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Quantum conference is a process of securely exchanging messages between three or more

parties, using quantum resources. A Measurement Device Independent Quantum Dia-

logue (MDI-QD) protocol, which is secure against information leakage, has been pro-
posed (Quantum Information Processing 16.12 (2017): 305) in 2017, is proven to be

insecure against intercept-and-resend attack strategy. We first modify this protocol and

generalize this MDI-QD to a three-party quantum conference and then to a multi-party
quantum conference. We also propose a protocol for quantum multi-party XOR compu-

tation. None of these three protocols proposed here use entanglement as a resource and

we prove the correctness and security of our proposed protocols.
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1 Introduction

In the current post-digital era, quantum cryptography has generated significant interest in the

information security domain. Security of quantum cryptographic protocols mainly depends

on the “no-cloning theorem” [1] and the fact that, without disturbance, two non-orthogonal

states can not be distinguished with a finite number of samples. The first-ever quantum

cryptographic protocol was BB84 quantum-key-distribution (QKD), proposed by Bennett

and Brassard in 1984 [2]. QKD allows two or more remote users to establish a shared secret

key between themselves. In BB84 protocol, two users, namely, Alice and Bob, exchange single-

qubit states to generate a secret key. In 2000, Shor and Preskill showed that this protocol

is secure and they gave a simple proof of security of the BB84 protocol [3]. In 1991, Ekert

proposed another QKD protocol using entangled states [4]. Till now, there are many variants

of QKD protocols proposed by many researchers, for example, BBM92 [5], B92 [6] and many

others [7, 8, 9, 10, 11, 12, 13, 14].
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Quantum secure direct communication (QSDC) is another nice part of quantum cryptog-

raphy, whose purpose is to securely send a secret message from one party (Alice) to another

party (Bob), without using any shared key. The famous ping-pong-protocol [15] is an ex-

ample of QSDC protocol, where the receiver Bob prepares two-qubit entangled states and

sends one qubit to the sender Alice. Then Alice performs some unitary operations on that

qubit to encode her information and sends it back to Bob. By measuring the joint state,

Bob gets the message. Recently, other QSDC protocols with different approaches are also

explored [16, 17, 18, 19, 20, 21, 22, 23, 24].

A two-way QSDC protocol is called quantum dialogue (QD), where Alice and Bob can

simultaneously exchange their messages with a single channel, was proposed by BA Nguyen in

2004 [25]. Since then, many QD protocols ware proposed [26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

In [34], authors proposed a measurement device independent QD (MDI-QD) with the help of

an untrusted third party (UTP) and showed that this protocol is secure against information

leakage.

QSDC protocols for more than two parties are discussed in [36, 37, 38, 39, 40, 41]. In [41],

the authors proposed the concept of quantum conference or N -party communication, N ≥ 2,

where each party sends their message to the other (N − 1) parties. In this protocol, to

communicate m-bit classical messages, they need at least (N − 1) pairwise disjoint subgroups

of unitary operators, where the cardinality of each subgroup is at-least 2m. For large m,

finding these subgroups is quite difficult.

All the above primitives are multi-party protocols, but not multi-party computation. In

the multi-party protocol, two or more parties exchange messages over a public channel and

perform some local computation to achieve a communication task. On the other hand, in

multi-party computation, two or more parties exchange messages over a public channel and

perform some local computation to jointly compute the value of a function on their private

data as inputs. The requirement is that, after the end of the computation, each party will

have the output of the function, but no party will have access to the input of any other

party. Quantum multi-party computation (QMPC) is an interesting research area in quantum

cryptography, where the parties possess some quantum states as inputs. Quantum secret

sharing (QSS) [42, 40, 43, 44, 45], QMPC protocol for summation and multiplication [46, 47],

quantum private comparison [48, 49, 50] are some examples of QMPC protocols.

Our Contribution

In this paper, we make four distinct contributions. First, we revisit the two-party MDI-QD

protocol [34], and show that this is not secure against intercept-and-resend attack. Then we

modify the two-party MDI-QD protocol to make it secure against this attack. Second, using

a similar approach, we propose a three-party quantum conference protocol with the help of an

untrusted fourth party. Next, we generalize our three-party quantum conference protocol to

a multi-party version. We show that both these conference protocols are correct and secure

against intercept-and-resend attack, entangle-and-measure attack, Denial-of-Service (DoS)

attack and man-in-the-middle attack. As the fourth and final contribution, we show how

to use part of our multi-party quantum conference protocol to compute multi-party XOR

function, and establish it’s correctness and security.
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Outline

The rest of this paper is organized as follows: in Section 2, we revisit the MDI-QD protocol

proposed in [34]. Then in the next section, we discuss intercept-and-resend attack on the

MDI-QD protocol [34] and we propose its modified version. Section 4 describes our proposed

protocol for a three-party quantum conference and it’s correctness and security analysis. We

generalize our three-party quantum conference to N -party quantum conference in Section 5.

Next, we present a protocol for multi-party XOR computation, by using tools of N -party

quantum conference in Section 6. Section 7 concludes our results.

Notations

Here we describe the common notations that will be used throughout the paper.

• |+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉);

• Z basis = {|0〉 , |1〉};

• X basis = {|+〉 , |−〉};

• {S[i]}mi=1 = S is a finite sequence of length m;

• S[i] = Si = i-th element of S ;

• b̄= bit complement of b;

• i1i2 . . . iN = N bit binary representation of i;

• |i〉 = |i1〉 |i2〉 . . . |iN 〉 is an N -qubit state;

• |Φ+〉 = 1√
2
(|00〉+ |11〉), |Φ−〉 = 1√

2
(|00〉 − |11〉);

• |Ψ+〉 = 1√
2
(|01〉+ |10〉), |Ψ−〉 = 1√

2
(|01〉 − |10〉);

• BN = {|Φ+
0 〉 , |Φ

−
0 〉 , |Φ

+
1 〉 , |Φ

−
1 〉 , . . . , |Φ

+
2(N−1)−1〉 , |Φ

−
2(N−1)−1〉} basis, where |Φ±i 〉 = 1√

2
(|i〉±

|2N − 1− i〉) for i ∈ {0, 1, . . . , 2(N−1) − 1}. For example :

1. B2 = {|Φ+
0 〉 , |Φ

−
0 〉 , |Φ

+
1 〉 , |Φ

−
1 〉} is called Bell basis; where

– |Φ+
0 〉 = 1√

2
(|00〉+ |11〉) = |Φ+〉, |Φ−0 〉 = 1√

2
(|00〉 − |11〉) = |Φ−〉

– |Φ+
1 〉 = 1√

2
(|01〉+ |10〉) = |Ψ+〉, |Φ−1 〉 = 1√

2
(|01〉 − |10〉) = |Ψ−〉

2. B3 = {|Φ+
0 〉 , |Φ

−
0 〉 , |Φ

+
1 〉 , |Φ

−
1 〉 , |Φ

+
2 〉 , |Φ

−
2 〉 , |Φ

+
3 〉 , |Φ

−
3 〉} basis; where

– |Φ+
0 〉 = 1√

2
(|000〉+ |111〉), |Φ−0 〉 = 1√

2
(|000〉 − |111〉)

– |Φ+
1 〉 = 1√

2
(|001〉+ |110〉), |Φ−1 〉 = 1√

2
(|001〉 − |110〉)

– |Φ+
2 〉 = 1√

2
(|010〉+ |101〉), |Φ−2 〉 = 1√

2
(|010〉 − |101〉)

– |Φ+
3 〉 = 1√

2
(|011〉+ |100〉), |Φ−3 〉 = 1√

2
(|011〉 − |100〉);

• Pr(A) = Probability of occurrence of an event A;

• Pr(A|B) = Probability of occurrence of an event A given that the event B has already

occurred;

• wt(v) = number of 1’s in a binary vector v.
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2 Revisiting the Measurement Device Independent Quantum Dialogue (MDI-

QD) Protocol of [34]

Here, in this section, we shortly describe the MDI-QD protocol proposed in [34], where two

legitimate parties, namely Alice and Bob, can simultaneously exchange their messages. The

proposal in [34] composed two different protocols from [2] and [12]. Alice and Bob first perform

some QKD, namely, BB84 [2] and generate a shared key k between themselves. Then they

prepare their sets of qubits QA and QB , corresponding to k and their respective messages a

and b. Alice and Bob send QA and QB to an untrusted third party or UTP (who may be

an Eavesdropper). Then the UTP measures the two qubit states in Bell basis (i.e, B2) and

announces the result. From the result, Alice and Bob decode the messages of each other (see

Table 1). Details are given in Fig 1.

Table 1. Different cases in MDI QD.

Bits to communicate by Qubits prepared by Probabilities of measurement
results at UTP’s end

Alice Bob Alice (QAi) Bob (QBi) |Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉
0 0 |0〉 |0〉 1/2 1/2 0 0
0 1 |0〉 |1〉 0 0 1/2 1/2
1 0 |1〉 |0〉 0 0 1/2 1/2
1 1 |1〉 |1〉 1/2 1/2 0 0
0 0 |+〉 |+〉 1/2 0 1/2 0
0 1 |+〉 |−〉 0 1/2 0 1/2
1 0 |−〉 |+〉 0 1/2 0 1/2
1 1 |−〉 |−〉 1/2 0 1/2 0

It is clear from Table 1 that, for 1 ≤ i ≤ n,

• if Alice prepares QAi = |0〉(|1〉), then she guesses bi with probability 1 as follows:

Mi =

{
|Φ+〉 or |Φ−〉 ⇒ bi = 0 (1);

|Ψ+〉 or |Ψ−〉 ⇒ bi = 1 (0);

• if Alice prepares QAi = |+〉(|−〉), she guesses bi with probability 1 as follows:

Mi =

{
|Φ+〉 or |Ψ+〉 ⇒ bi = 0 (1);

|Φ−〉 or |Ψ−〉 ⇒ bi = 1 (0).

