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Quantum key distribution (QKD) offers a very strong property called everlasting security,

which says if authentication is unbroken during the execution of QKD, the generated
key remains information-theoretically secure indefinitely. For this purpose, we propose

the use of certain universal hashing based MACs for use in QKD, which are fast, very

efficient with key material, and are shown to be highly secure. Universal hash functions
are ubiquitous in computer science with many applications ranging from quantum key

distribution and information security to data structures and parallel computing. In QKD,

they are used at least for authentication, error correction, and privacy amplification.
Using results from Cohen [Duke Math. J., 1954], we also construct some new families

of ε-almost-∆-universal hash function families which have much better collision bounds

than the well-known Polynomial Hash. Then we propose a general method for converting
any such family to an ε-almost-strongly universal hash function family, which makes them

useful in a wide range of applications, including authentication in QKD.
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1 Introduction

Highly sensitive data, such as government, military, and medical data, may have to be kept

secure for decades. But the attacker can store all these data (storage is cheap) and after having

enough computational power break the systems. Quantum key distribution (QKD) provides a

solution for this fundamental weakness of classical systems. Sharing some secret information
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by two or more parties for encrypting and authenticating messages is typically accomplished

through the key agreement protocols in public-key cryptography, such as Diffie–Hellman key

exchange (DH) or elliptic-curve Diffie–Hellman (ECDH). However, the security of public-key

cryptography schemes rely on the computational difficulty of certain mathematical problems

(namely, the discrete logarithm problem, the elliptic-curve discrete logarithm problem, and

the integer factorization problem) which can be solved in polynomial time on a quantum

computer running Shor’s algorithm. So, if sufficiently powerful quantum computers are ever

realized, then we can no longer rely on such key agreement protocols.

QKD, on the other hand, enjoys a higher level of security than key agreement protocols

based on public-key cryptography, as it is not based on the difficulty assumptions of certain

problems. In fact, QKD relies on the foundations of quantum mechanics for its security. Thus,

it is provably secure even against an adversary with unbounded computational power. Most

importantly, QKD enjoys a powerful property called everlasting security [1, 2, 3], which says

that, if authentication remains secure during the execution of the QKD protocol, then the

resulting key is information-theoretically secure; breaking authentication after the protocol

has output the key will not change the security of the generated key. So even a computationally

unbounded adversary cannot recover the key after the QKD execution. This is of particular

importance for security of highly sensitive data, such as government, military, and medical

applications, where data may have to be kept secure for decades.

QKD is also becoming increasingly feasible to implement. For example, in the U.S.A., the

company Batelle, partnered with the company Quantique, installed a QKD network between

Batelle’s offices in Columbus, Ohio and Washington, DC [4]. The largest QKD network is in

China connecting Bejing, Jifan, Shanghai, and Hefei [4].

The universal hash function families constructed in this paper are applicable in various

steps of the QKD protocol, since universal hashing is used not only for authentication in QKD,

but also in other steps of QKD like error correction and privacy amplification. In a QKD

network, there are both quantum and classical channels of communication. First, the parties

obtain some quantum states and measure them. Using classical channels, they determine

which results of their measurements can produce secret bits, and discard the rest. Then

they perform error correction and privacy amplification, both of which utilize universal hash

functions. Error correction utilizes error correcting codes to fix any noise which may occur

during communication. These codes have a direct correspondence to universal hash functions.

Privacy amplification compresses the raw key material with a shared secret universal hash

function, in order to compress the adversary’s knowledge on the key to an arbitrarily small

amount. It is crucial that these steps are authenticated with a pre-shared secret. Otherwise,

an eavesdropper could perform a man-in-the-middle (MITM) attack, and completely recover

the key material. Thus, the classical channel needs to be authenticated, usually using the

original MACs proposed by Wegman and Carter [5] (where the message is first hashed with

an ε-almost-strongly universal hash function and then encrypted with a one-time pad), since

the Wegman–Carter construction is information-theoretically (unconditionally) secure, has

low key usage, and also is very fast.

To authenticate the QKD protocols, Price et al. [6] suggest using the output of AES-256

evaluated at a unique nonce to encrypt the hash value (see the WCBK paradigm discussed in

Section 3) instead of using a one-time pad. While this version of QKD, which they call BB84-
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AES [6], is no longer information-theoretically secure, Price et al. [6] argue that, in practice,

this is acceptable in terms of security. Because some QKD networks are already utilizing

computationally secure encryption schemes (c.f. [7, 8]), they claim computationally secure

authentication would not degrade the security of the system. Furthermore, Price et al. [6]

claim that using BB84-AES would increase resilience against Denial-of-Service (DoS) attacks,

which QKD systems are known to be vulnerable to. They also offer several suggestions for

implementing BB84-AES, and discuss some security implications.

In this paper, we suggest applying some computationally secure universal hashing based

MACs for authentication in QKD. Because of the everlasting security property of QKD [1,

2, 3], using a computationally secure MAC will still result in a secure key (which even a

computationally unbounded adversary cannot recover after the QKD protocol execution) if

the MAC is not broken during the QKD execution. A portion of the key generated by

QKD can also be used as key material for authentication in future rounds of QKD. So the

subsequent rounds of QKD can still achieve everlasting security, even if computationally secure

authentication is employed in the prior rounds.

There are more appealing universal hashing based MACs which can be employed in QKD.

