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The execution of Grover’s quantum search algorithm needs rather limited resources with-

out much fine tuning. Consequently, the algorithm can be implemented in a variety of
physical set-ups, which involve wave dynamics but may not need other quantum fea-

tures. Several of these set-ups are described, pointing out that some of them occur quite

naturally. In particular, it is entirely possible that the algorithm played a key role in the
selection of the universal structure of genetic languages.

Keywords: Grover’s algorithm, Database search, Wave dynamics, Localization, Genetic
languages

Communicated by: R Cleve & J Eisert

1 Grover’s Algorithm

Lov Grover discovered a marvellous algorithm for unstructured search in the context of quan-

tum computation [1]. Formally, the problem is to find a target item with specific properties

in an unsorted database using a set of binary queries. The algorithm starts with a uniform

superposition state, and alternately applies two reflection operators for a number of itera-

tions, until the target state is reached. One of the reflection operators is the response to the

binary query, the other is the reflection across the uniform state, and the number of iterations

needed to reach the target state is O(
√
N) for a database of size N . Any Boolean algorithm

would require O(N) binary queries to accomplish the same task starting from an unbiased

state, so this is a square-root improvement in the computational efficiency. Furthermore, the

algorithmic evolution is at a constant rate along the geodesic from the initial state to the

final state, taking place in the two-dimensional subspace (of the total N -dimensional space)

formed by the uniform state and the target state. That makes it the optimal solution to the

problem [2].

The simplicity of the algorithm makes it implementable in a variety of physical settings,

and a number of its variations and applications have been explored over the years [3]. The key

feature of the algorithm is wave dynamics that allows superposition; other quantum features

can be easily skipped. Once coherent wave modes are available, the algorithm needs nothing

more than suitable reflection operations. Figure 1 illustrates how the algorithm works in the

simplest case, unambiguously identifying one out of four items in the database using a single

binary oracle call. In contrast, a single binary oracle call in a Boolean setting would only
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Fig. 1. The steps of Grover’s search algorithm for the simplest case of four items in the database,
when the first item is marked by the oracle. The left column depicts the amplitudes of the four

states that evolve coherently, with the dashed lines showing their average values. The middle col-
umn describes the algorithmic steps, and the right column mentions their physical implementation.

identify one out of two items in the database. Note that Grover’s algorithm is referred to as

a search algorithm due to the quantum interpretation of |amplitude|2 as probability.

The algorithm is robust to several types of modifications. One possibility is to replace the

initial uniform state by a generic state. Then the only change required in the algorithm is

to replace the reflection across the uniform state by the reflection across the specified generic

state. The number of binary queries needed in the algorithm is then of the order of the

reciprocal of the overlap between the target state and the initial generic state. This form of

the algorithm is referred to as “amplitude amplification”, which can be used as a subroutine

to enhance small success probability of another algorithm that produces the generic state as

an output [4].

Another possibility is to consider the situation where the database is spread out in space

over distinct locations. In this spatial search problem [5], the items are represented as vertices

of a graph, and there is a restriction that while searching for the target item one can proceed

from one vertex to the next one only along the edges of the graph. Grover’s algorithm cor-

responds to the maximally connected graph, i.e. there is an edge between any two vertices

of the graph. When the graph connectivity is reduced, the reflection in the uniform state

operation has to be replaced by a quantum walk proceeding along neighboring vertices. That

decreases the efficiency of the search process. Still, the square-root improvement in compu-

tational efficiency survives for graphs of effective dimensionality larger than two, while two

is the critical dimension and the square-root improvement is modified there by a logarithmic

overhead [6].