From the above discussion and Table 1, let us construct two more tables, namely Table 2

and Table 3, containing the information of Alice’s guess and Bob’s guess about other’s message

bits for different cases.

Hence from Table 2 and Table 3, we can say that both Alice and Bob can exchange their

message simultaneously.

Now, we can see from Table 1, for 1 ≤ i ≤ n, if Mi = |Φ+〉 or |Ψ−〉, then Eve knows the

information whether ai = bi or not. That is, Eve knows ai ⊕ bi (1 bit of information out of

2 bits), for those Mi, where Mi = |Φ+〉 or |Ψ−〉. To avoid this information leakage, Alice

and Bob discard these cases. Then they estimate the error and if the error exceeds some

predefined threshold, they abort the protocol. Otherwise, they continue it and guess other’s

message.
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Fig. 1: MDI-QD Protocol of [34]

1. Alice and Bob share an n-bit key stream (k = k1k2 . . . kn) between themselves using
BB84 protocol.

2. Let the n-bit message of Alice (Bob) be a = a1a2 . . . an (b = b1b2 . . . bn).

3. For 1 ≤ i ≤ n, Alice (Bob) prepares the qubits
QA = QA1QA2 . . . QAn (QB = QB1QB2 . . . QBn) at her (his) end according to the
following strategy:

(a) if ai (bi)= 0 and ki = 0⇒ QAi (QBi) = |0〉;
(b) if ai (bi)= 1 and ki = 0⇒ QAi (QBi) = |1〉;
(c) if ai (bi)= 0 and ki = 1⇒ QAi (QBi) = |+〉;
(d) if ai (bi)= 1 and ki = 1⇒ QAi (QBi) = |−〉.

4. Alice (Bob) sends her (his) prepared qubits QA (QB) to an untrusted third party
(UTP).

5. For 1 ≤ i ≤ n, the UTP measures each two qubits QAi and QBi in Bell basis (i.e.,
B2 = {|Φ+〉 |Φ−〉 , |Ψ+〉 , |Ψ−〉}) and announces the measurement result
Mi ∈ {|Φ+〉 |Φ−〉 , |Ψ+〉 , |Ψ−〉} publicly. Table 1 shows the possible measurements
results with their occurring probabilities.

6. For 1 ≤ i ≤ n, Alice and Bob consider the i-th measurement result Mi if Mi = |Φ−〉
or |Ψ+〉 and discard the other cases.

7. They randomly choose δn number of measurement results to estimate the error, where
δ � 1 is a small fraction.

8. Alice and Bob guess the message bits of other, corresponding to their chosen δn
number of measurement results using Table 2 and Table 3.

9. For the above mentioned δn rounds, they disclose their respective guesses.

10. If the estimated error is greater than some predefined threshold value, then they
abort. Else they continue and go to the next step.

11. For the remaining measurement results, Alice and Bob guess the message bits of each
other, using Table 2 and Table 3.

3 Intercept-and-Resend Attack on the MDI-QD Protocol of [34] and Our Pro-

posed Remedy

We now show that the above MDI-QD protocol [34] is not secure against intercept-and-resend

attack and an adversary can get hold of some amount of information about the messages. So

we propose a modified version of this protocol, which is secure against this attack.

Let us consider the intercept-and-resend attack by an adversary A (other than the UTP).

For the i-th message bit pair (ai, bi) of Alice and Bob, they prepare the qubit pair (QAi
, QBi

)
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Table 2. Alice’s guess about Bob’s message bit for different cases.

Key Alice’s Alice’s Alice’s guess about bi when Mi

bit ki bit ai qubit QAi |φ+〉 |φ−〉 |ψ+〉 |ψ−〉
0 0 |0〉 0 0 1 1
0 1 |1〉 1 1 0 0
1 0 |+〉 0 1 0 1
1 1 |−〉 1 0 1 0

Table 3. Bob’s guess about Alice’s message bit for different cases.

Key Bob’s Bob’s Bob’s guess about ai when Mi

bit ki bit bi qubit QBi |φ+〉 |φ−〉 |ψ+〉 |ψ−〉
0 0 |0〉 0 0 1 1
0 1 |1〉 1 1 0 0
1 0 |+〉 0 1 0 1
1 1 |−〉 1 0 1 0

depending upon the key bit ki, and send those qubits QAi
, QBi

to the UTP by separate

channels from Alice and Bob. Now A intercepts the qubits QAi , QBi from the channel and

guesses the corresponding key bit k′i to choose the measurement basis for the qubits. A
measures QAi

and QBi
in the same basis and resends those qubits to the UTP. Note that, if

A guesses the correct key bit, then she chooses the correct basis to measure QAi
, QBi

, and

due to this measurement, the states of the qubits remain unchanged. In this case, A gets

the correct message bit-pair of Alice and Bob, without introducing any error in the channel.

Now, if A chooses the wrong key bit, then also she can get the correct message bit-pair (ai, bi)

with probability 1/4 and in this case, A can be detected with probability 1/2.

As an illustrative example, consider ki = 0, k′i = 1, ai = 0, bi = 0, then QAi = |0〉,
QBi

= |0〉. Since k′i = 1, A measures QAi
, QBi

in X-basis. After the measurement, let

the qubits be Q′Ai
, Q′Bi

. If Q′Ai
= |+〉 , Q′Bi

= |+〉, then also A gets the correct message

bit-pair and this case arises with probability 1/4. In that case, if the joint measurement result

is |Φ+〉, then A can not be detected, but if the joint measurement result is |Ψ+〉, then they

can detect A. The details are given in Table 4.

Table 4. Different cases of intercept-and-resend attack on MDI-QD.

ki k′i ai bi QAi
QBi

Q′Ai
Q′Bi

Prob. of joint measurement result Remark
|Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉

0 1 0 0 |0〉 |0〉 |+〉 |+〉 1/2 0 1/2 0 with probability
|+〉 |−〉 0 1/2 0 1/2 1/2 cheating
|−〉 |+〉 0 1/2 0 1/2 can be
|−〉 |−〉 1/2 0 1/2 0 detected

*Bold numbers denote the probabilities that errors have occurred.

Thus, in the case of the intercept-and -resend attack,

Pr(cheating detected in i-th bit ) = Pr(cheating detected in i-th bit |ki = k′i) Pr(ki = k′i) +

Pr(cheating detected in i-th bit |ki 6= k′i) Pr(ki 6= k′i) = 0+1/2×1/2 = 1/4. Therefore, with

probability 3/4, A can do the attack without being detected.

Pr(A gets the exact i-th bit message pair ) = 1/2+1/2×1/4 = 5/8, whereas Pr(A guesses

the exact i-th bit message pair randomly) = 1/4.
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To avoid this attack, we have modified the previous MDI-QD protocol by introducing an

extra error estimation phase before the UTP jointly measures the qubits.

3.1 Our Proposed Modification

Steps 1, 2, 3 are the same as before in the MDI-QD protocol of Figure 1.

4. Alice and Bob choose some random permutation and apply those on their respective

sequences of qubits QA and QB and get new sequences of qubits qA and qB .

5. They send the prepared qubits qA and qB to a UTP.

6. Alice and Bob randomly choose δn number of common positions on sequences QA and

QB to estimate the error in the channel, where δ � 1 is a small fraction. Corresponding

to these rounds, they do the followings:

(a) Each participant tells the positions and preparation bases of those qubits for those

rounds to the UTP.

(b) The UTP measures each single-qubit state in proper basis and announces the

results.

(c) They reveal their respective qubits for these rounds and compare them with the

results announced by the UTP.

(d) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

7. The UTP asks Alice and Bob the permutations which they have applied to their se-

quences.

8. The UTP applies the inverse permutations, corresponding to the permutations chosen

by Alice and Bob, on qA and qB to get QA and QB respectively.

9. They discard the qubits corresponding to the above δn positions. Their remaining

sequence of prepared qubits are relabeled as QA = {QA[i]}mi=1 and QB = {QB [i]}mi=1,

where m = (1− δ)n.

10. They update their n-bit key to an m-bit key by discarding δn number of key bits

corresponding to the above δn rounds. The updated key is relabeled as k = k1k2 . . . km.

Then they follow Step 5 to Step 11 of the MDI-QD protocol in Figure 1.

In this modified protocol, since Alice and Bob apply random permutations on their respec-

tive sequences of qubits before sending those qubits to the UTP and since those permutations

are announced only after the error estimation phase is passed, at the time of sending those

sequences A can not just guess a key bit and measure the qubits. Even if she gets some of

the key bits, she can not guess the corresponding bases for sequences of qubits qA, qB . Alice

and Bob randomly choose δn number of rounds to estimate the error in the channel (Step 6

of the modified protocol), where δ � 1 is a small fraction. Corresponding to these rounds,

they tell the key bits to the UTP and he measures each single-qubit state in proper basis

and announces the results. Alice and Bob reveal their respective qubits for these rounds and

compare them with the results announced by the UTP.
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Let A intercept the sequences qA, qB , measure those qubits and resend the sequences

q′A, q
′
B . Let the i-th qubit pair be (qAi

, qBi
), which is prepared in the basis (BAi

,BBi
), and

suppose A independently chooses two bases B′Ai
and B′Bi

to measure qAi and qBi , since they

are not dependent on the i-th key bit. After measurement, let the state of the qubit pair be

(q′Ai
, q′Bi

). At the time of security checking, UTP measures (q′Ai
, q′Bi

) in (BAi ,BBi) and gets

the result (q′′Ai
, q′′Bi

). Thus the winning probability of A is

Pr(q′′Ai
= qAi

, q′′Bi
= qBi

)

= Pr(q′′Ai
= qAi

) Pr(q′′Bi
= qBi

)

= {Pr(q′′Ai
= qAi | BAi = B′Ai

) Pr(BAi = B′Ai
) + Pr(q′′Ai

= qAi | BAi 6= B′Ai
) Pr(BAi 6= B′Ai

)}×
{Pr(q′′Bi

= qBi
| BBi

= B′Bi
) Pr(BBi

= B′Bi
) + Pr(q′′Bi

= qBi
| BBi

6= B′Bi
) Pr(BBi

6= B′Bi
)}

=

[
1

2
{Pr(q′′Ai

= qAi
| BAi

= B′Ai
) + Pr(q′′Ai

= qAi
| BAi

6= B′Ai
)}
]
×[

1

2
{Pr(q′′Bi

= qBi
| BBi

= B′Bi
) + Pr(q′′Bi

= qBi
| BBi

6= B′Bi
)}
]

=
1

4

(
1 +

1

2

)(
1 +

1

2

)
=

9

16
.

