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We present a construction of highly entangled states defined on the topology of a platonic
solid using tensor networks based on ancillary Absolute Maximally Entangled (AME)

states. We illustrate the idea using the example of a quantum state based on AME(5,2)

over a dodecahedron. We analyze the entropy of such states on many different partitions,
and observe that they come on integer numbers and are almost maximal. We also observe

that all platonic solids accept the construction of AME states based on Reed-Solomon

codes since their number of facets, vertices and edges are always a prime number plus
one.
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1 Entanglement and Tensor Networks

The way multipartite entanglement is distributed over a quantum system is key to understand

its emerging properties and, also, to devise good classical approximation strategies. A suc-

cessful technology to achieve this dual goal is to represent quantum states as Tensor Networks

(TN) [1, 2]. Indeed, TN provide one of the most powerful methods to represent classically a

quantum state as a contraction of a series of tensors that take indices in an ancillary space.

It can be argued that TN attempt to describe a quantum state on a basis, different from the

computational one, that rightly fits the entanglement properties of the system. Therefore, the

technology of TN can be considered as a bona fide method to exploit the actual Kolmogorov

complexity of a quantum state. They provide a most economical and adaptive description of

quantum correlations.

Symmetries play a relevant role when choosing the appropriate TN to describe a quantum

state. Most of condensed matter systems are defined on regular lattices, favoring the use of

variants of TN such as Matrix Product States (MPS), or Projected Entangled Pair States

(PEPS). At criticality, scale invariance is better captured by Multiscale Entanglement Renor-

malization Ansatz (MERA). In general, TN should adapt to the geometry dictated by the

Hamiltonian of the system to implement the area law of the entanglement entropy. Although

there are exceptions to this rule such as the rainbow state [3, 4].
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1082 Platonic entanglement

It is perfectly correct to try TN which are not based on entangling only pairs of ancillary

degrees of freedom. For instance, it may be advantageous to use TN based on three-body

entangled units to describe triangular lattices. It can be argued that standard pair-wise

entangling units, as in MPS and PEPs, will describe any entangling structure given a sufficient

large ancillary dimension. This is indeed true, thought such an approach may not be the most

efficient one. Some efforts have been devoted to analyze the properties of TN based on GHZ

and W states to analyze frustrated systems [5]. Multipartite ancillary states have also been

used to represent solutions to 3SAT problems [6]

A more sophisticated use of TN has been explored in the context of holography. There,

TN based on Absolute Maximally Entangled (AME) [7]-[19] states are used to understand

the emergence of space time and its holography properties [20]-[24].

Here, we consider the playful idea of building quantum states as the result of using AME

states on topologies dictated by platonic solids. It is not obvious how such states can be

built and, if so, how entanglement will be globally distributed. We shall find that large

entanglement gets distributed if TN based on AMEs are used.

Let us also mention that the idea to choose the directions of quantum measurements ac-

cording to the vertices of Platonic solids has been pursued in Ref [25]. Other works where

Platonic solids have appeared in the context of Quantum Information can be found in refer-

ences [26]-[30].

2 Absolute Maximally Entangled States

Absolute Maximally Entangled [7]-[11] states, also called Perfect states [21], are defined as

those multi-partite quantum states whose reduced density matrices for any bi-partition are

proportional to the identity. To be precise, given a state of n qudits, |ψ〉 ∈ H = (Cd)⊗n, this

state will be an AME state if all its reduced density matrices to a part A of m degrees of

freedom, such that A⊗ Ā = H, carries a von Neumann entropy SA = −tr(ρA log2 ρA) given

by

SA = m log2 d . (1)

This is equivalent to finding that all the reduced density matrices for m ≤ n/2 are proportional

to the identity

ρm =
1

dm
Idm . (2)

We shall be considering states made with an even number of parts. It is then sufficient to

verify that even bi-partitions are maximally entangled to guarantee that the same properties

holds for smaller partitions.

Absolutely Maximally Entangled states are usually labeled as AME(n,d), where n is the

number of local degrees of freedom and d is the local dimension. In general, there is an

obstruction to find AME states; for certain values of n and d they may not exist any. For

instance, there is no 4-qubit maximally entangled state in all its partitions, that is, there

is no AME(4,2). However, there exist AME(5,2) and AME(6,2) states. It is proven that

there are no AME states for n > 6 and d = 2 [12, 13], nor an AME(7,5) state of minimal

support [14, 15]. However general AME(7,5) states do exist (see also [16] for d = 3, 4, 5 and

several n’s). A table of the known AME states can be found in [17]). Some applications of
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AME states is to test the efficiency to implement multipartite quantum protocols in quantum

computers [18] and as quantum repeaters [19].

