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In this work, the application of continuous time quantum walks (CTQW) to the Max-

imum Clique (MC) problem was studied. Performing CTQW on graphs can generate

distinct periodic probability amplitudes for different vertices. We found that the inten-
sities of the probability amplitudes at some frequencies imply the clique structure of

special kinds of graphs. Recursive algorithms with time complexity O(N6) in classical

computers were proposed to determine the maximum clique. We have experimented on
random graphs where each edge exists with different probabilities. Although counter

examples were not found for random graphs, whether these algorithms are universal is

beyond the scope of this work.

Keywords: The Maximum Clique Problem, Quantum Walks, Polynomial Algorithms

Communicated by: R Cleve & J Eisert

1 Introduction

The problem in finding the maximum clique (complete subgraph) is a Non-deterministic

Polynomial Complete Problem (NP-complete problem)[1]. The optimal complexity of exact

algorithms is O(20.249N )[2]. Designing a polynomial algorithm for NP-complete problems on

classical computers is normally difficult. Heuristic algorithms are significant considerations

for graphs with large cardinality[3, 4]. In the literature, many approximation algorithms

for the maximum clique problem are called sequential greedy heuristics. These heuristics

generate a maximal clique through the repeated addition of a vertex into a partial clique,

or the repeated deletion of a vertex from a set that is not a clique. As a sequential greedy
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60 Algorithms for finding the maximum clique based on continuous time quantum walks

heuristic algorithm will terminate when a maximal clique is found, the probability of finding

the maximum clique is relatively low. To improve the quality of the solution, the local search

heuristics will continue to search the neighbor of the maximal clique. A well-known class

of local search heuristics is k-interchange heuristics[5], which are based on the k-neighbor

of a feasible solution. A common problem of local search heuristics is that only a locally

optimal solution can be found. Some advanced search heuristics have been proposed to avoid

that problem, such as genetic algorithms[6], tabu search[7, 8, 9], simulated annealing[10],

and algorithms based on neural networks[11]. Advanced algorithms are usually applied in

combination with other heuristic algorithms.

As the performance of quantum algorithms has been proven to be better than the classical

algorithm in many situations[12, 13, 14], many scientists have turned to quantum algorithms

for NP-complete problems[15, 16, 17, 18, 19]. With the advantage of quantum states, all

possible solutions (combinations of vertices of a given graph) are encoded in an initial super-

position state, and the optimal solution can be searched by a quantum evolution process in

the previous quantum algorithms. The quantum algorithm asymptotically requires the square

root of the number of operations that the classical algorithm requires[12, 15]. Apparently,

graph structures are not adequately considered in these algorithms. The work of Noga Alon,

Michael Kriv-elevich, and Benny Sudakov shows that the second eigenvector is related to

the MC of random graphs[20]. Generally, connecting the structure of graphs with the NP-

complete problem is unclear. In this work, the structure of the MC in the graph specifically

refers to whether a vertex belongs to the MC. We mainly focus on the structure of center

graphs because all kinds of graphs can be transformed to center graphs. A graph is called a

center graph if there exists one so-called center vertex adjacent to all other vertices. We will

describe how clique structure impacts the continuous time quantum walks (CTQW) of several

special kinds of center graphs, and algorithms for the maximum clique problem will be pro-

posed. In Farhi and Goldstones work, CTQW is defined as an evolution of a quantum system

driven by the Laplacian matrix of a given graph[21]. With other physical models [22, 23], the

Hamiltonian of the CTQW is defined as the adjacency matrix to the corresponding graph in

this work. Then the state of CTQW is determined by |ϕ (t)〉 = eiAt |ϕ (0)〉, where A is the ad-

jacency matrix of the given graph G and eiAt is an evolution unitary operator. This operation

exists in series formeitA =
∞∑
s=0

(it)sAs

s! . As As is characterized by the number of walks in the

graphs, the CTQW does reflect the clique structures of several kinds of center graphs. The

evolution can be estimated when eigenvectors and eigenvalues of a given adjacency matrix are

obtained by numerical computation in O(N3) time on classical computers. The probability

amplitude of CTQW is chosen as the critical feature to infer whether a vertex is a member

of the maximum clique.

In this paper, the second section presents CTQW on center graphs. In the third section,

an algorithm, named Algorithm A, with O(N6) time complexity based on CTQW for finding

the maximum clique is introduced. In the fourth section, the probable error of Algorithm A

is presented and a strategy for constructing a graph invalid for Algorithm A is described. In

the fifth section, we give an algorithms, named Algorithm B, to fix problems with Algorithm

A. The conclusions are the last section.
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2 Clique structure and CTQW on the center graph

Generally, a graph is denoted as G(V,E), consisting of a vertex set V and an edge set E.