Since Alice and Bob apply random permutations on their sequences QA and QB , so from

the measurement results, A can not get any information about the i-th bit pair of the secret

message. The probability of getting the i-th bit pair is 1/4 by randomly guessing the bits.

However the detection probability of A is 1−
(

9
16

)δn
and in this case Alice and Bob abort the

protocol.

Table 5 compares the probabilities of relevant events between the MDI-QD [34] and its

modified version.

Table 5. Comparison between the MDI-QD [34] and its modified version.

Probability of the event MDI-QD [34] Our modified MDI-QD

A gets the i-th bit pair 5/8 1/4

Alice, Bob can not detect A for the i-th measurement 3/4 9/16

Alice, Bob detect A 1− (3/4)δn 1− (9/16)δn

4 Three Party Quantum Conference

We extend the above QD protocol from two to three parties, thus leading to a protocol

of quantum conference. Our proposed conference protocol is divided into two parts. Let

Alice, Bob and Charlie be three participants of the conference. Also let Alice’s, Bob’s and

Charlie’s m bit messages be a, b and c respectively, where a = a1a2 . . . am, b = b1b2 . . . bm
and c = c1c2 . . . cm.

In the first part, Alice, Bob, and Charlie perform a Multi-party QKD protocol [51] to

establish a secret key k = k1k2 . . . km of m bits between themselves. Then each of them uses

the key to encode one’s own message M into the corresponding state Q, according to Subrou-

tine 1. The details of the three party quantum conference protocol are given in Protocol 1.
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Subroutine 1 Message Encoding Strategy for Three Party Quantum Conference
Inputs: Own message M = M1M2 . . .Mm; key k = k1k2 . . . km.

Output: Sequence of qubits Q = Q1Q2 . . . Qm.

The subroutine:
For 1 6 i 6 m,

1. if Mi = 0 and ki = 0, prepares Qi = |0〉.

2. if Mi = 1 and ki = 0, prepares Qi = |1〉.

3. if Mi = 0 and ki = 1, prepares Qi = |+〉.

4. if Mi = 1 and ki = 1, prepares Qi = |−〉.

4.1 Protocol 1: Three Party Quantum Conference

The steps of the protocol is as follows:

1. Alice, Bob and Charlie perform any multi-party QKD protocol (e.g., [51]) to establish

an m-bit secret key k = k1k2 . . . km between themselves.

2. Let Alice’s, Bob’s and Charlie’s m-bit messages be a, b and c respectively, where a =

a1a2 . . . am, b = b1b2 . . . bm and c = c1c2 . . . cm.

3. For 1 6 i 6 m, Alice, Bob and Charlie prepare the sequences of qubitsQA = {QA[i]}mi=1 =

(QA1, QA2, . . . , QAm), QB = {QB [i]}mi=1 = (QB1, QB2, . . . , QBm) andQC = {QC [i]}mi=1 =

(QC1, QC2, . . . , QCm) respectively at their end by using Subroutine 1.

4. Alice, Bob, and Charlie choose some random permutation and apply those on their

respective sequences of qubits QA, QB , and QC and get new sequences of qubits qA, qB
and qC .

5. They send the prepared sequences of qubits qA, qB , and qC to an untrusted fourth party

(UFP).

6. Alice, Bob, and Charlie randomly choose δm number of common positions on sequences

QA, QB and QC to estimate the error in the channel, where δ � 1 is a small fraction.

Corresponding to these δm rounds, they do the following:

(a) Each participant tells the positions and preparation bases of those qubits for those

rounds to the UFP.

(b) The UFP measures each single-qubit state in proper basis and announces the re-

sults.

(c) They reveal their respective qubits for these rounds and compare them with the

results announced by the UFP.

(d) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.
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7. The UFP asks Alice, Bob, and Charlie to tell the permutations which they have applied

to their sequences.

8. The UFP applies the inverse permutations, corresponding to the permutations chosen

by Alice, Bob, and Charlie, on qA, qB , and qC to get QA, QB and QC respectively.

9. They discard the qubits corresponding to the above δm positions. Their remaining

sequence of prepared qubits are relabeled as QA = {QA[i]}m′i=1, QB = {QB [i]}m′i=1 and

QC = {QC [i]}m′i=1, where m′ = (1− δ)m.

10. They update their m-bit key to an m′-bit key by discarding δm number of key bits

corresponding to the above δm rounds. The updated key is relabeled as k = k1k2 . . . km′ .

11. For 1 6 i 6 m′, the UFP measures the each three qubits state (QAi , QBi , QCi) in basis

B3 and announces the result.

12. Alice, Bob and Charlie make a finite sequence {M[i]}m′i=1 containing the measurement

results, i.e., for 1 6 i 6 m′, M[i] ∈ {|Φ+
0 〉 , |Φ

−
0 〉 , |Φ

+
1 〉 , |Φ

−
1 〉 , |Φ

+
2 〉 , |Φ

−
2 〉 , |Φ

+
3 〉 , |Φ

−
3 〉}

is the i-th measurement result announced by the UFP .

13. They randomly choose γm′ number of measurement results M[i] from the sequence

{M[i]}m′i=1 to estimate the error (may be introduced by the UFP ), where γ � 1 is a

small fraction.

(a) They reveal their respective message bits for these rounds.

(b) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

14. Their remaining sequence of measurement results is relabeled as {M[i]}ni=1, where n =

(1− γ)m′.

15. They update their m′-bit key to an n-bit key by discarding γm′ number of key bits

corresponding to the above γm′ rounds. The updated key is relabeled as k = k1k2 . . . kn.

16. Each of Alice, Bob, and Charlie applies Algorithm 1 to get others’ messages.

Note that in this protocol, there are two error estimation phases. The first one checks if there

is any adversary (other than the UFP ) in the channel who tries to get some information about

the messages or change the messages. In this case, if the 1st error estimation phase does not

pass, then Alice, Bob, and Charlie abort the protocol. Thus, in this step, the motivation of

the UFP being correct is that there is no information gain for him/her if the parties abort

the protocol. The next error estimation phase is to check if there is any error introduced by

the UFP .

4.2 Correctness of Three Party Quantum Conference Protocol

In our proposed protocol, Alice, Bob and Charlie first prepare qubits corresponding to their

messages and shared key and then send those qubits to the fourth party (UFP). After that,

UFP measures each of the three qubits state (one from Alice, one from Bob and one from

Charlie) in basis B3 = {|Φ+
0 〉 , |Φ

−
0 〉 , |Φ

+
1 〉 , |Φ

−
1 〉 , |Φ

+
2 〉 , |Φ

−
2 〉 , |Φ

+
3 〉 , |Φ

−
3 〉} and announces the

result. Now, we can say the following from Table 6:
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Algorithm 1: Three Party Message Reconstruction Algorithm

Input: Own message , measurement results {M[i]}ni=1, key k.
Output: Others’ messages.

1. For 1 6 i 6 n, if ki = 0, then each participant can learn the i-th bit of others’
messages from the measurement result M[i] and their own message (see Table-6).

2. For 1 6 i 6 n, if ki = 1, then from the measurement result M[i] and their own
message each participant can learn the i-th bit of others messages are same or different
(see Table-6). Let c = wt(k).

(a) Alice, Bob and Charlie prepare ordered sets of qubits SA, SB and SC respectively,
corresponding to their message bit where the key bit is 1. They prepare the
qubits at their end according to the following strategy. Each of SA, SB and SC
contain c number of qubits. For 1 6 j 6 c and if ki = 1 is the j-th 1 in k, then

• if ai (bi, ci)= 0 and i is even, prepares SA[j] (SB [j], SC [j]) = |0〉.
• if ai (bi, ci)= 1 and i is even, prepares SA[j] (SB [j], SC [j]) = |1〉.
• if ai (bi, ci)= 0 and i is odd, prepares SA[j] (SB [j], SC [j]) = |+〉.
• if ai (bi, ci)= 1 and i is odd, prepares SA[j] (SB [j], SC [j]) = |−〉.

(b) Alice, Bob and Charlie prepare sets of d decoy photons DA, DB and DC

respectively, where the decoy photons are randomly chosen from
{|0〉 , |1〉 , |+〉 , |−〉}. They randomly insert their decoy photons into their prepared
qubits sets and make new ordered sets S′A, S′B and S′C . They also choose random
permutations RA, RB , RC and apply those on their respective sets S′A, S′B , S′C to
get the sets S′′A, S′′B , S′′C respectively.

(c) Each of them sends its set to the next participant in a circular way. That is,
Alice sends S′′A to Bob, who sends S′′B to Charlie, who in turn sends S′′C to Alice.