2 Grover’s Algorithm as Hamiltonian Evolution

Grover constructed his algorithm with the physical intuition about the evolution of a quantum

state, where the potential energy term in the Hamiltonian attracts the state towards the
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target state and the kinetic energy term in the Hamiltonian diffuses the state over the whole

database [7]. Following the Dirac notation, let the target state be |t〉. Then the projection

operator Pt = |t〉〈t| represents the potential energy. Also, let the uniform superposition state

be |s〉. Then the projection operator Ps = |s〉〈s| represents the isotropic kinetic energy. The

reflection operators used in the algorithm are easily expressed in terms of these projection

operators as Rt = I − 2Pt and Rs = I − 2Ps. Grover’s algorithm is then the discrete Trotter

formula,a

|t〉 = (−RsRt)Q|s〉 , (1)

which solves the problem with Q queries. This structure clarifies the reasons behind the

extraordinary properties of the algorithm: (a) Reflections are the largest steps that one can

take consistent with unitarity, and that makes the algorithm optimal. (b) The Trotter formula

structure allows changes in the strengths of potential and kinetic energy terms to be largely

compensated by a change in the number of queries, and that makes the algorithm robust.

The evolution of the quantum state remains confined to the two-dimensional subspace

formed by the states |t〉 and |s〉. Let 〈s|t〉 ≡ cos θ ∈ [0, 1] denote the overlap between these

two states; for the uniform initial state cos θ = 1/
√
N . Then we can express

|t〉 =

(
1
0

)
, |t⊥〉 =

(
0
1

)
, |s〉 =

(
cos θ
sin θ

)
, (2)

in the two-dimensional subspace. Grover’s algorithm iterates the discrete evolution operator,

UG = −RsRt =

(
1− 2 cos2 θ 2 cos θ sin θ
−2 cos θ sin θ 2 sin2 θ − 1

)
= − cos(2θ)I + i sin(2θ)σ2 , (3)

which rotates the state by the angle π − 2θ in the two-dimensional subspace. It corresponds

to the effective Hamiltonian evolution,

UG ≡ exp(−iHGτ) , HGτ = (2θ − π)σ2 . (4)

The number of queries required by the algorithm is therefore,

Q =
θ

π − 2θ
≈ π

4

√
N . (5)

This result can be also expressed as:

(2Q+ 1) sin−1
1√
N

=
π

2
. (6)

Furthermore, it is clear that if the algorithm is not stopped after Q queries, it keeps on rotat-

ing the state at a constant rate in the two-dimensional subspace, resulting in an oscillatory

behavior of the amplitude at the target state.

This analysis also makes the spectral properties of the problem obvious. The kinetic energy

operator in the Hamiltonian, Ps, has a single eigenvalue equal to one with eigenvector |s〉, and

N−1 eigenvalues equal to zero associated with the remaining orthogonal directions. When the

potential energy is included in the Hamiltonian, this spectrum gets modified. HGτ has two

aUnitary evolution operators are interpreted as U = e−iHτ , and R = 1 − 2P = eiπP .
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eigenvalues equal to ±(2θ−π) with (unnormalized) eigenvectors (|t〉± i|t⊥〉) ∝ (e±iθ|t〉− |s〉),
and N − 2 eigenvalues equal to zero associated with the remaining orthogonal directions.

Thus introduction of the potential creates a bound state in the spectrum with its amplitude

concentrated at the target state. Grover’s algorithm is a scattering process in this framework,

which focuses the initially uniform amplitude at the location of the scatterer. Note that both

attractive and repulsive potentials produce the same effect, since e+iπ = e−iπ in construction

of Rt.

3 Localization in Condensed Matter Systems

Localization of electron states, due to disorder in a conducting material, is a well-established

phenomenon in condensed matter systems [8, 9]. The phenomenon has been analysed in

detail in the context of a metal-insulator transition, to demonstrate its genuine quantum

nature (in contrast to classical diffusion). The disorder can arise from impurities or defects in

the material, and the resultant scatterings impede transport due to interference among many

electron propagation paths.