For example, Decrypted–Wegman–Carter with Davies–Meyer (DWCDM), discussed in Sec-

tion 3, offers increased security and low key usage for relatively little additional cost of

computation. This would help impede an adversary from breaking authentication quickly

enough to perform MITM. It has been shown [9] that ε-almost-strongly universal (ε-ASU)

hash functions are universally composable (UC) [10], and therefore they are sufficient for au-

thentication in QKD systems. Because ε-ASU hash function families are the main ingredient

in the Wegman–Carter construction, DWCDM, and other universal hashing based MACs, we

propose a method for constructing such families. Using some results of Cohen [11] on the

number of solutions of certain quadratic congruences, we construct some new ε-almost-∆-

universal (ε-A∆U) hash function families which have much better collision bounds than the

well-known Polynomial Hash. Then we propose a general method for converting any such

families to ε-ASU hash function families. Because the latter are the strongest relaxation of

strong universality, the ε-ASU families constructed in this paper can be used for authentica-

tion in QKD, and everywhere universal hashing is needed (see Section 2 for a wide range of

applications).

The rest of this paper is organized as follows. In Section 2, we formally define universal

hashing, its variants, and discuss some of their applications. We also prove a result which

relaxes the preconditions of the MACs proposed by Datta et al. [12], and also helps us

to simplify their security bounds. In Section 3, we describe some of the main methods for

constructing MACs based on universal hashing, and propose the use of certain universal

hashing based MACs, including the modified variants of some MACs proposed by Datta et al.

[12] for authentication in QKD. These MACs are fast, very efficient with key material, and

are shown to be highly secure. In Section 4, we define our families of universal hash functions

that we call Quadratic Hash (QH) and Odd Quadratic Hash (OQH), and investigate their

universality using some deep results of Cohen [11]. Finally, in Section 5, we propose a general

method for converting any ε-A∆U hash function family to an ε-ASU hash function family,

which makes them useful for many applications including authentication in QKD.
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2 Universal hashing, its variants, and applications

Universal hash functions satisfy some special collision resistance properties. These hash

functions, introduced by Carter and Wegman [13], have many applications in computer sci-

ence, including quantum key distribution [14, 9, 6, 4], cryptography and information security

[15, 16, 17, 18, 19, 20, 21, 22, 23, 24], error-correcting codes [25, 26], pseudorandomness

[27, 28], complexity theory [29, 30], randomized algorithms [31, 32], data structures [33, 34],

and parallel computing [35, 36, 37].

We now provide a formal definition of universal hashing and its variants [13, 17, 38, 23,

39, 26]. For a set X , we write x ← X to denote that x is chosen uniformly at random from

X .

Definition 2.1. Let H be a family of functions from a finite domain D to a finite range

R, and let ε be a constant such that 1
|R| ≤ ε < 1.

• The family H is a universal family of hash function if the probability, over a random

choice of a hash function from H, that two distinct elements of D collide (i.e., have the

same hash value) is at most 1/|R| (that is, distinct elements of D do not collide too

often). Formally, H is universal if for any two distinct x, y ∈ D, we have Prh←H [h(x) =

h(y)] ≤ 1
|R| . Also, H is an ε-almost universal (ε-AU) family of hash functions if for any

two distinct x, y ∈ D, we have Prh←H [h(x) = h(y)] ≤ ε. Note that an ε-AU family, for

a sufficiently small ε, is close to being universal.

• Suppose R is a finite additive Abelian group. The family H is a ∆-universal family

of hash functions if, given a randomly chosen hash function from H, the difference

of the hash values of any two distinct elements of D is uniformly distributed in R.

Formally, H is ∆-universal if for any two distinct x, y ∈ D, and all b ∈ R, we have

Prh←H [h(x)−h(y) = b] = 1
|R| , where ‘−’ denotes the group subtraction operation. Also,

H is an ε-almost-∆-universal (ε-A∆U) family of hash functions if for any two distinct

x, y ∈ D, and all b ∈ R, we have Prh←H [h(x)− h(y) = b] ≤ ε. When R = Zk2 = {0, 1}k
for some k, the operation ‘−’ can be replaced by ‘⊕’ (XOR), and H is also called ε-almost

XOR universal (ε-AXU) or ε-otp-secure.

• The family H is a strongly universal (or 2-independent) family of hash functions if, given

a randomly chosen hash function from H, the hash values of any two distinct elements

of D are independent and uniformly distributed in R. Formally, H is strongly universal

if for any two distinct x, y ∈ D, and all a, b ∈ R, we have Prh←H [h(x) = a, h(y) = b] =
1
|R|2 . Also, H is an ε-almost-strongly universal (ε-ASU) family of hash functions if for

any two distinct x, y ∈ D, and all a, b ∈ R, we have

– Prh←H [h(x) = a] = 1
|R| (that is, given a randomly chosen h from H, h(x) is

uniformly distributed in R), and

– Prh←H [h(x) = a |h(y) = b] ≤ ε (that is, given a randomly chosen h from H, h(x)

is hard to guess even if h(y) is known).

Equivalently, H is ε-ASU if for any two distinct x, y ∈ D, and all a, b ∈ R, we have

– Prh←H [h(x) = a] = 1
|R| , and
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– Prh←H [h(x) = a, h(y) = b] ≤ ε
|R| .

We will also use the following definitions from Datta et al. [12].

Definition 2.2. Let H be a family of functions from a finite domain D to a finite range

R, and let ε be a constant such that 1
|R| ≤ ε < 1.

• The family H is ε regular if for any x ∈ D, and r ∈ R, we have Prh←H [h(x) = r] ≤ ε,

• The family H is ε 3-way regular if for any x, y, z ∈ D, and r ∈ R, we have Prh←H [h(x)⊕
h(y)⊕ h(z) = r] ≤ ε.

However, we show that these properties are directly implied by ε-almost-∆-universality.

In Section 3.3, we use this to relax the preconditions of the MACs proposed by Datta et al.

[12], and simplify their security bounds.

Theorem 2.3. If H is an ε-A∆U family of hash functions from a domain D to a range R,

where R is an Abelian group with subtraction operation ⊕, then H is also ε regular, and ε

3-way regular.