The set E is a subset of V × V , which implies the connection relationship between any pair

of vertices in V . Let the carnality of V equal to N , where the adjacency matrix of G is an

N ×N real symmetric matrix A, where Ajl = 1 if vertices vj and vl are connected, otherwise

Ajl = 0.

Consider the CTQW on a given graph. One can associate every vertex vj of the graph

with a basis vector |j〉 in an N -dimensional vector space. The Hamiltonian of the system is

H = A, (1)

If vj is the initial state of the system, and the transition probability amplitude from vj to vl
is αl,j(t) or short format αl,j , then:

αl,j (t) = 〈l| eiγAt |j〉 , (2)

The probability πl,j(t) or short format πl,j can be written as

πl,j(t) =
∣∣〈l|eiγAt|j〉∣∣2 . (3)

The eigenvalues of A are denoted as λn(n = 1, 2, . . . , N), the eigenvalues are arranged in

descending order, namely λ1 ≥ λ2 ≥ · · · ≥ λN . As A is a real symmetric matrix, the

eigenvalues of A are all real. The unit-norm eigenvector corresponding to λn is denoted as

|λn〉, producing:

αl,j (t) =
∑
n

eiλnt 〈l | λn〉 〈λn | j〉, (4)

and

πl,j (t) =

∣∣∣∣∣∑
n

eiλnt 〈l | λn〉 〈λn | j〉

∣∣∣∣∣
2

. (5)

The real part of the amplitude αl,j can be represented as:

R (αl,j) =
∑
n

pn cos (λnt) (6)

where pn = 〈l | λn〉 〈λn | j〉. This implies that the real part of the amplitude of CTQW is a

periodic function with N frequency components, and the frequency values are the eigenvalues

of the adjacency matrix and the intensity of the frequency λn is pn.

The amplitude can also be represented as a form of sums, i.e.,

αl,j (t) =

∞∑
ζ=0

(it)
ζ(
Aζ
)
l,j

ζ!
, (7)

where (Aζ)l,j equals the number of walks of length ζ. Therefore, the CTQW can be determined

by the number of walks in the graphs. As (Aζ)l,j can be denoted by the eigenvalues and

eigenvectors, then Eq.7 can be converted to Eq.4 vice versa.
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Consider a graph G and one of its vertices vj and let N(j) denote the neighbors of vj . The

subgraph induced by vertex set vj
⋃

N(j) is denoted as Gj . We call Gj the center subgraph

of vertex vj and the vertex vj the center vertex of Gj . Note that the concept of the center

graph is not completely the same as the concept of reference[25]. Two natural approaches can

be used to transform a graph into a center graph or set of center graphs. The first way is to

add a new vertex that connects to every vertex of the original graph. The second approach

is to induce a set of center graphs {G1, . . . , GN} of the original graph G.

In this work, a center graph Gj is called the first kind of ideal center graph if there are

two cliques in Gj and there is no edge connecting any pair of vertices {vk, vl} when vk and vl
are members of distinct cliques. An example of a center graph is shown in Fig.1.
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Fig. 1. The center graph G5 of vertex 5. There exists two cliques, one is the subgraph induced by

{1, 2, 3, 4, 5}, another is the subgraph induced by {5, 6, 7, 8}

It is difficult to obtain the analytical solutions of eigenvalues and eigenvectors even for

the first kind of ideal center graph. A method of counting the number of walks is used to

solve the CTQW. Let Wζ denote the number of closed walks of length ζ starting from center

vertex, denote the number of walks of length ζ starting from the center vertex j ending with

one of the vertices in the MC, and Hζ denote the number of walks of length ζ starting from

the center vertex j ending with one of vertices not in the MC. It provides that:

 Wζ+1 = (m1 − 1)Fζ + (m2 − 1)Hζ

Fζ+1 = Wζ + (m1 − 2)Fζ
Hζ+1 = Wζ + (m2 − 2)Hζ

(8)

where m1 is the clique number and m2 is the size of the remaining clique. Finding the

solutions of Eq.(8) is equivalent to eigen decomposition of adjacency matrix A. However, the

exact numerical solutions are complex and do not help to infer whether a vertex belongs to

the maximum clique. We only need the relationships between the probability amplitudes of

different vertices. In utilizing literature results[24, 26], we have

Wζ =

N∑
n=1

anλ
ζ
n, (9)
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where
N∑
n=1

an = 1. Taking Eq.(9) into the second and third terms of Eq.(8), we have

Fζ+1 =

N∑
n=1

anλ
ζ
n + (m1 − 2)Fζ , (10)

and

Hζ+1 =

N∑
n=1

anλ
ζ
n + (m1 − 2)Hζ . (11)