A prototype model is provided by the tight-binding Hamiltonian:

H =
∑
i

Eic
†
i ci − t

∑
<i,j>

(c†i cj + c†jci) . (7)

Here Ei denotes the potential energy for the electron at site i, and t is the hopping parameter

for the electron to jump from site i to site j. When all the Ei are the same, the spectrum

of this Hamiltonian is a set of energy bands for the electron, and the system is a conducting

metal when the valence band is partially filled.

When one of the Ei is different than the rest, there is a delta-function potential, say at

i = 0. Such an attractive potential produces a bound state, separated from the continuous

energy band and localized at i = 0, for any strength of the potential in one space dimension

and potential strengths beyond a particular threshold in higher space dimensions.

When the energy disorder has a nonzero density, e.g. Ei are uniformly distributed over a

finite interval, all states can get localized, turning the conducting system into an insulator.

That happens for any nonzero disorder in one and two space dimensions, and for sufficiently

large disorder (i.e. the magnitude of variation of Ei) in higher dimensions.

Weak localization is a precursor to the phenomenon described above, in which the disorder

is limited and the associated localization increases the resistivity of the material [10, 11,

9]. It is understood as enhanced probability for electron paths containing closed loops, due

to constructive interference between contributions that travel the loops in opposite sense.

On the other hand, the paths corresponding to random diffusive motion suffer destructive

interference. The heightened tendency for electrons to wander around in loops then increases

the resistivity. Random walks are much more likely to self-cross in lower dimensions than

in higher dimensions; so weak localization is found strongly in systems of one and two space

dimensions.

Grover’s algorithm can be looked upon as a still weaker version of localization. The target

site is the only defect, and reflection from it produces a bound state around it in the spectrum.

The localization effect is maximized because the evolution dynamics is restricted to the lowest

possible dimensionality, i.e. the subspace formed by |s〉 and |t〉. Overall, the scattering does
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not stop propagation of the initial state; instead the amplitude to be at the target site goes

through periodic ups and downs as a function of time. Stopping the algorithm at the right

time then results in the state having a large amplitude at the target site.

The modification of Grover’s algorithm to spatial search with multiple target items would

be closer to the transport behavior of a material with many defects. In this case also, it is

found that introduction of a potential that causes reflection from the target sites (with all

the reflection phase-shifts chosen to be the same for simplicity) creates an eigenstate localized

around them, and the scattering amplitude to this eigenstate undergoes periodic ups and

downs as a function of time [12].

4 Variety of Implementations of Grover’s Algorithm

The ingredients required to implement Grover’s algorithm are quite simple; quintessential

quantum features such as complex numbers and entangled states do not explicitly appear. It

suffices to have coherent wave modes that can be superposed and phase-shifted, and so the

algorithm can be implemented using classical wave dynamics as well [13, 14]. As illustrated

in Figure 1, the required features are:

(1) an initial state that is correlated in phase among its wave modes,

(2) a reflection oracle that singles out the target state,

(3) coherent oscillations of the wave modes about the direction specified by the initial state,

and

(4) a threshold trigger that stops the algorithm when the target state amplitude becomes

sufficiently large.

These features can be found in a variety of physical settings.

(1) It is known since the time of Huygens, that pendulums suspended on a single wall au-

tomatically synchronize. The tiny coupling between the oscillators provided by the common

support of the wall suffices for this purpose. Such synchronization of oscillations has been

observed in nanoscale systems too [15]. The synchronized state is an equilibrium state, and

so is well-suited to be the initial state of the algorithm.

(2) Any object with properties distinct from the rest can be looked upon as an impurity.

Impurities in a material generically scatter wave modes. When the impurity is a node for

wave propagation, reflection from it changes the sign of the wave amplitude, as can be easily

deduced using the method of images.

(3) When the initial state is an equilibrium state, the perturbation caused by the target oracle

would naturally produce oscillations about the equilibrium direction.

(4) There exist many phenomena and reactions that need a critical threshold to be crossed.

They can be rapidly completed by amplitude amplification, with the threshold crossing be-

coming an effective measurement that terminates the algorithm. (In such a situation, the

number of iterations in the algorithm is not decided at the outset; instead the iterations

continue until success.)