Proof. Let x, y, z be distinct arbitrary elements of D, r be an arbitrary element of R, and

h ∈ H. Define r1 = r ⊕ h(z). Since r, h(z) ∈ R, we also have r1 ∈ R, because R is closed

under ⊕. Note that

h(x)⊕ h(y)⊕ h(z) = r

if and only if

h(x)⊕ h(y) = r1.

Therefore,

Prh←H [h(x)⊕ h(y)⊕ h(z) = r] = Prh←H [h(x)⊕ h(y) = r1] ≤ ε,

where the inequality is implied by the assumption that H is ε-A∆U. So, H is ε 3-way regular.

Similarly,

Prh←H [h(x) = r] ≤ ε

is equivalent to

Prh←H [h(x)⊕ h(y) = r2] ≤ ε,

where r2 = r ⊕ h(y). So, H is ε regular.

As mentioned above, applications of universal hashing have been found in many fields, but

they have received the most attention in the construction of message authentication codes

(MACs). A MAC algorithm outputs an authentication tag computed by the sender using a

message and the secret key. The receiver verifies the integrity of the message by recomputing

the tag using the secret key and the received message, and comparing it to the tag received.

There are three main approaches for constructing MACs, namely, constructions based on

block ciphers (like CBC-MAC [40], CMAC [41, 42, 43], and PMAC [44]), collision resistant

hash functions (like HMAC [45]), and universal hash functions (like UMAC [15], GMAC [46],

and Poly1305 [47]).
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3 MAC constructions based on universal hashing

MACs based on universal hashing are among the highly secure and fastest MAC algorithms.

Some of the main methods for constructing such MACs are the Wegman–Carter–Brassard–

Krawczyk paradigm, the Decrypted–Wegman–Carter with Davies–Meyer paradigm and their

variants. These constructions are described in the following subsections, but first we need to

describe pseudorandom functions and their security.

3.1 Pseudorandom functions

Pseudorandom functions (PRFs) are vital tools in cryptography. A PRF F : X × K → Y
maps an input block x ∈ X using a key k ∈ K, to an output block y ∈ Y. The idea is that if

k is chosen uniformly at random, then the output of the function should also appear random.

Here, F is a family of functions, where choosing a key k defines a specific function fk : X → Y.

Let Funs[X ,Y] be the set of all functions from X to Y. Here, and in the rest of the

paper, what is meant by an efficient adversary, is a probabilistic polynomial time (PPT)

adversary. We measure the security of the PRF family F against an efficient adversary A by

A’s advantage in distinguishing F from Funs[X ,Y] as described in the following experiment

(we follow closely the description of [48]).

For b = 0, 1, Experiment b includes the following steps:

• The challenger first picks a function f as follows:

if b = 0, the challenger randomly selects a key k ← K which defines some f = fk ∈ F ;

if b = 1, the challenger randomly selects f ← Funs[X ,Y].

• The adversary queries the challenger with input blocks x1, x2, . . . ∈ X , and the chal-

lenger responds with the output of f on these inputs, f(x1), f(x2), . . . ∈ Y.

• The adversary guesses whether f is a PRF or a truly random function by outputting a

bit b′ = 0 or b′ = 1.

The advantage of A with respect to F is defined as,

PRFadv[A, F ] := |Pr[E0]− Pr[E1]|,

where Eb is the event that the adversary outputs 1 in Experiment b. In other words, adver-

sary’s advantage measures its ability in distinguishing a random function of the PRF family

from a truly random function.

Theorem 3.1. The PRF family F is secure if for any efficient adversary A, PRFadv[A, F ]

is negligible.

It is important to note that the adversary’s queries can be adaptive in this experiment.

That is, it does not have to send all queries at once, it may wait on the response of one query

to decide the next. If X = Y, and every fk : X → X is a bijection, then F is instead called

a family of pseudorandom permutations (PRP) or a block cipher. The security of PRPs is

analogous to the security of PRFs, except an adversary attempts to distinguish F from the

set of random permutations over X , Perms[X ].
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3.2 Wegman–Carter–Brassard–Krawczyk paradigm

Wegman and Carter [5] proposed the following method for MAC construction. In this scheme,

the legitimate parties share a secret hash function chosen uniformly at random from a strongly

universal family of hash functions, and a secret encryption key (a sequence of random one-

time pads). A message is authenticated by first hashing it with the shared hash function

and then encrypting the resulting hash value with the shared encryption key (shared one-

time pad). Note that one-time pads are of the length of the hash value rather than of the

length of the message. The resulting encrypted hash value, called an authentication tag, is

transmitted together with the message (as a pair). Upon receiving this pair, the legitimate

party recomputes and validates it. This scheme is provably secure in the information-theoretic

setting. In fact, such a MAC algorithm is information-theoretically secure, that is, even an

adversary who has unbounded computational power cannot forge the MAC with probability

greater than the collision probability of the hash family [5].

Brassard [49] constructed a computationally secure MAC by replacing the one-time pad

by the output of a pseudorandom function (PRF) applied to a nonce. Also, Krawczyk [38]

showed that one can use an ε-A∆U family in this construction; in this case the adversary

cannot forge the MAC with a probability greater than ε. The Wegman–Carter–Brassard–

Krawczyk (WCBK) paradigm is described formally as follows:

Let H be an ε-A∆U family of hash functions and F be a PRF family. The secret key for

this construction is a pair 〈h, f〉, with h ← H and f ← F . The authentication tag t for a

message m is computed as a pair

t = 〈r, h(m)⊕ f(r)〉,

where r is a nonce (typically, a counter which is incremented by one following the generation

of each authentication tag).

Krawczyk [38] proved the following result (in a slightly different form) about the security

of this MAC algorithm (see also [50], [5]).

Theorem 3.2. In the WCBK paradigm, the probability that an efficient adversary A who

performs qm black-box MAC queries and qv black-box verification queries to successfully forge

the MAC is independent of qm and is at most

PRFadv[A, F ] + qvε.