(d) After receiving the qubits from the previous participant, each of them announces
the random permutations and the positions, states of their decoy photons.

(e) They apply the inverse permutations and verify the decoy photons to check
eavesdropping. If there exists any eavesdropper in the quantum channel, they
abort the protocol, else they go to the next step.

(f) Now everyone knows the basis of the qubits of SA, SB and SC . So they can
measure those qubits to get the exact message bits of the previous participant
from whom they got those qubits.
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• If the prepared qubit of Alice is |0〉(|1〉), then Alice guesses message bit of Bob and

Charlie (bi and ci) with probability 1 as follows:

Measurement result =


|Φ+

0 〉 or |Φ−0 〉 ⇒ bi = 0(1) and ci = 0(1);

|Φ+
1 〉 or |Φ−1 〉 ⇒ bi = 0(1) and ci = 1(0);

|Φ+
2 〉 or |Φ−2 〉 ⇒ bi = 1(0) and ci = 0(1);

|Φ+
3 〉 or |Φ−3 〉 ⇒ bi = 1(0) and ci = 1(0).

• If the prepared qubit of Alice is |+〉(|−〉), then Alice guesses the XOR function of

message bits of Bob and Charlie with probability 1 as follows:

Measurement result =

{
|Φ+

0 〉 or |Φ+
1 〉 or |Φ+

2 〉 or |Φ+
3 〉 ⇒ bi ⊕ ci = 0(1);

|Φ−0 〉 or |Φ−1 〉 or |Φ−2 〉 or |Φ−3 〉 ⇒ bi ⊕ ci = 1(0).

In this case, Charlie sends her encoded qubit to Alice (the encoding process is given in

Step 2a of Algorithm 1). Since Alice knows the basis of the received qubit from Charlie,

by measuring the qubit in the proper basis, Alice can know the message bit ci of Charlie.

Then from bi ⊕ ci, she can get bi also.

A similar thing happens for Bob and Charlie too. From the above discussion, we see that

for all the cases Alice, Bob, and Charlie can conclude the communicated bit of the other

parties with probability 1. Hence our protocol is giving the correct result.

4.3 Security Analysis of the Three Party Quantum Conference Protocol

In this section, we discuss the security of our proposed three-party quantum conference proto-

col against the common known attacks which A can adopt. If there exists some adversary in

the channel and the legitimate parties can detect her with a non-negligible probability, then

we call our protocol as secure.

We first show that if the UFP does some cheating, it can be detected by the players at

the error estimation phase of the protocol (Step 13 of Protocol 1). Let UFP measure each

of the three qubits QAi
, QBi

, QCi
in a randomly chosen basis (Z or X) instead of measuring

(QAi
, QBi

, QCi
) in B3 basis. Now UFP checks the individual measurement results and decides

to announce an M′[i] ∈ {|Φ+
0 〉 , |Φ

−
0 〉 , |Φ

+
1 〉 , |Φ

−
1 〉 , |Φ

+
2 〉 , |Φ

−
2 〉 , |Φ

+
3 〉 , |Φ

−
3 〉} corresponding to

the states which can arrive if he measures in the correct basis (see Table 7). For example,

if UFP measures in Z-basis and gets the result |0〉 |0〉 |1〉 then he announces M′[i] from the

set {|Φ+
1 〉 , |Φ

−
1 〉}. Again if he measures in X-basis and gets the result |−〉 |+〉 |+〉 then he

announces M′[i] from the set {|Φ−0 〉 , |Φ
−
1 〉 , |Φ

−
2 〉 , |Φ

−
3 〉}.

We now calculate the winning probability p of UFP for correctly guessing the i-th measure-

ment result M[i]. Let the preparation basis for the initial qubits QAi
, QBi

, QCi
be B and
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UFP chooses the basis B′. Then we have,

p = Pr(M′[i] =M[i])

= Pr(M′[i] =M[i]| B = B′) Pr(B = B′) + Pr(M′[i] =M[i]| B 6= B′) Pr(B 6= B′)

=
1

2
{Pr(M′[i] =M[i]| B = B′) + Pr(M′[i] =M[i]| B 6= B′)}

=
1

2
{Pr(M′[i] =M[i]| B = B′) + Pr(M′[i] =M[i]| B = X,B′ = Z)+

Pr(M′[i] =M[i]| B = Z,B′ = X)}

=
1

2

(
1 +

1

2
+

1

4

)
=

7

8
.

Therefore the legitimate parties can detect this eavesdropping with probability 1−pγm′ , which

is a non-negligible probability for large γm′.

Next, we consider four types of attacks (intercept-and-resend attack, entangle-and-measure

attack, Denial-of-Service (DoS) attack, man-in-the-middle attack) and show that our protocol

is secure against these attacks.

1. Intercept-and-resend attack

Here we consider the intercept-and-resend attack by an adversary A (other than the

UFP). In this attack model, A intercepts the qubits from the quantum channel, then

she measures those qubits and resends to the receiver. First let us assume that A
intercepts qA, measures the qubits in randomly chosen bases (Z or X) and notes down

the measurement results. Due to the measurements by A, let the sequence qA changes

to q′A and she resends q′A to UFP. After receiving the sequence q′A, Alice tells UFP some

random positions of the sent qubits and their preparation bases, then UFP measures

those qubits and announces the results. Let the i-th qubit qAi
prepared in basis BAi

, and

A chooses basis B′Ai
to measure qAi . At the time of security checking, UFP measures

q′Ai
in BAi

and gets the result q′′Ai
.

Thus the winning probability of A is

p1 = Pr(q′′Ai
= qAi

)

= Pr(q′′Ai
= qAi

| BAi
= B′Ai

) Pr(BAi
= B′Ai

) + Pr(q′′Ai
= qAi

| BAi
6= B′Ai

) Pr(BAi
6= B′Ai

)

=
1

2
{Pr(q′′Ai

= qAi
| BAi

= B′Ai
) + Pr(q′′Ai

= qAi
| BAi

6= B′Ai
)}

=
1

4

(
1 +

1

2

)
=

3

4
.

Similarly, when A intercepts qB and qC , then the winning probability of A is p2 = 3
4

and p3 = 3
4 respectively. Note that Alice, Bob, and Charlie apply random permutations

on their respective sequences of qubits, and those permutations are announced only if

the error estimation phase is passed after the qubits arrive at their destinations. So at

the time of sending those sequences, A can not just guess a key bit and measure the

qubits in the corresponding bases. Even if she gets some of the key bits, she can not

guess the corresponding bases for sequences of qubits qA, qB , qC . Therefore measuring
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the qubits of qA, qB , qC are independent events to A and thus the winning probability

of A for this attack is p1p2p3 = ( 3
4 )3. Alice, Bob, and Charlie randomly choose δm

number of rounds to estimate the error in the channel (Step 6 of Protocol 1), where

δ � 1 is a small fraction. Corresponding to these rounds, they tell the positions and

preparation bases of the qubits to the UFP . Next, the UFP measures each single qubit

state in proper basis and announces the result. Alice, Bob, and Charlie reveal their

respective qubits for these rounds and compare them with the results announced by

UFP and calculate the error rate in the quantum channel. Thus the probability that

they can detect the existence of A is 1−
(
3
4

)3δm
, and in this case the legitimate parties

terminate the protocol.

Next we consider A tries to eavesdrop in the second phase of transmission of qubits

(Step 2 of Algorithm 1). Suppose A intercepts the sequences S′′A, S
′′
B , S

′′
C from the

quantum channel, measures them in Z or X basis and then resends those sequences to

the receivers. Since each of S′′A, S
′′
B , S

′′
C contains d decoy photons, then these intermediate

measurements change the states of those decoy photons. Let the i-th decoy photon of

Alice be DAi prepared in basis B, where B = Z or X, and after A measures in B′
basis the state becomes D′Ai

. When Alice announces the preparation basis of DAi
, then

Bob measures D′Ai
in basis B and gets D′′Ai

. We now calculate the probability that

DAi = D′′Ai
as follows,

Pr(D′′Ai
= DAi)

= Pr(D′′Ai
= DAi | B = B′) Pr(B = B′) + Pr(D′′Ai

= DAi | B 6= B′) Pr(B 6= B′)

=
1

2
[Pr(D′′Ai

= DAi | B = B′) + Pr(D′′Ai
= DAi | B 6= B′)]

=
1

2

[
1 +

1

2

]
=

3

4
.

Thus the probability that Alice and Bob can detect the existence of A is 1−
(
3
4

)d
, where

d is the number of decoy photon. Similarly for the other sequences of qubits.

2. Entangle-and-measure attack

Let us discuss another attack, called entangle-and-measure attack, by an adversary A.

For this attack, A does the following: when Alice sends her sequence of qubits qA to

the UFP , then A takes each qubit qAi
, 1 6 i 6 m, from the channel and takes an

ancillary qubit |b〉, which is in state |0〉, from her own. A applies a CNOT gate with

control qAi
and target |b〉, and then she sends qAi

to the UFP . The joint state becomes

|00〉, |11〉, |Φ+〉 and |Φ−〉, corresponding to the state of qAi
, which are |0〉, |1〉, |+〉 and

|−〉 respectively. Also A does the same thing with the qubits of Bob and Charlie. After

the UFP receives all the qubits, Alice, Bob and Charlie randomly choose δm number of

rounds to estimate the error in channel (Step 6 of Protocol 1), where δ � 1 is a small

fraction. Corresponding to these rounds, they tell the positions and preparation bases

of the qubits to the UFP , who then measures each of the single qubit state in proper

basis and announces the result. Alice, Bob and Charlie reveal their respective qubits

for these rounds and compare with the results announced by the UFP.