Furthermore, these features are fairly immune to variations. As a result, Grover’s algo-

rithm has been extended to a multitude of physical scenarios since its discovery, and still found

to do its job. Several realizations that have been pointed out, in addition to the localization

phenomenon described in the previous section, are:

• A coupled system of classical oscillators, with dynamics far sturdier against environmental
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disturbances than the quantum case, can execute Grover’s algorithm [13, 14]. The centre-of-

mass mode plays the role of the uniform superposition state, and the reflection operations

are implemented as elastic collisions. The frequencies have to be chosen to allow resonant

amplitude transfer, and a high school science project has demonstrated the scenario [16]. A

point to note is that both the classical wave version and the quantum version of the algorithm

have identical oracle complexity, but the classical version needs N distinct wave modes while

the quantum one requires log2N qubits. The classical wave version therefore needs more

spatial resources for the algorithm than the quantum one, although the temporal resources

are the same in both cases. Another property is that |amplitude|2 represents energy in the

mechanical setting, in contrast to it representing probability in the quantum setting. So

the mechanical version of the algorithm provides the optimal method to focus energy, or

while running in reverse, the optimal method to disperse energy. (Observe that energy is

neither supplied nor extracted during the running of the algorithm.) The consequences can

be dramatic in processes whose rates are governed by the Boltzmann factor, exp(−E/kT ),

where the energy appears in the exponent. Efficient schemes to transfer/redistribute energy

have many practical uses in systems ranging from mechanical to electrical, chemical and

biological ones. Some possibilities are: focusing of energy can be used as a selective switch,

energy amplification can speed up catalytic processes, defects and impurities in materials can

be detected by wave reflections at suitably tuned frequencies, and fast dispersal of energy can

be used in shock absorbers.

• As mentioned earlier, the Trotter formula structure of Grover’s algorithm suggests that the

reflection operations can be replaced by other values of phase-shifts or related operations, and

the algorithm will still succeed, albeit with somewhat reduced efficiency. In spatial search

problems, the reflection across the uniform state is replaced by a quantum walk generated

by the discrete Laplacian operator, and an extra coin degree of freedom controls the choice

of movement directions. The best algorithms involve relativistic quantum walks, with the

coin becoming the inherent internal degree of freedom [17]. The Klein-Gordon version as well

as the Dirac version of the quantum walk have been studied; the former is easily extended

to fractal geometries as well as to search for multiple targets. A general framework with

the reflection across the uniform state replaced by any diffusion operator is analysed as well,

where the spectral properties of the diffusion operator decide the advantage provided by the

algorithm [18].

• The reflection oracle for the target state can be also replaced by a phase-shift different from

π. Then the optimal performance is obtained, as expected from the Trotter formula structure,

when this phase-shift matches the phase rotation provided by the diffusion operator [18]. In

spatial search problems, the phase-shift at the target state can also be created in many ways:

scattering from a localized potential, scattering from an obstacle [19], localized change in the

effective mass of the propagating mode [20, 21], closed loop paths around the target [22]. The

performance of the algorithm is optimized again by tuning the associated parameters.

5 Has Evolution Exploited Advantages of Grover’s Algorithm?

Biological systems, especially at the molecular level, have two striking features:

(a) Various biomolecules function according to their chemical and structural properties. Most

of the time, they are not readily available to the living organism. Rather a living organism
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eats food, breaks it down to its elementary components by digestion, and then reassembles

the components according to specific prescriptions to obtain the required biomolecules. In

this metabolic process, the elementary components are randomly floating around in the cel-

lular environment, and the task of assembling them in a specific order is that of unstructured

database search.

(b) Living organisms are non-equilibrium systems, sustained against the odds by clever ma-

nipulations of energy. The tasks of efficient acquisition and transfer of energy have therefore

high priority.