Thus, if the PRF is secure, WCBK enjoys exceptional security, however, the security of

F is a limitation in concrete implementations. Often, in practice, a PRP is used instead of a

PRF, and by the well known PRP-PRF Switching Lemma, if F consists of n-bit PRPs, then

PRFadv[A, F ] ≤ PRPadv[A, F ] +
(qm + qv)

2

2n+1
,

which introduces a birthday-type term. This poses a problem in lightweight environments,

since a MAC which uses a 64-bit block cipher would only be secure up to 232 MAC queries,

which is usually insufficient. Furthermore, it is critically important that nonces are not reused

in this scheme. If an adversary sees tags t1 = 〈r, h(m1) ⊕ f(r)〉 and t2 = 〈r, h(m2) ⊕ f(r)〉,
then they can calculate

t1 ⊕ t2 = 〈0, h(m1)⊕ h(m2)〉,
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which reveals information about h (two-time pad attack). For example, if H is polynomial-

based, then

t1 ⊕ t2 ⊕ 〈0, h(m1)〉 ⊕ 〈0, h(m2)〉 = 〈0, 0〉,

which gives a polynomial equation with a root at the index of the hash function and with

coefficients which depend on t1, t2, m1, and m2 [51].

This type of MAC construction is used in various applications and standards. For example,

Galois/Counter Mode (GCM) [46] (which is used in IPsec, SSH, and TLS) and Poly1305 [47]

(which is used in Google Chrome’s TLS, and later was added to OpenSSH) use this scheme.

3.3 Decrypted–Wegman–Carter with Davies–Meyer

In order to overcome the WCBK paradigm’s weakness to nonce misuse, the tag can be en-

crypted with a PRF as a final layer of security. That is,

t = 〈r, f2(h(m)⊕ f1(r))〉,

where f1, f2 are PRFs and h comes from an ε-A∆U family of hash functions. This construction

has the same security bound as the WCBK paradigm when nonces are never reused, and is

secure up to the birthday bound when nonces are reused [52].

Cogliati and Seurin [52] slightly modify this construction by replacing f2 with an n-bit

block cipher E, and f1 with the Encrypted–Davies–Meyer construction based on E, which

then gives the tag:

t = 〈r, Ek1(h(m)⊕ Ek2(r)⊕ r)〉.

They call this scheme Encrypted–Wegman–Carter with Davies–Meyer (EWCDM), and show

that it enjoys beyond birthday bound security when nonces are not reused, and birthday

bound security when they are reused.

Theorem 3.3. In the EWCDM paradigm, when nonces are not reused, the probability that

an efficient adversary A who performs qm black-box MAC queries and qv verification queries

to successfully forge the MAC is at most

2PRPadv[A, E] +
5q

3/2
m

2n
+
εqm

2
+

6qv
2n

+ εqv.

Furthermore, when nonces are reused, then the probability of a successful forgery is at most

2PRPadv[A, E] +
2(qm + qv)

2

2n
+

(qm + qv)
2ε

2
.

Later, Mennink and Neves [53] proved an improved bound on EWCDM using Patarin’s

Mirror Theory [54, 55] and H-coefficients technique [56], showing that, in the nonce-respecting

setting, the MAC is secure up to approximately 2n MAC and verification queries. In the

nonce-misuse setting, the MAC remains secure up to roughly 22n/3 MAC queries, and 2n

verification queries.

Datta et al. [12] introduced a variant of EWCDM called Decrypted–Wegman–Carter with

Davies–Meyer (DWCDM). The goal of this variant is to use less key material than EWCDM,

which uses three keys, two for the PRPs, and one for the hash function. In DWCDM, the

outer encryption is replaced with decryption, so we only need one PRP key. It is important
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to note that DWCDM cannot use a full n-bit nonce, instead it uses a 2n/3-bit nonce, padded

with 0s. This is to avoid a birthday bound forging attack (see [12] Sec. 4.1). The tag for

DWCDM is then calculated as

t = 〈r,Dk1(h(m)⊕ Ek1(r)⊕ r)〉.

DWCDM is secure up to roughly 22n/3 MAC queries, and 2n verification queries in the nonce-

respecting setting, and it is secure roughly up to 2n/2 MAC queries, and 2n verification queries

in the nonce-misuse setting.

Theorem 3.4. Suppose that H is a ε1 regular, ε2-A∆U, and ε3 3-way regular hash function

family. Then in the DWCDM paradigm, when nonces are not reused, the probability that an

efficient adversary A who performs qm black-box MAC queries and qv verification queries to

successfully forge the MAC is at most

PRPadv[A, E] +
2qm
22n/3

+ qmε1 +
2qmε2
2n/3

+ max{qvε1, 2qvε2, 2qvε3,
qm

22n/3
}+

qm + qv
2n

+
5q3m
22n

.

(3.1)

Furthermore, when nonces are reused, then the probability of a successful forgery is at most

PRPadv[A, E] + q2mε2 +
4q2m
2n

+ qmε1 +
qm + qv

2n
.

1K-DWCDM, also introduced by Datta et al. [12], further reduces key usage. It uses the

same structure, but instead of picking the hash function key kh randomly, it is derived from

the PRP as kh = Ek1(1). 1K-DWCDM is secure up to roughly 22n/3 MAC queries, and 2n

verification queries in the nonce-respecting setting.

Theorem 3.5. Suppose that H is a ε1 regular, ε2-A∆U, and ε3 3-way regular hash function

family. Then in the 1K-DWCDM paradigm, when nonces are not reused, the probability that

an efficient adversary A who performs qm black-box MAC queries and qv verification queries

to successfully forge the MAC is at most

PRPadv[A, E] +
3qm
2n/3

+
ε2q

2
m

2n
+

qv
2n−1

+ max{qvε1, 2qvε2, 2qvε3,
qm

22n/3
}+ qvε1 +

qm
2n

+
5q3m
22n

.