Clearly, m1−2 and m2−2 are not eigenvalues of the first ideal center graph. Solving Eq.(10)

and Eq.(11), we have

Fζ =

N∑
n=1

an
(m1 − 2)

ζ − λζn
m1 − 2− λn

(12)

and

Hζ =

N∑
n=1

an
(m2 − 2)

ζ − λζn
m2 − 2− λn

(13)

Hence the probability amplitude of vl which is a vertex of MC is

αl,j (t) =

N∑
n=1

an
(
ei(m1−2)t − eiλnt

)
m1 − 2− λn

, (14)

and when vk is not a member of the maximum clique, the probability amplitude is

αl,j =

N∑
n=1

an
(
ei(m2−2)t − eiλnt

)
m2 − 2− λn

. (15)

As mj − 2 is not an eigenvalue for j = 1, 2, compare Eq.(4) with Eq.(15) to obtain

N∑
n=1

ane
i(mj−2)t

mj − 2− λn
= 0. (16)

Let pl,n denote the coefficient of αl,j at eigenvalue λn. Then we have the follow theorem.

Theorem 1 For the first kind of ideal center graph Gj, vj , vl, vk ∈ V (Gj), vj is the center

vertex, vl is a member of the maximum clique of Gj, and vk is not a member of the maximum

clique. Then

pl,1 > pk,1,

i.e., ∣∣∣∣ 1

m1 − 2− λ1

∣∣∣∣ > ∣∣∣∣ 1

m2 − 2− λ1

∣∣∣∣
.

Theorem.1 is obvious since λ1 > m1 − 2 > m2 − 2. Therefore, it is easy to determine the

vertex that belongs to the maximum clique from the first kind of ideal center graph by using

CTQW.
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Fig. 2. The second kind of ideal center graph. There has no edge that connects the vertices in the

MC and the vertices not in the MC. The subgraph induced by vertices {6,7,...,17} is a complete

multi-partite graph and vertices in the same independent set share the same color.

A center graph Gj is called the second kind of ideal center graph if it contains a maximum

clique C and a complete multi-partite subgraph D with no edges connecting the subgraphs C

and D. An example graph of this type is shown in Fig.2. For the example graph, the size of

maximum clique of is five. Since the subgraph induced by vertices {6,7,...,17} is a complete

multi-partite graph, adding edges will generate cliques with size not less than five.

For the second kind of ideal center graph, the number of walks can be determined by the

following recursion equations: Wζ+1 = (m1 − 1)Fζ + z (m2 − 1)Hζ

Fζ+1 = Wζ + (m1 − 2)Fζ
Hζ+1 = Wζ + z (m2 − 2)Hζ

(17)

where the variables Wζ , Fζ and Hζ are defined analogously to the variables in equation (??).

z is the number of vertices in each independent set. Comparing Eqs.(17) to Eqs.(8), one can

find that the solution formats of Eqs.(17) are similar to the solutions of Eqs.(8), with just the

replacement of (m2 − 2) by z (m2 − 2) in Eq.(15). Therefore, for a vertex vl, which belongs

to the maximum clique in the graph shown in Fig.2, it is provided that:

αl,j (t) =

N∑
n=1

an
(
ei(m1−2)t − eiλnt

)
m1 − 2− λn

, (18)

and for a vertex which does not belong to the maximum clique, it provides:

αl,j (t) =

N∑
n=1

an
(
ei(z(m2−2))t − eiλnt

)
z (m2 − 2)− λn

, (19)

Similar to Theorem.1, the following theorem can be provided:
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Theorem 2 For the second kind of ideal center graph Gj, vj , vl, vk ∈ V (Gj), vj is the

center vertex, vl is a member of the maximum clique of Gj, and vk is not a member of the

maximum clique. Then

pl,1 < pk,1,

i.e., ∣∣∣∣ 1

m1 − 2− λ1

∣∣∣∣ < ∣∣∣∣ 1

z (m2 − 2)− λ1

∣∣∣∣ ,
if

m1 − 2 < z (m2 − 2) .

In the previous instances, there were no edges connecting vertices in different cliques.