Given that Grover’s algorithm provides the optimal solution to both these requirements, the

simplicity, the robustness and the versatility of the algorithm, and the persistent hunt of

biological evolution to find ingenious and efficient solutions to the problems at hand (i.e. sur-

vival of the fittest), it would be a surprise if nature hadn’t discovered Grover’s algorithm, even

without a systematic analysis. Indeed, the evidence described below highlights the manner

in which Grover’s algorithm may have already become a key and an inalienable part of life.

Whenever a suggestion regarding the role of Grover’s algorithm in a biological process

is made, immediate concerns are raised regarding how highly fragile quantum dynamics can

survive in the cellular environment with continuous jostling of a large number of molecules.

The elaboration of the previous sections was to emphasize that the quantum properties re-

quired for the execution of Grover’s algorithm are rather minimal, and can be replaced by

appropriate classical wave analogues. In particular, the following aspects are worth keeping

in mind:

(1) In the biological context, time is highly precious while space is fairly expendable, in sharp

contrast to the conventional computational complexity framework that treats time and space

on an equal footing. Biological systems can sense small differences in population growth

rates, and even an advantage of a fraction of a percent in time is sufficient for one species

to overwhelm another over many generations. Spatial resources are frequently wasted, that

too on purpose. Just think of how many seeds a plant produces, when a single one can en-

sure the continuity of its lineage. (Note that such wastefulness also leads to competition and

Darwinian selection.) Thus living organisms may be able to afford the classical version of

Grover’s algorithm, with its enhanced stability compared to the quantum version; the addi-

tional cost of spatial resources may remain tolerable for small values of N . That would beat

the Boolean algorithm for the same task in the cost of temporal resources, which is crucial

for the biological tasks. There can be even mixed scenarios, where fragile quantum steps are

stabilized by embedding them in a background classical evolution.

(2) Coherent superposition of wave modes, classical or quantum, is an essential part of Grover’s

algorithm. It must survive long enough for the algorithm to execute. But the algorithm would

still work if the superposition is merely apparent, and not genuine. That would happen if

the cycling time between different states is short compared to the time required to select the

target state (e.g. the appearance of spokes of a rapidly spinning wheel), which is possible

when molecular diffusion in cells is fast. It is worth noting that the molecular coherence

of biomolecules (e.g. a polypeptide) can be delocalized over a region much larger than the

molecular size [23].

(3) Similarity of Grover’s algorithm with localization suggests that it is possible for under-

lying quantum dynamics to produce macroscopic classical effects in interacting many-body
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systems. Moreover, the dynamics is easier to protect from external disturbances when the

steps involved are not too many.

The unique signature of Grover’s algorithm appears most strikingly in the structure of

genetic languages [24, 25]. The languages of genes and proteins are universal for all living

organisms, they use specific building blocks (i.e. nucleotide bases and amino acids) from the

many similar ones available in cells, and the information they carry is packed to nearly maxi-

mum density. These properties indicate that these languages are essentially optimal solutions

for the tasks they carry out, and not just a frozen accident of history. During replication and

translation, new DNA/RNA and polypeptide chains are synthesized by sequentially assem-

bling their building blocks in an order specified by preexisting master templates. The correct

building block is identified by complementary base-pairing; either it takes place or it does

not. Thus the problem solved is indeed unstructured database search using a binary oracle

provided by the master template. The smallest three solutions of Grover’s algorithm in this

situation, obtained from Eq.(6), are:b

Q = 1→ N = 4 , Q = 2→ N = 10.5 , Q = 3→ N = 20.2 . (8)

These are in remarkable agreement with the identification of the four nucleotide bases of

DNA/RNA with a single base-pairing, the identification of the twenty amino acids in polypep-

tide chains with a triplet code, and the identification of ten amino acids in either of their two

classes by a doublet code [26]. There is no other known scenario that explains these num-

bers as optimal solutions to the actual information processing tasks accomplished;c the best

Boolean algorithm for the same tasks is binary search, which yields N = 2Q.