(3.2)

The security of 1K-DWCDM in the nonce-misuse setting is similar to that of DWCDM.

The regularity and 3-way regularity requirements for DWCDM and 1K-DWCDM seem to

be restrictive, as not many universal hash functions have been analysed with these properties

in mind, but we have shown, in Theorem 2.3, that these properties are directly implied by

ε-almost-∆-universality. Using Theorem 2.3, we can simplify the bounds given above, with

relaxed requirements.

Theorem 3.6. Suppose that H is an ε-A∆U hash function family, and E is a block cipher.

Then in the nonce-respecting setting, the probability of forging DWCDM is at most

PRPadv[A, E] +
2qm
22n/3

+

(
qm +

2qm
2n/3

)
ε+

max{2qvε,
qm

22n/3
}+

qm + qv
2n

+
5q3m
22n

,

(3.3)
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and the probability of forging 1K-DWCDM is at most

PRPadv[A, E] +
3qm
2n/3

+

(
qv +

q2m
2n

)
ε+

qv
2n−1

+

max{2qvε,
qm

22n/3
}+

qm
2n

+
5q3m
22n

.

(3.4)

Furthermore, in the nonce-misuse setting, the probability of forging DWCDM is at most

PRPadv[A, E] + (qm + q2m)ε+
4q2m
2n

+
qm + qv

2n
.

It is important to note that 1K-DWCDM uses significantly less key material than the

original EWCDM, which is of particular importance in QKD, because the less key material is

used, the more material is available for further communication. One reason Wegman–Carter

MAC is often used in QKD is because of its low key usage, but the 1K-DWCDM paradigm

recycles one key to authenticate multiple messages, making it even more appealing in this

regard. Furthermore, as mentioned earlier, so long as authentication is not broken during

the QKD protocol execution, the generated key remains information-theoretically secure, so

the beyond birthday bound security makes it a good candidate for use in QKD. For example,

AES-256 is believed to be secure in the quantum setting, and even a quantum adversary

utilizing Grover’s algorithm could defeat AES-256 only with probability roughly 2−128. So

choosing AES-256 would make this MAC secure up to roughly 2512/3 MAC queries and 2256

verification queries, which is much better than the WCBK paradigm previously suggested for

use in QKD.

3.4 Benefits of using universal hashing

Constructing MACs based on universal hash functions is stunning from several points of view.

Such MACs have desirable security properties, because the properties of universal hashing

and the encryption step complement one another. Universal hashing compresses the message

to a short string with mathematically proven collision bounds, unlike cryptographic primitives

which rely on hardness assumptions. Furthermore, compressing the message to a short string

means that the encryption step is fast, because it only needs to be performed on a short input.

For the same reason, a strong encryption method can be chosen without much of a cost in

performance. Finally, as Black et al. [15] put it, “the underlying cryptographic primitive is

used only on short and secret messages, eliminating the typical avenues of attack. Under this

approach security and efficiency are not conflicting requirements—quite the contrary, they go

hand in hand.” Because universal hashing is usually cheaper to implement, it is appealing

for devices with limited power. For these reasons, universal hashing based MACs have been

utilized extensively in the rising field of lightweight cryptography [57], for which NIST has

published a call for algorithms, since many existing cryptography schemes do not perform

well on constrained devices. In conclusion, universal hashing based MACs are among the

most highly secure and fastest MAC algorithms.

4 (Odd) Quadratic Hash

Let Zn be the ring of integers modulo n defined as Zn = {0, . . . , n− 1}. An almost universal

hash functions family which has received much attention is Polynomial Hash (PH). In this
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family, each message block mi and the key x are in Zp (p is prime), and all operations are

performed in Zp. Formally,

Definition 4.1. (PH) Given a prime p,

PH := {hx : Zd+1
p → Zp |x ∈ Zp},

where

hx(m) :=

d∑
i=0

mix
i (mod p),

for every message m = 〈m0,m1, . . . ,md〉 ∈ Zd+1
p and every key x ∈ Zp.

It is well-known that the family PH is d
p -almost-∆-universal. Polynomial Hash is widely

attributed to Wegman and Carter [5], Dietzfelbinger et. al. [58], den Boer [59], Bierbrauer

et. al. [60], and Taylor [61]. But we have discovered that it has been already introduced by

Mehlhorn and Vishkin [62] back in 1984 (of course, Wegman and Carter [5] already studied

the degree one case). Polynomial Hash has been used in GCM [46] and Poly1305 [47].

In this section, we define two other families of universal hash functions that we call

Quadratic Hash (QH) and Odd Quadratic Hash (OQH), and investigate their universal-

ity. It turns out that these new families give much better collision bounds than the Polynomial

Hash.

Definition 4.2. Let p be an odd prime and k be a positive integer. We define the family

Quadratic Hash (QH) as follows:

QH := {hx : Zkp → Zp |x ∈ Zkp},

where

hx(m) :=

k∑
i=1

mix
2
i (mod p),

for any x = 〈x1, x2, . . . , xk〉 ∈ Zkp and any m = 〈m1,m2, . . . ,mk〉 ∈ Zkp.

The Hamming distance between two strings (vectors) of equal length is the number of

positions at which the corresponding symbols (coordinates) are different. In our case, our

strings are vectors in Zkp, and the Hamming distance between vectors x,y ∈ Zkp is the number

of coordinates where xi 6= yi. Now we define a variant of Quadratic Hash (QH) where the

input is from a subset O of Zkp with the property that the Hamming distance between any

two distinct vectors in O is an odd integer.

Definition 4.3. Let p be an odd prime and k be a positive integer. Also, let O be a subset

of Zkp where the Hamming distance between any two distinct vectors in O is an odd integer.