Let UFP get the measurement result q′Ai
by measuring the state qAi

prepared in basis
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B. Now if the original state of qAi
is |0〉 or |1〉, then no error occurs. But if the original

state of qAi
is |+〉 or |−〉, then an error will occur with probability 1/2, as |Φ+〉 =

1√
2
(|00〉 + |11〉) = 1√

2
(|++〉 + |−−〉) and |Φ−〉 = 1√

2
(|00〉 − |11〉) = 1√

2
(|++〉 − |−−〉).

Thus Alice, Bob and Charlie abort the protocol. Let us calculate the probability of the

event q′Ai
= qAi .

p1 = Pr(q′Ai
= qAi

)

= Pr(q′Ai
= qAi | B = Z) Pr(B = Z) + Pr(q′Ai

= qAi | B = X) Pr(B = X)

=
1

2
[q′Ai

= qAi
| B = Z) + Pr(q′Ai

= qAi
| B = X)]

=
1

2

[
1 +

1

2

]
=

3

4
.

Similarly we can calculate p′2 = Pr(q′Bi
= qBi

) = 3
4 , p′3 = Pr(q′Ci

= qCi
) = 3

4 . Thus

for 1 6 i 6 m, the winning probability of A is p′1p
′
2p
′
3 =

(
3
4

)3
and the legitimate party

can detect him at the time of security checking with probability 1 −
(
3
4

)3δm
. Similar

argument follows for the second round of communication.

3. Denial-of-service (DoS) attack

In this attack model, A applies a random unitary operator U 6= I on the qubits to

tamper the original message and introduce noise in the channel. This attack can also

be detected in the same way as discussed above. Let U =
∑4
j=1 wjPj , where Pjs are the

Pauli matrices I, σx, iσy and σz for 1 ≤ j ≤ 4 respectively [54], and they form a basis

for the space of all 2×2 Hermitian matrices. Since U is unitary,
∑4
j=1 w

2
j = 1. Now the

winning probability of A is p4 =
∑4
j=1 hjw

2
j , where hjs are the winning probabilities

of A when she applies Pjs respectively. Thus h1 = 1, h2 = 1/2, h3 = 0 and h4 = 1/2

as I does not change any state, σx changes the states in Z-basis, iσy changes the

states in both Z-basis and X-basis, and σz changes the states in X-basis. Hence in the

security check process Alice, Bob and Charlie find this eavesdropping with probability

1− p43δm > 0. Similarly for the second phase of communication, the legitimate parties

can detect A with probability 1− p43d > 0, where d is the number of decoy states.

4. Man-in-the-middle attack

For this attack, A prepares three finite sequences of length m, of single qubit states

q′A, q
′
B and q′C , whose elements are randomly selected between |0〉 , |1〉 , |+〉 and |−〉.

When Alice, Bob, and Charlie send their prepared sequences of qubits qA, qB and qC
to the UFP , then A intercepts qA, qB , qC and keeps those with her. Instead of qA, qB
and qC , she sends q′A, q

′
B and q′C to the UFP . Note that Alice, Bob, and Charlie apply

random permutations on their respective sequences of qubits, and those permutations

are announced only if the error estimation phase is passed after the qubits arrive at

their destinations. So at the time of sending those sequences, A can not just guess

a key bit and prepare her qubits. Even if she gets some of the key bits, she can not

guess the corresponding bases for the sequences of qubits qA, qB , qC . Alice, Bob, and

Charlie randomly choose δm number of rounds to estimate the error in channel (Step 6

of Protocol 1), where δ � 1 is a small fraction. Corresponding to these rounds, they tell
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the positions and preparation bases of the qubits to the UFP. Next, the UFP measures

each single qubit state in proper basis and announces the result. Alice, Bob, and

Charlie reveal their respective qubits for these rounds and compare them with the

results announced by UFP. Since the elements of q′A, q
′
B , and q′C are randomly chosen

by A, thus they introduce error in the channel. Let us calculate the probability that

Alice, Bob and Charlie can detect this eavesdropping and so they abort the protocol.

For each i, let the i-th qubit of Alice be qAi prepared in basis BAi , and A prepare q′Ai

in basis B′Ai
. At the time of security checking, UFP measures q′Ai

in BAi
and gets the

result q′′Ai
. Now three cases may arise,

• If BAi
= B′Ai

and qAi
= q′Ai

, then q′′Ai
= qAi

with probability 1.

• If BAi
= B′Ai

and qAi
6= q′Ai

, then q′′Ai
= qAi

with probability 0.

• If BAi
6= B′Ai

, then q′′Ai
= qAi

with probability 1/2.

Thus the winning probability of A is

Pr(q′′Ai
= qAi)

= Pr(q′′Ai
= qAi | BAi = B′Ai

) Pr(BAi = B′Ai
) + Pr(q′′Ai

= qAi | BAi 6= B′Ai
) Pr(BAi

6= B′Ai
)

=
1

2
{Pr(q′′Ai

= qAi | BAi = B′Ai
) + Pr(q′′Ai

= qAi | BAi 6= B′Ai
)}

=
1

2
[Pr(q′′Ai

= qAi | B = B′, qAi = q′Ai
) Pr(qAi = q′Ai

)+

Pr(q′′Ai
= qAi

| B = B′, qAi
6= q′Ai

) Pr(qAi
6= q′Ai

) + 1/2]

=
1

2

[
1× 1

2
+ 0× 1

2
+

1

2

]
=

1

2
.

We can calculate the winning probabilities for qBi
and qCi

in a similar way. Hence

Alice, Bob and Charlie can detect this eavesdropping with probability 1−
(
1
2

)3δm
> 0.

Again, if A tries to eavesdrop in the second phase of transmission of qubits (Step 2 of

Algorithm 1), Alice, Bob and Charlie can detect it in the error estimation phase (Step 2e

of Algorithm 1) and abort the protocol.

Hence our protocol is secure against a dishonest UFP , intercept-and-resend attack, entangle-

and-measure attack, DoS attack and man-in-the-middle attack.

5 Multi-Party Quantum Conference

In this section, we generalize our three-party quantum conference protocol to a multi-party

quantum conference protocol. Suppose there are N (> 3) parties P1,P2, . . . ,PN ; each of them

wants to send one’s message to the other N−1 parties by taking help from an untrusted (N+

1)-th party P(N+1), who may be an eavesdropper. Let the m-bit messages of P1,P2, . . . ,PN
be M1 = M1,1M1,2 . . .M1,m; M2 = M2,1M2,2 . . .M2,m; . . . ; MN = MN,1MN,2 . . .MN,m

respectively, where Mi,j is the j-th message bit of the i-th party Pi. To do this task, first,

they have to share an m-bit key k = k1k2 . . . km and according to the key, they prepare their

sequence of qubits to encode their message bits. The encoding algorithm is the same as the

three-party case, i.e., Subroutine 1. Then they send their qubit sequences to P(N+1), who
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measures each N -qubit states in BN basis and announces the result publicly. Depending on

the measurement results, one’s message bits and key bits, each of them prepares another

sequence of qubits, which contains some encoded message bits and some decoy photons, and

sends it to the next party circularly. By measuring these qubits on appropriate bases, each of

them gets the message bits of the previous party, but the states of the qubits corresponding

to the message bits remain the same. Each adds some decoy photons to the message qubits

sequence of the previous party and send it to their next party circularly and repeat this

process for N − 2 times. From the previous measurement results announced by P(N+1), each

can get other N − 1 messages from the other N − 1 parties. Details are given in Section 5.1.

Note that for N = 3, the protocol is given in Section 5.1 reduces to the three-party protocol

of Section 4.1.

5.1 Protocol 2: N-Party Quantum Conference

The steps of the protocol are as follows:

1. P1,P2, . . . ,PN perform a Multi-party QKD protocol (e.g., [52]) to establish an m bit

secret key k = k1k2 . . . km between themselves.

2. Let the m-bit message of Pi be Mi = Mi,1Mi,2 . . .Mi,m for i = 1, 2, . . . , N .

3. For i = 1, 2, . . . , N , the i-th party Pi prepares the sequence of qubits Qi = {Qi[j]}mj=1 =

(Qi,1, Qi,2, . . . , Qi,m) at its end by using the Subroutine 1.

4. Pi chooses some random permutation and applies on its respective sequence of qubits

Qi and get new sequence of qubits qi, for i = 1, 2, . . . , N .

5. They send the prepared qubits q1, q2, . . . , qN to P(N+1).

6. P1,P2, . . . ,PN randomly choose δm number of common positions on the sequences

Q1, Q2, . . . , QN to estimate the error in the channel, where δ � 1 is a small fraction.

Corresponding to these rounds, they do the followings:

(a) Each participant tells the positions and the preparation bases of those qubits for

those rounds to P(N+1).

(b) P(N+1) measures each single qubit states in proper bases and announces the results.

(c) P1,P2, . . . ,PN reveal their respective qubits for these rounds and compare with

the results announced by P(N+1).

(d) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

7. P(N+1) asks P1,P2, . . . ,PN to tell the permutations which they have applied to their

sequences.

8. P(N+1) applies the inverse permutations, corresponding to the permutations chosen by

P1,P2, . . . ,PN , on q1, q2, . . . , qN to get Q1, Q2, . . . , QN respectively.

9. They discard the qubits corresponding to the above δm positions. Their remaining

sequences of prepared qubits are relabeled as Q1 = {Q1[i]}m′i=1, Q2 = {Q2[i]}m′i=1, . . .,

QN = {QN [i]}m′i=1, where m′ = (1− δ)m.
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10. They update their m-bit key to an m′-bit key by discarding δm number of key bits

corresponding to the above δm rounds. The updated key is relabeled as k = k1k2 . . . km′ .