Let us give an explicit form of AME(5,2)

|AME(5, 2)〉 =
1√
25

25−1∑
i=0

c
(5,2)
i |i〉, (3)

where we used the usual shorthand notation for the elements in the computational basis and

the coefficients have the same modulus and signs given by [7]-[10]

c(5,2) = {1, 1, 1, 1, 1,−1,−1, 1, 1,−1,−1,

1, 1, 1, 1, 1, 1, 1,−1,−1, 1,−1, 1,

−1,−1, 1,−1, 1,−1,−1, 1, 1}. (4)

A more explicit form is given in Table I, which shows that this state is not invariant under

rotations of the qubit positions, say |s1s2s3s4s5〉 → |s5s1s2s3s4〉. We shall give below another

AME(5,2) state with this property.

i s1 s2 s3 s4 s5 ci i s1 s2 s3 s4 s5 ci
0 0 0 0 0 0 + 16 1 0 0 0 0 +
1 0 0 0 0 1 + 17 1 0 0 0 1 +
2 0 0 0 1 0 + 18 1 0 0 1 0 -
3 0 0 0 1 1 + 19 1 0 0 1 1 -
4 0 0 1 0 0 + 20 1 0 1 0 0 +
5 0 0 1 0 1 - 21 1 0 1 0 1 -
6 0 0 1 1 0 - 22 1 0 1 1 0 +
7 0 0 1 1 1 + 23 1 0 1 1 1 -
8 0 1 0 0 0 + 24 1 1 0 0 0 -
9 0 1 0 0 1 - 25 1 1 0 0 1 +

10 0 1 0 1 0 - 26 1 1 0 1 0 -
11 0 1 0 1 1 + 27 1 1 0 1 1 +
12 0 1 1 0 0 + 28 1 1 1 0 0 -
13 0 1 1 0 1 + 29 1 1 1 0 1 -
14 0 1 1 1 0 + 30 1 1 1 1 0 +
15 0 1 1 1 1 + 31 1 1 1 1 1 +

Table 1. The state (4) with ± denoting the values ±1

.

The state (3) can be cast in different forms using local unitaries, that will never change

its entanglement properties.

Let us also provide the absolutely maximal entangled 6-qubit state

|AME(6, 2)〉 =
1√
26

26−1∑
i=0

c
(6,2)
i |i〉, (5)
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with

c(6,2) = {−1,−1,−1,+1,−1, 1, 1, 1,

−1,−1,−1, 1, 1,−1,−1,−1,

−1,−1, 1,−1,−1, 1,−1,−1,

1, 1,−1, 1,−1, 1,−1,−1,

−1, 1,−1,−1,−1,−1, 1,−1,

1,−1, 1, 1,−1,−1, 1,−1,

1,−1,−1,−1, 1, 1, 1,−1,

1,−1,−1,−1,−1,−1,−1, 1}. (6)

A less trivial example of AME state corresponds to the case of 4 qutrits. Its explicit form

is

|AME(4, 3)〉 =
1

9

∑
i,j,=0,1,2

|i〉|j〉|i+ j〉|i+ 2j〉 , (7)

where all labels are understood as mod 3. Each bi-partition in 2 + 2 qutrits of the above

state carries a von Neumann entropy S = 2 log2 3. This state was used in [20] to construct

an holographic code where 3 qutrits were ancillae and one qutrit was a physical variable.

3 Platonic States

We shall now construct novel quantum states which are constructed as a contraction of TN

defined on the geometry of a platonic solid. We call these states, Platonic states.

3.1 Qubits on vertices of a dodecahedron

To illustrate the construction of a platonic state, we consider the explicit example of a quantum

state defined on the 20 vertices of a dodecahedron (see Fig. 1). The way to construct this

state consists on producing a tensor network similar in spirit to the well-known PEPs, but

using 5-qubit maximally entangled states instead of the usual maximally entangled pairs.

The intuition behind this construction is that the AME(5,2) state may be able to distribute

entanglement in a very efficient manner.

Fig. 1. A quantum state is defined on the vertices of a dodecahedron using an underlying tensor

network. Each qubit is colored in red, whereas the ancillary degrees of freedom associated to
5-qubit maximally entangled states live on the pentagon faces and are represented in violet.

To be precise, the construction starts by filling the 12 pentagons of the dodecahedron with

AME(5,2). Then, we define physical indices in each vertex using an agreement clause (see
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Fig. 2)

Aaαβγ = δaαδ
a
βδ
a
γ . (8)

That is, physical indices are made to coincide with the ancillary ones when all of them agree.

Fig. 2. Basic tensor assignment. Three pentagons meet at a vertex, each carrying ancillary indices

α, β and γ, respectively. The tensor gets defined as Aaαβγ = δaαδ
a
βδ
a
γ . Thus, the physical index a

takes the value of the ancillae when they coincide, otherwise it is set to 0.