We define the family Odd Quadratic Hash (OQH) as follows:

OQH := {hx : O → Zp |x ∈ Zkp},

where

hx(m) :=

k∑
i=1

mix
2
i (mod p),

for any x = 〈x1, x2, . . . , xk〉 ∈ Zkp and any m = 〈m1,m2, . . . ,mk〉 ∈ O.

In order to study the universality of QH and OQH we need some results on the number

of solutions of quadratic congruences which are discussed in the next subsection.
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4.1 Quadratic congruences

Let us first review some definitions that are needed in the rest of the paper.

Definition 4.4. Let a, n ∈ Z. We say that a is a quadratic residue modulo n, if a is

congruent to a perfect square mod n. That is, there exists x ∈ Zn such that

a ≡ x2 (mod n).

If a is not a quadratic residue, it is called a quadratic nonresidue.

Definition 4.5. Let p be an odd prime and a an integer. The Legendre Symbol
(
a
p

)
is a

quadratic character defined as follows.

(
a

p

)
=


0, if a ≡ 0 (mod p);

1, if a is a non-zero quadratic residue modulo n;

−1, if a is a quadratic nonresidue modulo n.

Definition 4.6. Let a be an integer, and n a positive integer with prime factorization

n = pα1
1 pα2

2 · · · pαr
r , where pi is prime and αi ≥ 1 for all 1 ≤ i ≤ r. The Jacobi Symbol

(
a
n

)
is

a generalization of the Legendre symbol to composite moduli:(a
n

)
=

(
a

p1

)α1
(
a

p2

)α2

· · ·
(
a

pr

)αr

.

Note that if
(
a
n

)
= −1, then a is a quadratic nonresidue modulo n, but if

(
a
n

)
= 1, a is

not necessarily a quadratic residue modulo n.

Two integers are said to be coprime (relatively prime) if their greatest common divisor

(gcd) is 1. We use 0 to denote the vector of all zeroes. We say that an integer n is square-free,

if it is divisible by no perfect squares other than 1. That is, if n has prime factorization

pα1
1 · · · pαr

r , then αi = 1 for all 1 ≤ i ≤ r.
The Euler’s totient function ϕ(n) is defined as the number of positive integers up to n

that are coprime to n. The Möbius function µ : N \ {0} → {−1, 0, 1} is defined as follows:

µ(n) =


−1, if n is square-free with an odd number of prime factors;

1, if n is square-free with an even number of prime factors;

0, if n is not square-free.

Denote Nk(b, n) as the number of solutions to the quadratic congruence

a1x
2
1 + a2x

2
2 + · · ·+ akx

2
k ≡ b (mod n),

where a1, a2, . . . , ak, b are integers and n ≥ 1 is an odd integer.

Cohen [11] proved the following interesting and deep results for the number of solutions

of the above congruence (see also [63]).

Theorem 4.7. ([11]) If b ≡ 0 (mod n) and all of the coefficients ai are coprime to the

modulus n, then

Nk(0, n) =

n2m−1
∑
d | n

(
(−1)ma1···ak

d

)
ϕ(d)
dm , k = 2m;

n2m
∑
q2 | n

ϕ(q2)
q2m+1 , k = 2m+ 1.
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Theorem 4.8. ([11]) If gcd(b, n) = 1 and all of the coefficients ai are coprime to the modulus

n, then

Nk(b, n) =

n
2m−1∑

d | n

(
(−1)ma1···ak

d

)
µ(d)
dm , k = 2m;

n2m
∑
q | n

(
(−1)m+1a1···ak·b

q

)
µ2(q)
qm , k = 2m+ 1.

What happens when some of the coefficients ai are zero mod n (and so not coprime to n)?

This simple but important case can be addressed as follows.

Theorem 4.9. Suppose j of the coefficients ai are non-zero and coprime to n for some

1 ≤ j ≤ k. Then

Nk(b, n) = nk−jNj(b, n).

Proof. Clearly the values of the k − j variables xi with zero-coefficients do not impact the

solutions, since they add nothing to the sum, hence there are |Zn|k−j = nk−j choices for

the values of these variables. Because the non-zero coefficients are coprime to n, there are

Nj(b, n) solutions for these remaining variables.

4.2 Universality of (Odd) Quadratic Hash

In this subsection, using the above results, we investigate the universality of OQH and QH.

Theorem 4.10. OQH is a universal family of hash functions.

Proof. Let m = 〈m1,m2, . . . ,mk〉 ∈ O and m′ = 〈m′1,m′2, . . . ,m′k〉 ∈ O with m 6= m′. Define

a = 〈a1, a2, . . . , ak〉 = m−m′. We have

hx(m)− hx(m′) = 0

⇔
k∑
i=1

mix
2
i −

k∑
i=1

m′ix
2
i ≡ 0 (mod p)

⇔
k∑
i=1

aix
2
i ≡ 0 (mod p).

Since m,m′ ∈ O, there are an odd number non-zero coordinates in a. Let a have j

non-zero coordinates, where 1 ≤ j ≤ k and j is odd. Denote these non-zero coordinates as

ai1 , . . . , aij . Since j is odd and 1 ≤ j ≤ k, we have j = 2m+ 1 for some integer m ≥ 0.

To bound the collision probability, we must find the maximum number of solutions x ∈ Zkp
to the congruence above over all choices of a ∈ Zkp \ {0}, where a has an odd number of non-

zero coordinates. All non-zero coefficients are coprime to p, so by Theorem 4.9, the number

of solutions to the above congruence is exactly

Nk(0, p) = pk−jNj(0, p).
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Applying Theorem 4.7,

Nj(0, p) = p2m
∑
q2 | p

ϕ(q2)

q2m+1

= p2m
(
ϕ(12)

12m+1

)
= p2m.

Since |Zkp| = pk, the probability of two distinct messages colliding over a randomly chosen

x is

pk−jp2m

pk
=
p2m

pj
=

p2m

p2m+1
=

1

p
.