11. For 1 6 i 6 m′, P(N+1) measures each N qubit states Q1,i, Q2,i, . . . , QN,i in basis BN
and announces the result.

12. P1,P2, . . . ,PN make a finite sequence {M[i]}m′i=1 containing the measurement results,

i.e., for 1 6 i 6 m′, M[i] ∈ {|Φ+
0 〉 , |Φ

−
0 〉 , |Φ

+
1 〉 , |Φ

−
1 〉 , . . . , |Φ

+
2(N−1)−1〉 , |Φ

−
2(N−1)−1〉} is

the i-th measurement result announced by P(N+1).

13. They randomly choose γm′ number of measurement results M[i] from the sequence

{M[i]}m′i=1 to estimate the error, where γ � 1 is a small fraction.

(a) They reveal their respective message bits for these rounds.

(b) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

14. Their remaining sequence of measurement results is relabeled as {M[i]}ni=1, where n =

(1− γ)m′.

15. They update their m′-bit key to an n-bit key by discarding γm′ number of key bits

corresponding to the above γm′ rounds. The updated key is relabeled as k = k1k2 . . . kn.

16. For 1 6 α 6 N , Pα uses the Algorithm 2 to recover others’ messages.

Note that in this protocol, there are two error estimation phases. The first one checks if

there is any adversary (other than P(N+1)) in the channel, who tries to get some information

about the messages or change the messages. In this case, if the 1st error estimation phase

does not pass, then the participants abort the protocol. Thus in this step, the motivation of

P(N+1) being correct is, there is no information gain if the parties abort the protocol. The

next error estimation phase is to check, if there is any error introduced by P(N+1).

5.2 Correctness and Security Analysis of N-Party Quantum Conference Proto-

col

In our proposed protocol, for 1 6 α 6 N , each Pα first prepares qubits corresponding to

his (her) message and shared key and then send those qubits to P(N+1). After that, P(N+1)

measures each N -qubit state (one from each Pα) in basis BN = {|Φ+
0 〉 , |Φ

−
0 〉 , |Φ

+
1 〉 , |Φ

−
1 〉 , . . . ,

|Φ+
2(N−1)−1〉 , |Φ

−
2(N−1)−1〉} and announces the result.

Now for 1 6 i 6 m, if ki = 0 (i.e preparation basis of each Qαi is {|0〉 , |1〉}) and the

N -qubit state is |j〉 = |j1〉 |j2〉 . . . |jN 〉 or |2N − 1− j〉 = |j′〉 = |j′1〉 |j′2〉 . . . |j′N 〉, then after

measurement, P(N+1) will get |Φ+
j 〉 and |Φ−j 〉 with probability 1/2.

Again if ki = 1 (i.e., the preparation basis of each Qαi is {|+〉 , |−〉}) and there are even

number of α, such that Qα,i = |−〉, then P(N+1) will get |Φ+
j 〉 (j ∈ {0, 1, . . . , 2(N−1) − 1})

with probability 1/2(N−1).

Else if ki = 1 (i.e., preparation basis of each Qαi is {|+〉 , |−〉}) and there are odd number

of α, such that Qα,i = |−〉, then P(N+1) will get |Φ−j 〉 (j ∈ {0, 1, . . . , 2(N−1) − 1}) with

probability 1/2(N−1).
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Algorithm 2: N -Party Message Reconstruction Algorithm for Pα
Input: Own message Mα, key k, joint measurement results {M[i]}ni=1 announced by

P(N+1).
Output: Others’ messages M1,M2, . . . ,M(α−1),M(α+1), . . . ,MN .

1. For 1 6 i 6 n, if ki = 0,
Pα can learn the i-th bit of others’ messages from the measurement result M[i] and his(her)
own message (same as three party quantum conference, e.g., see Table A.2 for N = 4).

2. For 1 6 i 6 n, if ki = 1,
from the measurement result M[i] and his (her) own message, Pα can learn the XOR value of
the i-th bit of all N messages. If M[i] = |Φ+

l 〉 for some l ∈ {0, 1, . . . , 2(N−1) − 1}, then the
value of χi = M1,i ⊕M2,i ⊕ . . .⊕MN,i becomes 0, else χi = 1. Let c = wt(k).

(a) Pα prepares an ordered set of c qubits Sα, corresponding to his (her) message bit where
the key bit is 1. He (she) prepares the qubits at his (her) end according to the following
strategy. For 1 6 j 6 c and if ki = 1 is the j-th 1 in k, then

• if Mα,i = 0 and i is even, prepares Sα[j] = |0〉.
• if Mα,i = 1 and i is even, prepares Sα[j] = |1〉.
• if Mα,i = 0 and i is odd, prepares Sα[j] = |+〉.
• if Mα,i = 1 and i is odd, prepares Sα[j] = |−〉.

(b) There are N − 2 rounds.

• 1st round:

1-1. Pα prepares a set of decoy photons Dα,1, where the decoy photons are
randomly chosen from {|0〉 , |1〉 , |+〉 , |−〉}. He (she) randomly inserts his (her)
decoy photons into Sα and makes new ordered sets Sα

1. Pα sends Sα
1 to

P(α+1)(Mod N) and receives S1
(α−1)(Mod N) from P(α−1)(Mod N).

1-2. After P(α+1)(Mod N) receives Sα
1, Pα sends the positions and states of Dα,1 to

P(α+1)(Mod N) through a public channel. Also Pα receives the positions and
states of D(α−1)(Mod N),1.

1-3. Then Pα verifies the decoy photons to check eavesdropping. If there exists any
eavesdropper in the quantum channel it aborts the protocol, else it goes to the
next step.

1-4. Pα measures the qubits of S(α−1)(Mod N) in proper bases and knows the
corresponding message bits of P(α−1)(Mod N). Also after measurements in the
proper bases, the states of the qubits of S(α−1)(Mod N) remain unchanged.

• l-th round (2 6 l 6 N − 2):

l-1. Pα prepares a set of decoy photons Dα,l, where the decoy photons are
randomly chosen from {|0〉 , |1〉 , |+〉 , |−〉}. He (she) randomly inserts his (her)
decoy photons into S(α−l+1)(Mod N) and makes new ordered sets Sα

l. Pα sends
Sα

l to P(α+1)(Mod N) and receives S(α−1)(Mod N)
l from P(α−1)(Mod N).

l-2. After P(α+1)(Mod N) receives Sα
l, Pα sends the positions and states of Dα,l to

P(α+1)(Mod N) through a public channel. Also Pα receives the positions and
states of D(α−1)(Mod N),l.

l-3. Then Pα verifies the decoy photons to check eavesdropping. If there exists any
eavesdropper in the quantum channel, it aborts the protocol. Else it goes to
the next step.

l-4. Pα measures the qubits of S(α−l+1)(Mod N) in proper bases and knows the
corresponding message bits of P(α−l+1)(Mod N). Also after measurements in the
proper bases, the states of the qubits of S(α−l+1)(Mod N) remain unchanged.

(c) Pα gets all the message bits of previous N − 2 participants. As Pα knows χi and its
own message bit, it gets all the other N − 1 message bits.
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For better understanding, we write the table for N = 4 in Appendix A (Table A.2).

Now for 1 6 i 6 m and 1 6 α 6 N , if ki = 0, we can say the following: if the prepared qubit

of Pα is |0〉 or |1〉, then Pα guesses message bit of other parties with probability 1 as follows:

M[i] = |Φ+
j 〉 or |Φ−j 〉 ⇒ the N -qubit state was |j〉 or |2N − 1− j〉. Since |2N − 1− j〉 =

|j̄1〉 |j̄2〉 . . . |j̄N 〉, from his/her own message bit, Pα can get the others’ message bits.

If the prepared qubit of Pα is |+〉 or |−〉, then Pα guesses the XOR function of message

bits of all parties with probability 1 as follows:

Measurement result =

{
|Φ+
j 〉 ⇒ M1,i ⊕M2,i ⊕ . . .⊕MN,i = 0;

|Φ−j 〉 ⇒ M1,i ⊕M2,i ⊕ . . .⊕MN,i = 1.

for some j ∈ {0, 1, . . . , 2(N−1) − 1}.
In this case, P1,P2, . . . ,P(α−1),P(α+2), . . . ,P(N−1),PN send their encoded qubits to Pα

(encoding algorithm is given in Step 2a of Algorithm 2). Since Pα knows the basis of the

received qubits, by measuring the qubits in the proper basis, Pα can know the message bits

M1,i,M2,i, . . . ,M(α−1),i,M(α+2),i, . . . ,MN,i. Then from the XOR value, Pα can get M(α+1),i

also.

From the above discussion, we see that for all cases, all parties can conclude the commu-

nicated bits of the other parties with probability 1. Hence our protocol is giving the correct

result.

The security analysis is the same as the three-party quantum conference protocol and so

we will not repeat it here.

6 Multi-party XOR Computation

In this section, we present a protocol for multi-party XOR computation. Suppose there

are N parties P1,P2, . . . ,PN ; each of them has an m-bit number. Let m-bit numbers of

P1,P2, . . . ,PN beM1 = M1,1M1,2 . . .M1,m; M2 = M2,1M2,2 . . .M2,m; . . . ;MN = MN,1MN,2 . . .

MN,m respectively, where Mi,j is the j-th bit of the i-th party Pi’s message. They want to

compute M1 ⊕M2 ⊕ . . .⊕MN securely, such that their numbers remain private. To execute

this protocol, they will take help from an untrusted (N + 1)-th party (or P(N+1)). Also, one

participant among P1,P2, . . . ,PN , must be semi-honest (i.e., it follows the protocol properly),

who have to play a vital role in this computation. Let P1 be the semi-honest participant.