The smallest instance, N = 4, is an instructive example. Its solution with Grover’s optimal

quantum algorithm requires one query and two qubits. When that is fragile and impractical,

the Boolean search solves the problem with two queries and two bits (i.e. an extra factor of

two in temporal resources), and the classical wave search solves it with one query and four

wave modes (i.e. an extra factor of two in spatial resources). In biological systems, cheaper

spatial resources than temporal ones would obviously favour the latter solution. Note that

the square-root temporal gain offered by the classical wave search over the Boolean search

(i.e. O(
√
N) vs. N) is indeed comparable to the exponential spatial cost involved (i.e. N vs.

log2N) for small values of N .

If one imagines the development of a genetic information encoding system when life orig-

inated, it would have been certainly sufficient and easier to do the job using two nucleotide

bases (one complementary pair) and a Boolean algorithm. Was it then the advantage of

the classical wave search that led nature to complicate the encoding to the universal genetic

languages observed today? It is entirely plausible that some primitive organism discovered

the advantages of Grover’s algorithm, quite likely by trial and error, and built that at the

core of life’s information processing system. Simple models that map the base-pairing to

the reflection oracle and the approach to equilibrium to an oscillatory process, incorporating

the features described in Section 4, can be constructed [24, 25]. Nevertheless, for a realistic

bIn reality, both Q and N are integers. When a solution to Eq.(6) has a non-integer value for N , it means
that the result produced by the algorithm will have a small error.
cThere is no other explanation for the four-letter alphabet of DNA/RNA. Assuming this four-letter alphabet,
some scenarios to explain the twenty-letter amino acid alphabet have been constructed, but they need inputs
beyond just optimization of information processing.
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description that accurately identifies the dynamical execution of the algorithm, we need ex-

perimental observations of the intermediate steps of the genetic replication and translation

processes. That is not yet possible in sufficient detail, but the progress in technology should

take us there some day. Alternatively, indirect checks that compare the efficiency of the nat-

ural system with artificially constructed competitors (using different number of letters in the

genetic alphabet) would be easier to explore [27].

Another biological phenomenon relevant to Grover’s algorithm is the process of energy

transfer during photosynthesis, from the chlorophyll pigment molecules that capture photons

to the reaction centre where glucose is synthesized. This energy transfer is nearly dissipation-

less and takes place as coherent wave motion of an exciton in a network of pigment molecules

[28]. A classical strategy of hopping in a funnel-shaped energy landscape cannot explain this

behavior. But it can be understood as amplitude amplification in a spatial search algorithm,

with the reaction centre acting as a defect that induces localization, and the process being

terminated when the accumulated energy crosses the threshold for ionizing water. Models

with effective Hamiltonians for the pigment network have been constructed, but details of the

process in presence of the existing environmental noise still remain to be properly understood.

A rough analogy would be how a crack in an object, say a child’s toy, opens up, when it is

shaken in a suitable manner—the crack reflects the wave motion causing energy to build up

there, and then nonlinear material dynamics cascades the energy down to the atomic scale

where bonds are broken.

Telltale signatures of vibronic modes (i.e. coupled vibrational and electronic degrees of

freedom) have also been found in enzyme catalysis, olfaction and magnetoreception by birds

[29]. A standard test for significant contribution from the vibrational degrees of freedom

in such phenomena is the kinetic isotope effect [30], where isotopic substitution alters the

vibrational properties of molecules with negligible effect on the electronic structure. How the

involvement of vibrational modes and wave dynamics can help these processes is a topic of

active research. Needless to say, a better understanding of such processes discovered by natural

evolution, combined with features of Grover’s algorithm, would allow us to design new types

of catalysts and sensors. Moreover, when the turn comes to develop quantum memories, to go

along with the quantum devices being developed, organizing them with quaternary addresses

(instead of binary ones) will be an attractive proposition worth considering.
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