For general cases, multiple edges exist between vertices from distinct cliques. One of such

instances is exhibited in Fig.3:
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Fig. 3. An example graph. In this configuration, the maximum clique and the non-maximum
clique connect by edges (1,11),(2,16),(3,12)

For general graphs, the method of counting the number of walks to determine the CTQW

is as difficult as the eigen-decomposition of the adjacency matrix, and even when the eigen-

decomposition is obtained, to directly deduce whether a vertex is a member of the maximum

clique is still unknown. An intuitive idea is to generate a center subgraph of the original

graph and find the maximum clique in that center subgraph. For instance, the maximum

clique attached to vertex 3 of the graph shown in Fig.3 can be easily determined. The center

graph of vertex 3 is exhibited in Fig.4. Note that the original center vertex 5 is not included

in G3.

The resultant graph in Fig.4 is the first kind of ideal center graph, and its maximum clique

can be determined by Theorem.1. This shows that performing CTQW on center graphs in
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Fig. 4. The center subgraph of vertex 3. The graph is induced by vertex 3 and it′s neighbors

except center vertex, namely {1,2,3,4,12}

an orderly way can help to understand the maximum clique. In this procedure, we repeatedly

chose vertices and constructed associated center subgraphs. In the following section, C(vj , G)

is used to denote the center subgraph of G whose center vertex is vj or the procedure of

constructing that center subgraph. The method regarding successive selection of a vertex to

construct a center graph is presented in the next section.

3 A recursive algorithm for finding the maximum clique by CTQW

An algorithm, named Algorithm A, based on eigenvectors of the adjacency matrix of the graph

for finding the maximum clique is proposed in this section. The intensities of the real part

(or imaginary part) of the probability amplitude are used as the critical feature in selecting

probable vertices. Algorithm A is described in the following pseudocode.

Algorithm A for finding the maximum clique

Require: Center graph Gs with its center vertex vs
Ensure: The maximum clique Clique(Gs)

1: function Algorithm A(Gs)
2: Do eigen-decompositon on Gs, find vmax and vmin.
3: Clique(Gs)← {}
4: result1← Pick max(C(vmax, Gs))
5: result2← {}
6: while vi ∈ V (C(vmin, Gs)) do
7: Temp← Pick max(vi, C(vmin, Gs))
8: result2←Max(result2, T emp)
9: i← i+ 1

10: end while
11: result3← Algorithm A(Gs − vmin)
12: Clique(Gs)←Max(result1, result2, result3)
13: end function

In the pseudocode of Algorithm A, vmin denotes the vertex with the smallest intensity at

the largest frequency λ1, vmax denotes the vertex with the maximal intensity at the largest

frequency, Max is a function which is used to find the biggest set. Pick max is a subfunction
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of Algorithm A and its step is shown in Table.3

The step of Pick max

Require: Center graph Gs, center vertex vs
Ensure: The maximum clique of Gs, denoted as Clique(G);

1: Do eigen-decomposition on adjacent matrix of Gs, The largest eigenvalue is λ1, corre-
sponding eigenvector is x1 and xj1 denotes the j-th component of x1;

2: Calculate the intensity of amplitude of every vertex vk at the maximum frequency λ1,
denoted as pk, pk = xs1x

k
1 ;

3: Add vertex vmax to Clique(G); Delete vs and construct center graph C(vmax), if size of
C(vmax) is not 1, then vs←− vmax and turn to 1.

Algorithm A is inspired by Theorem.1, i.e., the frequency component of the largest

eigenvalue λ1 is used as the feature in choosing probable vertices belonging to the maximum

clique. If the intensity pk of vertex vk is the largest among all other vertices, then it would

be chosen as a probable member of the maximum clique. A tree-like diagram can be used to

better understand the structure of the Algorithm A more clearly. In the tree-like diagram,

the root denotes the algorithm, and the leaf node denotes the sub-modules of the algorithm.

As shown in Fig.5, there are three sub-modules in Algorithm A, and the last one is the

recursive process. The first one corresponds to line 4 of the pseudocode in which the strategy

of choosing the vertex with the largest intensity at frequency λ1 in amplitude of CTQW is

employed. Then, we wanted to delete the vertex with the weakest intensity at frequency λ1,

and this vertex is denoted as vmin. Since that vertex may be a member of the maximum clique,

the second sub-module corresponding to line 6 through line 10 of the pseudocode of Algorithm

A, is applied to find the maximum clique of vmin. The last sub-module is to recursively call

the Algorithm A. Note that the size of the graph decreases by one since a vertex is deleted

in the third module. The maximum clique of Clique(Gs) is the largest clique found in these

tree sub-modules.