Other participants are only allowed to prepare and send the states corresponding to their

numbers. If other participants do not follow the protocol properly (i.e., they will prepare

states corresponding to a number other than their own numbers), then the computed value

will be incorrect, which they definitely do not want.

To compute M1 ⊕ M2 ⊕ . . . ⊕ MN , first P1,P2, . . . ,PN have to share an 2m-bit key

k = k1k2 . . . k2m and according to the key they prepare their sequence of qubits to encode

their numbers. The encoding algorithm is almost similar to conference cases. Then they

send their qubit sequences to P(N+1), who measures each N -qubit states in BN basis and

announces the result publicly. Then from this announcement and the key, they get the XOR

value of their numbers. Details of this protocol are given in Section 6.1.
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6.1 Protocol 3: Multi-party XOR Computation

Input: The m-bit numbers M1 = M1,1M1,2 . . .M1,m; M2 = M2,1M2,2 . . .M2,m; . . . ; MN =

MN,1MN,2 . . .MN,m of N parties P1,P2, . . . ,PN respectively.

Output: M1 ⊕M2 ⊕ . . .⊕MN .

The steps of the protocol are as follows:

1. P1,P2, . . . ,PN perform a Multi-party QKD protocol [51] to establish an 2m bit secret

key k = k1k2 . . . k2m between themselves.

2. (a) If wt(k) = m, then calculate c = ⊕ki, 1 ≤ i ≤ 2m.

(b) Else if wt(k) > m, then c = 1.

(c) Else c = 0.

3. P1 prepares an m-bit random number k′ = k′1k
′
2 . . . k

′
m and sends it to P2, . . . ,PN by

using Algorithm 3 with the inputs k′ and k.

4. P1 calculates M1∆
= M1 ⊕ k′ and uses M1∆

as his/her number.

5. P1 generates a 2m bit string M ′1 from his/her number and the key in such a way that,

for 1 ≤ i ≤ 2m and 1 ≤ j ≤ m:

(a) if ki = c and j < m, then M ′1,i = M1∆,j , i = i+ 1, j = j + 1;

(b) else, M ′1,i = x, where x ∈ {0, 1} is random and i = i+ 1.

6. For 2 6 α 6 N : Pα generates 2m bit string M ′α from his/her own number as follows.

For 1 ≤ i ≤ 2m and 1 ≤ j ≤ m:

(a) if ki = c and j < m, then M ′α,i = Mα,j , i = i+ 1, j = j + 1;

(b) else, M ′α,i = x, where x ∈ {0, 1} is random and i = i+ 1.

7. Each P1,P2, . . . ,PN prepares the sequence of qubits Q1 = {Q1[i]}2mi=1 = (Q1,1, Q1,2, . . . ,

Q1,2m);Q2 = {Q2[i]}2mi=1 = (Q2,1, Q2,2, . . . , Q2,2m); . . . ;QN = {QN [i]}2mi=1 = (QN,1, QN,2,

. . . , QN,2m) at their end by using Algorithm 4.

8. P1,P2, . . . ,PN choose some random permutations and apply those on their respective

sequences of qubits Q1, Q2, . . . , QN and get new sequences of qubits q1, q2, . . . , qN . They

send their prepared sequences of qubits q1, q2, . . . , qN to P(N+1).

9. P1,P2, . . . ,PN randomly choose 2δm number of common positions on sequences Q1, Q2,

. . . , QN to estimate the error in the channel, where δ � 1 is a small fraction. Corre-

sponding to these rounds, they do the followings:

(a) Each participant tells the positions and preparation bases of those qubits for those

rounds to P(N+1).

(b) P(N+1) measures each single qubit states in proper bases and announces the results.

(c) P1,P2, . . . ,PN reveal their respective qubits for these rounds and compare with

the results announced by P(N+1).
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(d) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

10. P(N+1) asks P1,P2, . . . ,PN to tell the permutations which they have applied to their

sequences.

11. P(N+1) applies the inverse permutations, corresponding to the permutations chosen by

P1,P2, . . . ,PN , on q1, q2, . . . , qN to get Q1, Q2, . . . , QN respectively.

12. They discard the qubits corresponding to the above 2δm positions. Their remaining

sequences of prepared qubits are relabeled as Q1 = {Q1[i]}2m′i=1 , Q2 = {Q2[i]}2m′i=1 , . . .,

QN = {QN [i]}2m′i=1 where m′ = (1− δ)m.

13. They update their 2m-bit key to an 2m′-bit key by discarding 2δm number of key

bits corresponding to the above 2δm rounds. The updated key is relabeled as k =

k1k2 . . . k2m′ .

14. For 1 6 i 6 2m′, P(N+1) measures each N qubit states Q1,i, Q2,i, . . . , QN,i in basis BN
and announces the result.

15. P1,P2, . . . ,PN make a finite sequence {M[i]}2m′i=1 containing the measurement results,

i.e., for 1 6 i 6 2m′, M[i] ∈ {|Φ+
0 〉 , |Φ

−
0 〉 , |Φ

+
1 〉 , |Φ

−
1 〉 , . . . , |Φ

+
2(N−1)−1〉 , |Φ

−
2(N−1)−1〉} is

the i-th measurement result announced by P(N+1).

16. They randomly choose 2γm′ number of measurement results M[i] from the sequence

{M[i]}2m′i=1 to estimate the error, where γ � 1 is a small fraction.

(a) For these rounds, they reveal respective bits of their numbers.

(b) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

17. Their remaining sequence of measurement results is relabeled as {M[i]}2ni=1, where n =

(1− γ)m′.

18. They update their 2m′-bit key to an 2n-bit key by discarding 2γm′ number of key

bits corresponding to the above 2γm′ rounds. The updated key is relabeled as k =

k1k2 . . . k2n.

19. For 1 6 i 6 2n,

(a) if ki = c̄, then each participant can learn i-th bit of others’ number from the

measurement result M[i] and their own number (see Algorithm 5.1).

(b) Else, from the measurement resultM[i], each participant can learn the XOR value

of the i-th bit of all N numbers. IfM[i] = |Φ+
l 〉 for some l ∈ {0, 1, . . . , 2(N−1)−1},

then the value of χi = M1∆,i ⊕M2,i ⊕ . . .⊕MN,i becomes 0, else χi = 1.

20. Combining the knowledges from Step-19b and the key, they can get M1∆⊕M2⊕. . .⊕MN .

21. P1,P2, . . . ,PN calculate M1 ⊕M2 ⊕ . . .⊕MN = k′ ⊕M1∆
⊕M2 ⊕ . . .⊕MN .
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Algorithm 3: Algorithm for Sending a Number to (N − 1)-Participant

Input: Random number k′ = k′1k
′
2 . . . k

′
m chosen by P1, key k = k1k2 . . . k2m.

Output: For 2 6 α 6 N , Pα has k′.

1. To encode random number k′, P1 prepares N − 1 sets of qubits
Qα = Qα,1Qα,2 . . . Qα,m for Pα (2 6 α 6 N), by using the following strategy: for
1 6 i 6 m and 2 6 α 6 N ,

(a) if k′i = 0 and ki = 0⇒ Qα,i = |0〉
(b) if k′i = 1 and ki = 0⇒ Qα,i = |1〉
(c) if k′i = 0 and ki = 1⇒ Qα,i = |+〉
(d) if k′i = 1 and ki = 1⇒ Qα,i = |−〉

2. For 2 6 α 6 N , P1 chooses a set of decoy photons Dα and randomly inserts those
decoy photons into Qα and gets new set of qubits qα.

3. P1 sends qα to Pα.

4. All Pα inform P1 that they receive qα.

5. P1 announces the positions and states of the decoy photons.

6. Each Pα measures the decoy photons in their appropriate bases and calculate the error
in the channel (or check that if there is any eavesdropper).

7. If the error rate is in a tolerable range, then Pα measures the qubits of Qα in their
appropriate bases (determined by the key) and get k′.

Algorithm 4: Message Encoding Algorithm for Multi-party XOR Computation

Input: M ′α = 2m-bit message of Pα, key k = k1k2 . . . k2m.
Output: Sequence of qubits Qα = {Qα[i]}2mi=1 = (Qα,1, Qα,2, . . . , Qα,2m).

1. (a) If wt(k) = m, then calculate c = ⊕ki, 1 ≤ i ≤ 2m.

(b) Else if wt(k) > m, then c = 1.

(c) Else c = 0.

2. For 1 6 i 6 2m,

(a) if M ′α,i = 0 and ki = c̄, set Q1,i (or Q2,i . . . or QN,i = |0〉;
(b) if M ′α,i = 1 and ki = c̄, set Q1,i (or Q2,i . . . or QN,i = |1〉;
(c) if M ′α,i = 0 and ki = c, set Q1,i (or Q2,i . . . or QN,i = |+〉;
(d) if M ′α,i = 1 and ki = c, set Q1,i (or Q2,i . . . or QN,i = |−〉.
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6.2 Correctness and Security Analysis of the Quantum Protocol for Multi-party

XOR computation

The correctness of this protocol directly follows from the previous one (i.e., multi-party quan-

tum conference protocol). Also, we can say this protocol is secure against intercept-and-resend

attack, disturbance attack, entangle-and-measure attack, and dishonest P(N+1), as this is a

part of the previous protocol discussed in the last section.

Now, we only have to prove that, no one can get the computed XOR-value other than the

legitimate parties.

Let an adversary A constructs a 2m-bit string τ = τ1τ2 . . . τ2m, from the measurement

results in such a way that, if M[i] = |Φ+
l 〉 for some l ∈ {0, 1, . . . , 2(N−1) − 1}, then τi = 0,

else if M[i] = |Φ−l 〉 for some l ∈ {0, 1, . . . , 2(N−1) − 1}, then τi = 1. Now m-bit string

η = M1∆
⊕M2 ⊕ . . . ⊕MN is a subsequence of τ . If A can guess η from τ with some low

probability, then also it can not get any information about µ = M1 ⊕M2 ⊕ . . . ⊕MN as

µ = η ⊕ k′, where k′ is unknown to him/her. Then from the notion of security of the famous

“one time pad” protocol [53], we can say that our proposed protocol is secure.