Theorem 4.11. QH is
(

2
p −

1
p2

)
-almost-universal.

Proof. Let m = 〈m1,m2, . . . ,mk〉 ∈ Zkp and m′ = 〈m′1,m′2, . . . ,m′k〉 ∈ Zkp with m 6= m′.

Define a = 〈a1, a2, . . . , ak〉 = m−m′. We have

hx(m)− hx(m′) = 0

⇔
k∑
i=1

mix
2
i −

k∑
i=1

m′ix
2
i ≡ 0 (mod p)

⇔
k∑
i=1

aix
2
i ≡ 0 (mod p).

Since m 6= m′, not all coordinates of a are zero. Let a have j non-zero coordinates, where

1 ≤ j ≤ k. Denote these non-zero coordinates as ai1 , . . . , aij .

To bound the collision probability, we must find the maximum number of solutions x ∈ Zkp
to the congruence above over all choices of a ∈ Zkp \ {0}. All non-zero coefficients are coprime

to p, so by Theorem 4.9, the number of solutions to the above congruence is exactly

Nk(0, p) = pk−jNj(0, p).

So all that remains is to bound Nj(0, p). Using Theorem 4.7, we can split the proof into the

case where j is even and the case where j is odd. First, suppose that j is even. Since j is

even and 1 ≤ j ≤ k, we have j = 2m for some integer m ≥ 1. By Theorem 4.7, we have the

following bound:
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Nj(0, p) = p2m−1
∑
d | p

(
(−1)mai1 · · · aij

d

)
ϕ(d)

dm

= p2m−1
[(

(−1)mai1 · · · aij
1

)
ϕ(1)

1m
+

(
(−1)mai1 · · · aij

p

)
ϕ(p)

pm

]
= p2m−1

[
1 +

(
(−1)mai1 · · · aij

p

)
p− 1

pm

]
≤ p2m−1

[
1 +

p− 1

pm

]
= p2m−1 + pm − pm−1.

Since |Zkp| = pk, the probability of two distinct messages colliding over a randomly chosen

x is

pk−j(p2m−1 + pm − pm−1)

pk
=
p2m−1 + pm − pm−1

pj

=
p2m−1 + pm − pm−1

p2m

=
1

p
+
p− 1

pm+1
,

which is maximized when m = 1. Thus the probability of collision in this case is bounded

above by
1

p
+
p− 1

p2
=

2

p
− 1

p2
.

Now suppose that j is odd, and thus j = 2m+ 1 for some integer m ≥ 0. This is precisely

the proof of Theorem 4.10, where we got a collision bound of 1
p .

The proof is now complete.

Interestingly, QH is also almost ∆-universal.

Theorem 4.12. QH is 2
p -almost-∆-universal.

Proof. Let m = 〈m1,m2, . . . ,mk〉 ∈ Zkp and m′ = 〈m′1,m′2, . . . ,m′k〉 ∈ Zkp with m 6= m′.

Define a = 〈a1, a2, . . . , ak〉 = m−m′. For every b ∈ Zp, we have

hx(m)− hx(m′) = b

⇔
k∑
i=1

mix
2
i −

k∑
i=1

m′ix
2
i ≡ b (mod p)

⇔
k∑
i=1

aix
2
i ≡ b (mod p).

Since m 6= m′, not all coordinates of a are zero. Let a have j non-zero coordinates, where

1 ≤ j ≤ k. Denote these non-zero coordinates as ai1 , . . . , aij .
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To bound the collision probability, we must find the maximum number of solutions x ∈ Zkp
to the congruence above over all choices of a ∈ Zkp \ {0} and all b ∈ Zp. Note that the case

b = 0 was proved earlier in Theorem 4.11, which implies that
(

2
p −

1
p2

)
is an upper bound

on the collision probability in this case. So assume that b ∈ Zp \ {0}, which means that

gcd(b, p) = 1. Then by Theorem 4.9, we have that the number of solutions is

pk−jNj(b, p).

We must once again split the proof into the case where j is odd and the case where j is

even. First suppose that j is even. Since j is even and 1 ≤ j ≤ k, we have j = 2m for some

integer m ≥ 1. Then applying Theorem 4.8 we see that

Nj(b, p) = p2m−1
∑
d | p

(
(−1)mai1 · · · aij

d

)
µ(d)

dm

= p2m−1
[(

(−1)mai1 · · · aij
1

)
µ(1)

1m
+

(
(−1)mai1 · · · aij

p

)
µ(p)

pm

]
= p2m−1

[
1 +

(
(−1)mai1 · · · aij

p

)
−1

pm

]
≤ p2m−1

[
1 +

1

pm

]
= p2m−1 + pm−1.

Since |Zkp| = pk, the probability of two distinct messages colliding over a randomly chosen

x is

pk−j(p2m−1 + pm−1)

pk
=
p2m−1 + pm−1

pj

=
p2m−1

p2m
+
pm−1

p2m

=
1

p
+

1

pm+1
,

which is maximized when m = 1. So 1
p + 1

p2 is an upper bound on the collision probability in

this case.

Now suppose that j is odd. Since j is odd and 1 ≤ j ≤ k, we have j = 2m + 1 for some

integer m ≥ 0. Applying Theorem 4.8 we get

Nj(b, n) = p2m
∑
e | p

(
(−1)m+1ai1 · · · aij · b

e

)
µ2(e)

em

= p2m
[(

(−1)m+1ai1 · · · aij · b
1

)
µ2(1)

1m
+

(
(−1)m+1ai1 · · · aij · b

p

)
µ2(p)

pm

]
= p2m

[
1 +

(
(−1)m+1ai1 · · · aij · b

p

)
1

pm

]
≤ p2m

[
1 +

1

pm

]
= p2m + pm.
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Now, the probability of two distinct messages colliding over a randomly chosen x is

pk−j(p2m + pm)

pk
=
p2m + pm

pj

=
p2m + pm

p2m+1

=
1

p
+

1

pm+1
,

which is maximized when m = 0. So 2
p is an upper bound on the collision probability in this

case.