Algorithm_A(Gs)

First sub-module Algorithm_A(Gs-vmin)Second sub-module 
Fig. 5. The recursive algorithm for finding the maximum clique. There are three sub-modules in
Algorithm A, and the third sub-module recursively calls the Algorithm A on a smaller subgraph.

Algorithm A has polynomial complexity. To observe this, we must solve the recursion

of Algorithm A. Let T (n) denote the complexity of Algorithm A, Y1(n) and Y2(n) denote
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the complexity of the corresponding submodules in the tree-like diagram. Then the following

recursion is satisfied.

T (n) = Y1 (n) + Y2 (n) + T (n− 1) (20)

As the complexity of the eigen-decomposition is O(n3), the Pick max and Y1(n) are at most

O(n4). Analogously, Y2(n) is at most O(n5) as the size of center subgraph is much less than

n. Therefore, the worst complexity can be reduced to:

T (n) = O
(
n5
)

+ T (n− 1) (21)

Then from Eq.21, it provides that

T (n) = O
(
n6
)

(22)

Therefore, Algorithm A has polynomial complexity, and more importantly, it provides a

new perspective to solve the maximum clique problem and contributes to the classification of

graphs as well which will be discussed in the following section.

We have experimented on random graphs with different edge connecting probabilities

on classical computers. In our experiments, counter examples, where the algorithm finds

a sub-maximum clique, have not yet been determined. However, counter examples can be

elaborately constructed. We will illustrate an approach for designing such a graph in the next

section.

4 Probable counter examples of Algorithm A

It seems well established that phase transitions exist in many NP-complete problems, and yet

the connection between NP-completeness and phase transitions is not a simple one[27]. In this

section, we will see that a similar phenomenon appears when the graph has some special sub-

structures which cause Algorithm A to return a non-maximum clique. To be more specific,

when some sub-structures exist, Algorithm A will fail, and we will present an approach for

constructing probable counter examples of Algorithm A in this section.

Let W
vj
ζ denote the number of walks of length ζ from the center vertex vs to the vertex

vj . From the previous section,

W
vj
ζ =

N∑
k=1

a
vj
k λ

ζ
k. (23)

Where, a
vj
k = 〈vs| λk〉 〈λk| vj〉. Therefore, the amplitude of CTQW is

pvj =

N∑
k=1

a
vj
k e

iλkt.

In Algorithm A, a
vj
1 of different vertices at the largest eigenvalue λ1 are compared. For a large

enough ζ, a
vj
1 and avh1 , a

vj
1 > avh1 if and only if W

vj
ζ > W vh

ζ . This implies that if Algorithm

A is invalid for a graph G, then every member of the maximum clique has a neighbor vh that

has the largest number of walks W vh
ζ . In this case, no matter which vertex belonging to the

maximum clique is chosen, vh will be chosen in some layer of the recursion and Algorithm A

spontaneously fails. For simplicity, assume all such subgraphs adjacent to every member of

the maximum clique are the same, and it is a complete multi-partite graph with a degree far
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larger than the size of the MC. For clarity, we propose a different kind of graph named as a

base graph. A schematic diagram of a base graph is shown in Fig.6.

...

...

...

...

...

...

...

...

Fig. 6. Base graph. The graph contains a complete subgraph and a complete multi-partite sub-

graph. The number of independence set is not larger than the clique number, the number of

vertices in the complete multi-partite subgraph is as great as possible.

The base graph consists of two elementary sub-graphs, one is the maximum clique at

the upper of Fig.6, the other is a complete multi-partite graph containing all the light blue

vertices in Fig.6. The vertex set in the same dashed box is not adjacent pairwise, i.e., it is

an independent set. Also, vertices from different dashed boxes are fully adjacent. Edges can

be added between the vertices of the maximum clique and the complete multi-partite graph.

Firstly, a vertex, the red vertex in this instance, is chosen as the center vertex. Secondly, for

an integer P (P ≥ 2), every combination with P vertices from the black vertices are connected

to q · z (qz > ω (G)− P, q + P + 1 < ω (G)) common vertices from at least two partites of the

complete multi-partite graph, where q is the number of partites, z is the number of vertices

in each independent set, and ω (G) is the clique number. After the two procedures adding

edges, every P vertices of the maximum clique have a common complete multipartite graph

as their neighbor. For an simple instance P = 2, it means that every 2-vertex combination of

the maximum clique has a common complete multi-partite graph as neighbor. The condition

qz > ω (G)− P ensures that a non-maximum clique vertex will be chosen in the procedure of

Algorithm A, therefore Algorithm A failed in this situation.