Since the basic tensor defining AME(5,2) in Eq. (4) is made of ±1, the global state we

are defining on a dodecahedron will carry all possible superpositions weighted with a plus or

minus sign

|D1〉 =
1√
220

220−1∑
i=0

cDi |i〉, (9)

that is, all cDi = 1 or −1.

The entanglement properties of the emerging state on a dodecahedron are non-trivial. The

von Neumann entropy SA(D1) for the state (4) and several block sizes |A| are collected in

Table II. We first observe that all bi-partitions, local or non-local, that involve 6 qubits or

less carry maximal entanglement. For the bi-partitions of 10 vs 10 spins, the result for the

entropy turns out to be always an integer number, and its maximal value of 10 is attainable.

|A| 10 9 8 7 6 5 4 3 2 1
SA(D1) 7,8,9,10 7,8,9 7,8 6,7 6 5 4 3 2 1
SA(D2) 7,8 7,8 6,7,8 6,7 5,6 4,5 3,4 3 2 1

Table 2. Entanglement entropies of AME(5,2) states (9) for various blocks of sizes |A|. S(D1) are

for the state based on (4) and S(D2) are for the state using (10).
.

3.2 A rotational invariant AME(5,2) state

We observed above that the state (4) is not invariant under rotations of the qubits around

the vertices of the pentagon. This implies that the resulting state over the dodecahedron

depends on the specific choice of the AME(5,2) state for every pentagon. The analogy is that

of a dodecahedron made of pentagons with different colors. The counting number of emerging

states is an interesting but difficult problem that we shall not deal with here. Let us consider



1086 Platonic entanglement

a rotational invariant AME(5,2) state given by [7]-[10]

|AME(5, 2)〉 =
1

4
[|00000〉+ |10010〉+ |01001〉 (10)

+|10100〉+ |01010〉+ |00101〉 − |01111〉 − |10111〉
−|11011〉 − |11101〉 − |11110〉 − |11000〉 − |01100〉
−|00110〉 − |00011〉 − |10001〉] .

This state can be written as

|AME(5, 2)〉 =
1

4

∑
∑

j sj=0 (mod 2)

(−1)
∑

j sjsj+1 (11)

×|s1, . . . , s5〉 ,

where the sum runs over the spin configurations whose addition vanishes mod 2 (we take

s6 = s1). Let us write (11) as

|P 〉 =
1

4

∑
sj ,j∈P

(−1)ηP |s1, . . . , s5〉, ηP =
∑
j∈P

sjsj+1 , (12)

where P denotes the pentagon whose vertices are occupied by the spins s1, . . . , s5. The state

over the dodecahedron constructed using (8) and (12), reads

|D2〉 = aD
∑

s1,...,s20

(−1)ηP1
+···+ηP12 |s1, . . . , s20〉, (13)

where the spins on each pentagon satisfy the neutrality condition∑
i∈Pa

si = 0 (mod 2), a = 1, . . . , 12 . (14)

aD is the normalization constant of the state that is derived below. The asignement of vertices

i = 1, . . . , 20, to pentagons Pa (a = 1, . . . , 12) is given in Fig. 3, that yields the neutrality

conditions : 0 = s1 + s2 + s3 + s4 + s5 = s6 + s7 + s15 + s16 + s20 = . . . where the equalities

are defined mod 2. This is a set of 12 linearly independent equations for 20 variables that

leaves 8 undetermined spins. Hence the state (13) is the linear superposition of 28 states out

of the 220 states of the computational basis that is normalized with aD = 1/
√

28. Another

feature of (13) is that the sign factor (−1)
∑

a ηPa is equal to 1 for the 28 spin configurations

that satisfy the neutrality conditions (14). Indeed, let’s take a pair of spins, say si and sj , on

a link 〈i, j〉 on the dodecahedrum. They give a factor (−1)sisj , associated to the pentagons

sharing the link 〈i, j〉, and so the total contribution is 1. Hence the state (13) takes finally

the form

|D2〉 =
1√
28

∑′

s1,...,s20

|s1, . . . , s20〉 , (15)

where
∑′

denotes the sum over the spin configurations that satisfy (14).

The entanglement entropies SA(D2) of (15) are collected in Table II for several blocks.

Their maximal values are always lower than those of the state (9). An heuristic explanation

is that (15) contains half of the states of (9) of the computational basis.
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Fig. 3. Labels of the vertices of the dodecahedrum.