Now comparing the three upper bounds we have found, we get an upper bound for all

cases of max{ 2p −
1
p2 ,

1
p ,

2
p} = 2

p .

4.3 Comparing QH and OQH with PH

A hash function in QH hashes the message m as
∑k
i=1mix

2
i (mod p), but the values x2i only

need to be computed the first time x is used, and can be stored for subsequent evaluations of

the hash function. Furthermore, while 2
p is an absolute bound on the differential probability

of QH, as the Hamming distance between messages increases, the differential probability

approaches 1
p , so in practice, we can expect the differential probability to be somewhere

between 1
p and 2

p . Additionally, when the Hamming distance is odd, which should occur

roughly half of the time, collision probability is exactly 1
p . So the collision probability of QH

will be close to 1
p in practice, while for Polynomial Hash (PH) the collision probability is d

p ,

where d can be quite large depending on the length of the message.

5 Converting ε-A∆U to ε-ASU

In this section, we prove a general result using which we can convert any ε-A∆U family to an

ε-ASU family. Our result is a generalization of the following result by Etzel et al. [64] which

seems to have remained underappreciated.

Theorem 5.1. Let the family

H = {hk : D → R | k ∈ K}

be a ∆-universal family of hash functions, where K is the key space and R is a finite additive

Abelian group. Then the family

H ′ = {h′k,w : D → R | k ∈ K,w ∈ R},

where

h′k,w(x) = hk(x) + w,

and ‘+’ denotes the group addition operation, is strongly universal.

In order to generalize the above result, we also need the following result (see [65]):

Theorem 5.2. Let G be an Abelian group, and let ξ1, ξ2, . . . , ξt be independent random vari-

ables which take on values in G. If one of ξi is uniformly distributed in G, then the sum

ξ1 + ξ2 + · · ·+ ξt is also uniformly distributed in G.
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More generally, Sherstnev [65] gave necessary and sufficient conditions on the distributions

of independent random variables ξ1, ξ2, . . . , ξt, taking on values in an Abelian group G, under

which the sum ξ1 + ξ2 + · · ·+ ξt is uniformly distributed in G.

Now, we are ready to prove our result.

Theorem 5.3. Let the family

H = {hk : D → R | k ∈ K}

be an ε-almost-∆-universal family of hash functions, where K is the key space and R is a

finite additive Abelian group. Then the family

H ′ = {h′k,w : D → R | k ∈ K,w ∈ R},

where

h′k,w(x) = hk(x) + w,

and ‘+’ denotes the group addition operation, is ε-almost-strongly universal.

Proof. For any two distinct x, y ∈ D, and all a, b ∈ R, we have

Prh′
k,w←H′ [h′k,w(x) = a, h′k,w(y) = b]

= Prh′
k,w←H′ [hk(x) + w = a, hk(y) + w = b]

= Prh′
k,w←H′ [hk(x)− hk(y) = a− b, w = a− hk(x)]

= Prh′
k,w←H′ [hk(x)− hk(y) = a− b] · Prh′

k,w←H′ [a = w + hk(x)].

Since H is ε-almost-∆-universal, we have

Prh′
k,w←H′ [hk(x)− hk(y) = a− b] ≤ ε.

Also, by Theorem 5.2 we have

Prh′
k,w←H′ [a = w + hk(x)] =

1

|R|
.

Consequently,

Prh′
k,w←H′ [h′k,w(x) = a, h′k,w(y) = b] ≤ ε

|R|
.

Hence, the result follows.

Corollary 5.4. Using Theorem 5.3, we can convert any ε-almost-∆-universal family, in par-

ticular the ε-almost-∆-universal families studied in this paper, to ε-almost-strongly universal

families and so make them useful for applications in QKD and many other areas. This can

be done by adding a uniform value w ← R to the hash functions, where R is the range of the

corresponding hash functions.
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Conclusion

In contrast to the key agreement protocols in public-key cryptography which their security

relies on the computational difficulty of certain mathematical problems, QKD relies on the

foundations of quantum mechanics and so provides a higher level of security. Authentication

schemes play a critical role in QKD, as secure communication is impossible without it, since

otherwise an adversary could stand in the middle and intercept all communications with-

out the legitimate parties realizing it. The information-theoretically secure Wegman–Carter

construction is of particular importance, as it is completely secure even against an adversary

with unbounded computational power. However, the authentication scheme must only remain

unbroken during the execution of the QKD protocol to guarantee everlasting security of the

generated key. Price et al. [6] suggest using the computationally secure WCBK paradigm

for authentication in QKD. This not only increases the efficiency of key material used, but

also significantly increases resilience against certain DoS attacks. We propose using the 1K-

DWCDM scheme and its variants for this purpose instead, as they offer increased security

over WCBK for a minimal cost in performance.

We also introduced QH and OQH and analyzed their collision properties using results

from Cohen [11]. The family QH is 2
p -A∆U, where p is the prime modulus. While 2

p is an

upper bound on the differential probability, it is based on the worst case, when the Hamming

distance between strings is minimal. Thus, in practice, the differential probability should

be lower on average. Interestingly, in the case of OQH, when all message pairs have an

odd Hamming distance (which should occur roughly half of the time), collision probability is

exactly 1
p . This should also lower the collision probability of QH in practice.

We also generalize the method of Etzel et al. [64] to convert ε-A∆U families to ε-ASU fam-

ilies. The latter families can be suitably applied wherever almost strongly universal hashing

is needed, such as authentication schemes in QKD.

Finally, as stated by Price et al. [6], we also believe that the intersection of modern and

quantum cryptography should be explored more thoroughly, as it is largely untapped, and

has the potential to offer improvements to real-world algorithms in both fields.
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