For illustrating the construction of a counterexample of Algorithm A, we will first give a

feasible graph(Fig.7). As the amplitude of each gray vertex is bigger than the yellow vertex,

the first sub-module of Algorithm A cannot find the exact maximum clique. And then,

the second sub-module will check on a center subgraph with one yellow vertex as the center

vertex. It is clear that the maximum clique can be accurately found by the second sub-module

of Algorithm A. The center subgraph of one yellow vertex in the Fig.7 is shown in Fig.8.

In this instance, no pairs of members belonging to the maximum clique have common
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Fig. 7. A feasible graph. The red vertex is the center vertex, the yellow vertices are the members

of the maximum clique, and each bulk of gray vertices is a complete multi-partite graph. Note
that every yellow vertex is adjacent to a complete multi-partite subgraph but not all vertices of

one bulk of the gray vertices
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Fig. 8. One of the center subgraph of the feasible graph shown in 7. The yellow vertices are the

members of the maximum clique, and one of them is the center vertex. The remaining vertices

form a complete multi-partite graph where vertices in the same independet set are setted the same
color.
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neighbors. In the next instance shown in Fig.9, this kind of graph structure, namely common

neighbors, will be added.

Fig. 9. Another feasible graph of Algorithm A. The red vertex is the center vertex, the six yellow

vertices are the members of the maximum clique, the three groups of gray vertices form three

complete multi-partite graphs. The yellow vertices are divided as three group, and every group of
them are adjacent to a commom complete multi-partite subgraph.

As the number of edges attached to the yellow vertices is much less than the number

attached to the gray vertices, then the first sub-module of the Algorithm A will find a clique

in which all of its vertices are gray vertices in Fig.9. The second sub-module will check and

find the exact maximum clique on the center subgraph with one yellow vertex as its center

vertex, and this center subgraph is shown in Fig.10.

Two feasible graphs imply that every 2-vertex (or not less than 2) combination of the

maximum clique vertices should have at least one common neighbor in counter examples. For

convenience, we assume that all common neighbors are the same, it is a complete multi-partite

graph, and denoted as Gc. As a lot of Gc must be drawn in figures, we use a square to denote

it. By the method of adding edges in the base graph, a counter example is illustrated in

Fig.11.
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Fig. 10. The center subgraph of Fig.9. The yellow vertices are the members of the maximum

clique, two of them are the both center vertices. The other vertices constitute a complete 3-partite

subgraph, the vertices with the same color are in a common independent set.
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Fig. 11. A type of counter example of Algorithm A. The red vertex is the center vertex, the yellow

vertices are the members of the maximum clique, the blue square is used to denote the Gc. The
number of independent sets is confined by the size of the maximum clique. For instance, if the
order of maximum clique is 6, then the number of independent sets in Gs is 2. If that number is

not less than 3, then the cardinality of the maximum clique is not less than 6.



X. Li, M-Y Wu, H-W Chen, and Z-B Liu 73

From the graph in Fig.11, one can find that no matter which vertex of the maximum clique

is picked as the center vertex, the center subgraph has the format shown in Fig.12 and the

maximum clique of this center subgraph cannot be found by the sub-modules of Algorithm

A. Therefore, Fig.11 is a counter example of Algorithm A.
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Fig. 12. A center subgraph of counter example shown in 11 of Algorithm A. The vertex 1 is the
center vertex, the yellow vertices are the members of the maximum clique, the square is used to

denote the Gc. The gray square means that Gc is optional, the blue means that square is necessary,

and the dashed edge is optional

Although Algorithm A is not universal, it divides all graphs into two classes. The maxi-

mum clique of the first class of graphs can be accurately determined by Algorithm A but the

second class of graphs cannot. Therefore, if an algorithm exists that can crack the second

class of graphs, then the problem can be overcome. Algorithm B was designed to improve the

performance of Algorithm A for the second class of graphs. We will further describe them in

the next section.

5 Variational frequency selection algorithm for finding clique

In the Algorithm A, the frequency, namely the eigenvalue, for picking a probable vertex is

settled as the largest eigenvalue of the center subgraph. In this section, we will show an

approach where the frequency is not fixed.