The entanglement entropies of (15) can be easily computed. Let A be a subset of VA ≤
10 vertices. In general, not all the corresponding spins will be independent variables. For

example, if A contains the sites i = 1, 2, 3, 4, 5 forming a pentagon, their spins must satisfy

that
∑5
i=1 si = 0 (mod 2), hence only 4 spins are independent. In this case the state (15)

reads

|D〉 =
1√
24

∑′

s1,...,s5

|s1, . . . , s5〉 ⊗
1√
24

∑′

s6,...,s20

|s6, . . . , s20〉 , (16)

yielding an entropy SA = 4. If the subset A contains nA independent spin variables then (15)

is decomposable as

|D〉 =
1√
2nA

∑′

sA

|sA〉 ⊗
1√

28−nA

∑′

sB

|sB〉 , (17)

that gives an entropy SA = nA. Obviously, nA ≤ 8, which is the maximal attainable entropy.

This can be achieved for A = {1, 2, 3, 4, 5, 16, 17, 18, 19, 20} that contains two pentagons on

opposite sides of the dodecahedrum (see Fig.3).

3.3 Hovering qubits

A different arrangement of qubits based on AME networks can be obtained as follows. Every

one of the 12 pentagons in the dodecahedron will carry an associated extra ”hovering” qubit.

We may think of it as placed in the center of the pentagon. This defines a unit cell made out

of 6 qubits, five of them in the pentagon plus the hovering one. On each of these cells we

introduce an AME(6,2).

We can then analyze the bipartitions of the 12-qubit state, either local or non-local. The

resulting reduced density matrices to 6 qubits carry entropies that range from 4 to 6.

4 Reed-Solomon codes for each platonic solid

Reed-Solomon codes offer the possibility of constructing fully AME states [31]. It is though

clear that such codes do not make any use of the specific geometry of the dodecahedron.

They just depend on the number of d-dimensional degrees of freedom placed on n sites. In

particular, Reed-Solomon codes exist for states with d = p a prime number, and n = p + 1.
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Tetrahedron Faces = 4 AME(4,3)
Tetrahedron Edges = 6 AME(6,5)
Tetrahedron Vertices = 4 AME(4,3)
Exahedron Faces = 6 AME(6,5)
Exahedron Edges = 12 AME(12,11)
Exahedron Vertices = 8 AME(8,7)
Octahedron Faces = 8 AME(8,7)
Octahedron Edges = 12 AME(12,11)
Octahedron Vertices = 6 AME(6,5)
Dodecahedron Faces = 12 AME(12,11)
Dodecahedron Edges = 30 AME(30,29)
Dodecahedron Vertices = 20 AME(20,19)
Icosahedron Faces = 20 AME(20,19)
Icosahedron Edges = 30 AME(30,29)
Icosahedron Vertices = 12 AME(12,11)

Table 3. All platonic solids carry a number of Faces, Edges and Vertices which are a prime number
plus one. Thus, a Reed-Solomon code can be associated to each construction.

This fact combines smoothly with the 5 platonic solids, since in all cases, the number of

vertices, edges and faces are a prime number plus one.

Let us illustrate the example of AME(12,11), such that the minimal Hamming distance

between any pair of elements in the set is dH = 7. We first need to create the Reed-Solomon

generating matrix, made with increasing powers of integers 1 to 10, all mod(11),

G =


1 1 1 1 1 1 1 1 1 1 1 0
0 1 2 3 4 5 6 7 8 9 10 0
0 1 4 9 5 3 3 5 9 4 1 0
0 1 8 5 9 4 7 2 6 3 10 0
0 1 5 4 3 9 9 3 4 5 1 0
0 1 10 1 1 1 10 10 10 1 10 1

 . (18)

We then create all the elements of the superposition of AME(12,11) by taking each element

of a basis xi for 6 11-dits and compute ai = xi ·G. These numbers become the coefficients of

the AME state,

|AME(12, 11)〉 =
1√
116

∑
i=1,...,116

|ai〉. (19)

The result is a state which is maximally entangled in all its partitions, and with a minimum

Hamming distance 7 among each pair of superposed elements.

In general, the AME(n, p) with n = p+ 1 is obtained following a similar procedure. The

elements of the superposition are obtained as the images of all elements of n/2 bits. The

minimal Hamming distance is then n
2 + 1.

5 Conclusion

TN based on multipartite entangled ancillary states can be used to deploy entanglement on

different topologies. We have here shown how these states define very highly entangled states
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for the case of using AME ancillary states on platonic solids. The quantum states constructed

in this manner are locally fully entangled and achieved very large entanglement on arbitrary

partitions.

It is a remarkable fact that all platonic solids have a number of faces, edges and vertices

corresponding to a prime number plus one. It follows that they all accept AME related to

Reed-Solomon error correcting codes as the ancillary building blocks of the TN structure.
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