It is to be noted that, if P1 is dishonest, then he/she can cheat and get the exact XOR

value, whereas the other participants get some random value instead of the exact XOR value.

This thing happens in the following way: P1 calculates M1∆
= M1 ⊕ R, where R 6= k′ is a

random m-bit number and it is used instead of k′. Then P1 follows all the next steps of the

protocol. At the end of the protocol, everyone get M1∆
⊕M2 ⊕ . . .⊕MN . Then P2, . . . ,PN

calculate M1 ⊕M2 ⊕ . . . ⊕MN = k′ ⊕M1∆
⊕M2 ⊕ . . . ⊕MN , which is not true as R 6= k′.

But, P1 calculates M1⊕M2⊕ . . .⊕MN = R⊕M1∆ ⊕M2⊕ . . .⊕MN , which is correct. That

is, after executing the protocol, P1 has the exact value of M1 ⊕M2 ⊕ . . . ⊕MN and other

participants have the value of k′ ⊕R⊕M1 ⊕M2 ⊕ . . .⊕MN , which is nothing but a random

number.

Thus here we are assuming that P1 is semi-honest, that is, follows the protocol properly.

Hence each participant gets the computed XOR-value exactly, but no other party can not get

any information about the value.

7 Conclusion

In this paper, first we identify that the MDI-QD protocol presented in [34] is not secure

against the intercept-and-resend attack, and we modify the protocol to make it secure against

this attack. Then we present three more protocols, two of them for the quantum conference,

i.e., securely and simultaneously exchanging secret messages between the participants. The

first protocol is for three parties and then we generalize it to a multi-party scenario, i.e., for

N -parties (where N > 3). Another protocol presented in this paper is for multi-party XOR

computation, where N -parties can compute the XOR function of their own numbers, but

their numbers remain private. All the protocols discussed above are proven to be correct and

secure.

References

1. W.K. Wootters and W.H. Zurek (1982), A single quantum cannot be cloned, Nature, 299(5886),
pp. 802-803.



N. Das and G. Paul 229

2. C.H. Bennett and G. Brassard (2014), Quantum cryptography: public key distribution and coin
tossing, Theor. Comput. Sci., 560(12), pp. 7-11.

3. P.W. Shor and J. Preskill (2000), Simple proof of security of the BB84 quantum key distribution
protocol, Physical review letters, 85(2), p. 441.

4. A.K. Ekert (1991), Quantum cryptography based on Bells theorem, Physical review letters, 67(6),
p. 661.

5. C.H. Bennett, G. Brassard and N.D. Mermin (1992), Quantum cryptography without Bells theorem,
Physical review letters, 68(5), p. 557.

6. C.H. Bennett (1992), Quantum cryptography using any two nonorthogonal states., Physical review
letters, 68(21), p. 3121.

7. G.L. Long and X.S. Liu (2002), Theoretically efficient high-capacity quantum-key-distribution
scheme, Physical Review A, 65(3), p. 032302.

8. P. Xue, C.F. Li, and G.C. Guo (2002), Conditional efficient multiuser quantum cryptography
network, Physical Review A, 65(2), p. 022317.

9. F.G. Deng and G.L. Long (2004), Bidirectional quantum key distribution protocol with practical
faint laser pulses, Physical Review A, 70(1), p. 012311.

10. W.Y. Hwang (2003), Quantum key distribution with high loss: toward global secure communica-
tion., Physical Review Letters, 91(5), p. 057901.

11. H.K. Lo, X. Ma and K. Chen (2005), Decoy state quantum key distribution, Physical review letters,
94(23), p. 230504.

12. H.K. Lo, M. Curty and B. Qi (2012), Measurement-device-independent quantum key distribution,
Physical review letters, 108(13), p. 130503.

13. J. Barrett, L. Hardy and A. Kent (2005), No signaling and quantum key distribution, Physical
review letters, 95(1), p. 010503.

14. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N.J. Cerf and P. Grangier (2003), Quantum
key distribution using gaussian-modulated coherent states, Nature, 421(6920), pp. 238-241.

15. K.J. Boström and T. Felbinger (2005), Ping-pong coding, Phys. Rev. Lett., 89(quant-ph/0209040),
p. 187902.

16. F.G. Deng, G.L. Long and X.S. Liu (2003), Two-step quantum direct communication protocol using
the einstein-podolsky-rosen pair block, Physical Review A, 68(4), p. 042317.

17. F.G. Deng and G.L. Long (2004), Secure direct communication with a quantum one-time pad,
Physical Review A, 69(5), p. 052319.

18. C. Wang, F.G. Deng, Y.S. Li, X.S. Liu and G.L. Long (2005), Quantum secure direct communi-
cation with high-dimension quantum superdense coding, Physical Review A, 71(4), p. 044305.

19. C. Wang, F.G. Deng and G.L. Long (2005), Multi-step quantum secure direct communication using
multi-particle green–horne–zeilinger state, Optics communications, 253(1-3), pp. 15-20.

20. J. Wang, Q. Zhang and C.J. Tang (2006), Quantum secure direct communication based on order
rearrangement of single photons, Physics Letters A, 358(4), pp. 256-258.

21. G.L. Long, F.G. Deng, C. Wang, X.H. Li, K. Wen, and W.Y. Wang (2007), Quantum secure direct
communication and deterministic secure quantum communication, Frontiers of Physics in China,
2(3), pp. 251-272.

22. L.X. Han, L.C. Yan, D.F. Guo, Z. Ping, L.Y. Jie, and Z.H. Yu (2007), Quantum secure direct
communication with quantum encryption based on pure entangled states, Chinese Physics, 16(8),
p. 2149.

23. N. Das and G. Paul (2020), Improving the Security of “Measurement-Device-Independent Quantum
Communication without Encryption”, arXiv preprint arXiv:2006.05263.

24. N. Das and G. Paul (2020), Cryptanalysis of Quantum Secure Direct Communication Protocol with
Mutual Authentication Based on Single Photons and Bell States, arXiv preprint arXiv:2007.03710.

25. B.A. Nguyen (2004), Quantum dialogue, Physics Letters A, 328(1), pp. 6-10.
26. Z. Zhang (2004), Deterministic secure direct bidirectional communication protocol, arXiv preprint

quant-ph/0403186.
27. M.Z. Xiao, Z.Z. Jun, and L. Yong (2005), Quantum dialogue revisited, Chinese Physics Letters,



230 Secure multi-party quantum conference and XOR computation

22(1), p. 22.
28. Y. Xia, C.B. Fu, S. Zhang, S.K. Hong, K.H. Yeon, and C.I. Um (2006), Quantum dialogue by using

the ghz state, arXiv preprint quant-ph/0601127.
29. J. Xin and Z. Shou (2006), Secure quantum dialogue based on single-photon, Chinese Physics,

15(7), p. 1418.
30. X. Yan, S. Jie, N. Jing and S.H. Shan (2007), Controlled secure quantum dialogue using a pure

entangled ghz states, Communications in Theoretical Physics, 48(5), p. 841.
31. Y. G. Tan and Q.Y. Cai (2008), Classical correlation in quantum dialogue, International Journal

of Quantum Information, 6(02), pp. 325-329.
32. F. Gao, F. Guo, Q. Wen and F. Zhu (2008), Revisiting the security of quantum dialogue and

bidirectional quantum secure direct communication, Science in China Series G: Physics, Mechanics
and Astronomy, 51(5), pp.559-566.

33. G. Gao (2010), Two quantum dialogue protocols without information leakage, Optics communica-
tions, 283(10), pp. 2288-2293.

34. A. Maitra (2017), Measurement device-independent quantum dialogue, Quantum Information Pro-
cessing, 16(12), p. 305.

35. N. Das and G. Paul (2020), Two Efficient Measurement Device Independent Quantum Dialogue
Protocols, arXiv preprint arXiv:2005.03518.

36. T. Gao, F.L. Yan and Z.X. Wang (2005), Deterministic secure direct communication using ghz
states and swapping quantum entanglement, Journal of Physics A: Mathematical and General,
38(25), p. 5761.

37. X.R. Jin, X. Ji, Y.Q. Zhang, S. Zhang, S.K. Hong, K.H. Yeon and C.I. Um (2006), Three-party
quantum secure direct communication based on ghz states, Physics Letters A, 354(1-2), pp. 67-70.

38. G. Ting, Y.F. Li and W.Z. Xi (2005), A simultaneous quantum secure direct communication scheme
between the central party and other m parties, Chinese Physics Letters, 22(10), p. 2473.

39. X. Tan, X. Zhang and C. Liang (2014), Multi-party quantum secure direct communication, In
2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (pp.
251-255). IEEE.

40. Z.J. Zhang, Y. Li and Z.X Man (2005), Multiparty quantum secret sharing, Physical Review A,
71(4), p. 044301.

41. A. Banerjee, K. Thapliyal, C. Shukla and A. Pathak (2018), Quantum conference, Quantum In-
formation Processing, 17(7), p. 161.
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Appendix A

Table A.1. Comparison between quantum conference proposed in [41] and our protocol.

Quantum conference [41] Our protocol
Uses 2m(N − 1) unitary operators No unitary operator
n-qubit entangled state, n ≥ (N − 1)m Single qubit states
Approximate 1 qubit for 1-bit information Approximate 3/2 qubit for 1-bit information
No key required One initial key is required
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