Assume that vs is a vertex with the smallest intensity at the largest frequency, and we want

to find a maximum clique attached to vs. In the center original graph, vs has the smallest

intensity at the largest frequency; however, vs has the largest intensity at some frequency λj ,

and the other members of the maximum clique are more likely to occur at frequency λj . Then

a vertex vref with the largest intensity at frequency λj except vs is chosen, and vref is called

the reference vertex. The CTQW on the center subgraph of vs and the location of vertex
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vref are used to determine the next reference vertex. The vref will become the new center

vertex and a new reference vertex is used to find the next reference vertex. In this procedure,

the frequency used to pick probable vertex is not fixed but dependent on the current center

vertex, hence it is named as the variational frequency selection algorithm (VFSA). The VFSA

is a sub-module of Algorithm B, which is used for a class of graphs not suitable for Algorithm

A. The procedure for a VFSA is listed in the following table. To illustrate VFSA, we will

The steps of VFSA

Require: Center graph Gs, center vertex vs, next center vertex vref ;
Ensure: The maximum clique of Gs, denoted as Clique(Gs);

1: If Gs is a complete graph, then add the vertices of Gs to Clique(Gs) and return
Clique(Gs), if not, add vs to Clique(Gs), turn to step.2

2: Do eigen-decomposition on adjacent matrix of Gs. Find a frequency, namely an eigenvalue
fref , such that vertex vref can take the largest intensity among all frequencies.

3: Find vertex v′ref which has the largest intensity at frequency fref in the neighbors of
vertex vref

4: Delete vs and let vs←−vref , vref ←− v′ref , Gs ←− C(vref ), turn to 1

present how VFSA works on a counter example of Algorithm A. The counter example is

constructed by the method described in the previous section. For convenience, the counter

graph is denoted as T . As the order of T is too large to exhibit here, we put it in Fig.A.1 of

Appendix A. Via the eigen-decomposition on the T , the amplitude of each vertex is obtained.

It is inconvenient to show all the amplitudes at every eigenvalue as the number of vertices in

graph T is 206, so we will show amplitudes of some indispensable vertices and eigenvalues in

the following table.

Table 1. The amplitude of CTQW of ten vertices. The vertex 201 is the center vertex, vertices

202, 203, 204, 205, 206 are members of the maximum clique, and vertices 198, 199, 200 are not.

vi 198 199 200 201 202 203 204 205 206
λ ≈ −1.88 0.024 0.024 0.024 0.912 0.039 0.039 0.039 0.039 0.039
λ ≈ 6.44 0 0 0 0 0 0 0 0 0
λ ≈ 6.75 −0.06 −0.06 −0.06 0.004 0.022 0.022 0.022 0.022 0.022
λ ≈ 103.04 0.010 0.010 0.010 0.019 0.006 0.006 0.006 0.006 0.006

From the table, one can see that the amplitude of each vertex in the maximum clique at the

principle eigenvalue is 0.006 which is the least among all vertices. Hence, a center subgraph

with one of 202 to 206 as its center vertex will be checked. Without loss of generality, assuming

the picked center vertex is vertex 202, then the program will find a reference frequency that

vertex 202 has the largest amplitude, which is λ ≈ −1.88 in the Table.1. There are 4 vertices,

namely vertices 203, 204, 205, 206, which have the largest amplitude at λ ≈ −1.88 and the

corresponding amplitude is 0.039. One of these vertices, say 203, will be picked as the next

center vertex vref and the other vertices not belonging to the maximum clique are excluded.

Then in the next step, the center subgraph of vertex 202 will be checked, and the next center

vertex is 203. Note that the order of the new center subgraph changes to 69, vertex 202 to 206

have new labels 65 to 69, respectively. The center subgraph is shown in Fig.A.2 of Appendix

A, and some amplitudes of the center subgraph are exhibited in table.2. In this turn of VFSA,
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we will not check the largest eigenvalue, but the reference frequency fref = 2.63 where vertex

66(corresponding the original vertex 203) has the largest amplitude will be checked. At

fref = 2.63, any member of the maximum clique takes the largest amplitude, therefore one

of them will be picked. This procedure is repeated until there are no vertices.

Table 2. The amplitude of CTQW of partial vertices. The vertex 65 is the center vertex, vertices

65, 66, 67, 68, 69 are members of the maximum clique, and vertices 61, 62, 63, 64 are not.

vi 61 62 63 64 65 66 67 68 69
λ ≈ −2.12 −0.024 −0.024 −0.024 −0.024 0.913 −0.104 −0.104 −0.104 −0.104
λ ≈ 2.63 −0.004 −0.004 −0.004 −0.004 0.034 0.088 0.088 0.088 0.088
λ ≈ 3.53 0 0 0 0 0 0 0 0 0
λ ≈ 34.49 0.028 0.028 0.028 0.028 0.054 0.016 0.016 0.016 0.016

By adding sub-module VFSA to Algorithm A, algorithm B is obtained. The procedure of

algorithm B is illustrated in the following pseudocode.

