined as EN (ρ) = log2[2N +1] doesn’t change

too much. It’s easy to find that, when m and n are not close (|m−n| > 1), the entanglement

will remain unaffected even in a strong turbulence regime. When |m−n| = 1, the two modes

are close, interference occurs and heavily influences the log negativity. Thus, we show that

the qudit formed by consecutive even number modes (e.g., modes 0, 2, 4) or odd number

modes (e.g, modes 1, 3, 5) will be more robust against the random perturbations.

4 CONCLUSION

To summarize, based on the Schmidt decomposition representation, high dimensional tempo-

ral mode propagation is systematically studied by using the well-known infinitesimal propa-

gation method. We have shown that, in a highly dynamic maritime environment, there exist

frequency ranges that will allow the reliable implementations of photon communication in

the framework of temporal modes. In particular, we have examined the feature of Schmidt

eigenmodes and identified robust and fragile parameter domains against log-distance extinc-

tion (scattering and absorption). In addition, we have analysed the dynamical behavior of

entangled photon pairs under the influence of strong turbulence. Since the colored noises

and correlated noises are of importance for free-space communication, a further study on the

photonic noisy propagation would be useful [48, 49].
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Appendix A

The purpose of this Appendix is to analyze the influence of turbulence via infinitesimal

propagation equation method. The generating function for the LG modes of a fixed wavelength

can be written as

G =

∞∑
n,m=0

1

m!
Lmn

(
2(u2 + v2)

1 + t2

)[
d(1 + 1t)

1− it

]n
× [(u+ iv)p+ (u− iv)q]m

(1− it)1+m

=
1

Ω(t, d)
exp

[
(u+ iv)p

Ω(t, d)
+

(u− iv)q

Ω(t, d)

− (1 + d)(u2 + v2)

Ω(t, d)

]
, (A.1)

where Ω(t, d) = 1−d− it− itd. The normalized coordinates are given by u = x/w0, v = y/w0

and t = z/zR = zλ/πw2
0 in terms of the waist size w0 at the initial location and the Rayleigh

range zR. The parameters p, q and w are used to generate particular LG modes in the

following way,

MLG
r,l (u, v, t) =


N [ 1

r!∂
r
d∂
|l|
p G]d,p,q=0 l > 0

N [ 1
r!∂

r
dG]d,p,q=0 l = 0

N [ 1
r!∂

r
d∂
|l|
q G]d,p,q=0 l < 0

(A.2)

with normalization constant

N =

[
r!2|l|+1

π(r + |l|)

] 1
2

, (A.3)

where r is the radial index (a non-negative integer) and l is the azimuthal index (an integer).

In order to compute the integrals in the IPE, we must get the the Fourier transform of

the generating function,

F [G] =
π

1 + d
exp[

iπ(k̃x + ik̃y)p

1 + d

+
iπ(k̃x − ik̃y)q

1 + d
−
π(k̃2x + k̃2y)Ω(t, d)

1 + d
]. (A.4)

Here k̃x and k̃y are normalized spatial frequency components that k̃x = w0

2π kx and k̃y =
w0

2π ky.
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After evaluating the Eq. (23) and removing the superfluous mixed terms containing a p

times a q, one obtains a generation function

SG(z) =
iλ(1 + dm)(1 + dn)

8(1− dmdn)
exp

[
pmpn + qmqn
2(1− dmdn)

]
× [2(1− dmdn) + pmpn + qmqn], (A.5)

where pm, qm and dm are generating function parameters associated with the m index, while

pn, qn and dn are generating function parameters associated with the n index. From this

function, we find non-zero values occur when the azimuthal indices involved be equal, and

that the radial indices differ at most by one, i.e., Eq. (32).

For the term Wm,n(K, z) , we must to get a generating function for the radial indices of

the modal correlation functions

WrG(K,φ, z) =
exp(−X) exp[i(lm − ln)φ]E

|lm|
m Ē

|ln|
n

(1− dmdn)

×
[

rm!

(rm + |lm|)!

] 1
2
[

rn!

(rn + |ln|)!

] 1
2

×
M(lm,ln)∑
s=0

|lm|!|ln|!(−X)s

(|lm| − s)!(|ln| − s)!s!
(A.6)

with

M(lm, ln) =
1

2
(|lm|+ |ln| − |lm − ln|), (A.7)

X =
K2ζmζ

∗
nη

2

8π2(1− dmdn)
, (A.8)

Em =
iKζmη

2
√

2π(1− dmdn)
, (A.9)

Ēn =
iKζ∗nη

2
√

2π(1− dmdn)
. (A.10)

Here, we set ζx = zR − iz − dx(zR + iz), η = λ
w0

, and use we are using polar momentum

space coordinates kx + iky = Keiφ . Setting a = (1 + t2)w0
2, b = 1+it

1−it ,we can get X =
K2(1−dmb)(1−dnb−1)a

8(1−dmdn) , and the explicit form of the term Wm,n(K,φ, z) can be written as

Wm,n(K,φ, z) =

M(lm,ln)∑
s=0

ei(lm−ln)φ(i)|lm|+|ln|(−1)−s
(
K2a

8

) |lm|+|ln|
2 −s

×
[

1

(rm + |lm|)!

] 1
2
[

1

(rn + |ln|)!

] 1
2 |lm|!|ln|!

(|lm| − s)!(|ln| − s)!s!
b−
|lm|−|ln|

2

× ∂rmdm∂
rn
dn

(
e−X

(1− dmb)|lm|−s(1− dnb−1)|ln|−s

(1− dmdn)|lm|+|ln|−s+1

) ∣∣∣∣∣
dm,dm=0

, (A.11)
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which can also be sorted as

Wm,n(K,φ, z) =

∞∑
j=0

cm,n,j

(
K2a

8

) j
2

e−
K2a

8 ei(lm−ln)φ, (A.12)

where cm,n,j is a coefficient independent of K and φ.

When we substitute the von Karman spectrum, the two-dimensional integration in Eq. (40)

can be split into a radial and angular integral. Since the von Karman density Φ1(K) only

depends on the radial coordinate, the integral over φ only involves the φ component of Wm,n.

Non-zero values only occur when lm − lu − ln + lv = 0. Setting κ0 → 0, we can get

Lm,n,u,v(z) = k2
∫

Φ1(K)Wm,u(K, z)W ∗n,v(K, z)
d2K

4π2

≈ δmuδnνLT + (8.1)δlm−lu,ln−lvC
2
nλ
−2w

5
3
0 (1 + t2)

5
6

×


∞∑

j1,j2=0

2−
j1+j2

2 Γ

[
j1 + j2

2
− 5

6

]
cm,u,j1c

∗
n,v,j2

 . (A.13)