Algorithm B for finding the maximum clique

Require: Center graph Gs with its center vertex vs
Ensure: The maximum clique Clique(Gs)

1: function Algorithm B(Gs)
2: Do eigen-decompositon on Gs, find vmax, vmin and vref
3: Clique(Gs)← {}
4: result1← Pick max(C(vmax, Gs))
5: while vi ∈ V (C(vmin, Gs)) do
6: Temp← Pick max(C(vi, C(vmin, Gs)))
7: result2←Max(result2, T emp)
8: i← i+ 1
9: end while

10: result3← V FSA(C(vmin, Gs), vmin, vref )
11: result4← Algorithm B(Gs − vmin)
12: Clique(Gs)←Max(result1, result2, result3, result4)
13: end function

In the pseudocode C(vmin, Gs) means the subcenter graph of vmin which is a subgraph of

Gs, and analogously C(vi, C(vmin, Gs)) denotes the subcenter graph of vi which is a subgraph

of C(vmin, Gs). The tree-like diagram of algorithm B is showed in the Fig13. The first and

second sub-modules in Fig.5 are the same with Algorithm A, and the third module is the

VFSA (variational frequency selection algorithm). The inputs of VFSA are C(vmin, Gs),

vmin and vref , where vmin signifies the vertex with the weakest intensity at the frequency λ1.

Let fref denote the frequency where vmin takes the largest intensity in graph Gs. The vertex

vref is the auxiliary adjacent vertex of vmin and has the largest intensity except vmin at

frequency fref . Vertex vref acts as the central vertex in the subsequent procedure. Since fref
and vref can be determined when vmin is given, we regard them as two implicit parameters

and do not show them in the Fig.13. The tree-like diagram of algorithm B is shown in Fig.13.
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Algorithm_B(Gs)

VFSA(C(vmin,Gs))Second sub-module First sub-module Algorithm_B(Gs-vmin)

Fig. 13. The tree-like diagram of algorithm B. There are four sub-modules in algorithm B, and

the fourth sub-module recursively calls the algorithm B on a smaller subgraph.

The results of algorithm B on random graphs are shown in Fig.14. The expected value

of clique number ω(G) of graphs with order 20 to 100 are given in Fig.14, where for each

order there are 100, 000 random graphs are sampled and the ω(G) is is the average of that

100, 000 graphs. In the numerical expirements, the clique number of every graph is obtained

algorithm B and then checked by classical exact algorithm branch-bound method for insuring

the result of algorithm B is accurate. The curves in Fig.14 are consistent with theorem in

work of Grimmett and McDiarmid[28] and work of Bollobas and Erdos[29].
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Fig. 14. The expected value of clique number. Each color of curve represent a specifical p.

6 Conclusion

In this paper, we show that the clique structure of a graph is related to the CTQW. For

some ideal graphs, the frequency intensity of the probability amplitude of CTQW is a good

feature to directly speculate whether a vertex is a member of the maximum clique or not. As

the frequencies of CTQW are the eigenvalues of the adjacency matrix, the clique structure

is related to the eigenvalues and the corresponding eigenvectors. For general graphs, this

feature is not obvious, and one cannot directly find the maximum clique. To reveal the
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hidden maximum clique, we propose two recursive algorithms, Algorithm A and algorithm B,

using CTQW with O(N6) time complexity to find the maximum clique on graphs. It seems

that Algorithm A is valid for random graphs via numerical experiments, but counter examples

can be elaborately constructed. For such graphs whose maximum clique cannot be found by

Algorithm A, we propose algorithm B to be fixed. The counter examples of algorithm B

were not found or elaborately constructed. Although the worst time cost is O(N6) which is

very large, this can be improved by releasing some rules of vertex selection. In addition, if

the amplitude of one of the vertices of the maximum clique is always bigger than the other

vertices for the second class of graphs, then algorithm B is universal, but this is beyond the

scope of this article and will be undertaken in future work.
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Appendix A

A counter example graph T of Algorithm A.

Fig. A.1. A counter example graph T with 206 vertices. The red vertex is the center vertex,
the yellow vertices are the members of the maximum clique, the induced subgraph of other gray

vertices is a complete multi-partite graph.
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Fig. A.2. Center subgraph of graph T in Fig.A.1. The vertex 65 is the center vertex, the yellow

vertices belong to the maximum clique, the other gray vertices together to be a a complete multi-

partite graph.


