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We re-visit Unclonable Encryption as introduced by Gottesman in 2003 [1]. We look
at the combination of Unclonable Encryption and Key Recycling, while aiming for low

communication complexity and high rate. We introduce a qubit-based prepare-and-

measure Unclonable Encryption scheme with re-usable keys. Our scheme consists of a
single transmission by Alice and a single classical feedback from Bob. The transmission

from Alice to Bob consists entirely of qubits. The rate, defined as the message length
divided by the number of qubits, is higher than what can be achieved using Gottesman’s

scheme [1]. We provide a security proof based on the diamond norm distance, taking

noise into account.
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1 Introduction

1.1 Doing better than One-Time Pad encryption

Classically, the best confidentiality guarantee is provided by One-Time Pad (OTP) encryption.

If Alice and Bob share a uniform n-bit secret key, they can exchange an n-bit message with

information-theoretic security. In the classical setting Eve is able to save a copy of the

ciphertext. For the message to remain secure in the future, two conditions must be met:

1. The key is used only once.

2. The key is never revealed.

If a quantum channel is available, these conditions can both be relaxed. (i) Quantum Key

Recycling (QKR) [2, 3, 4] schemes provide a way of re-using encryption keys. (ii) Unclonable

Encryption (UE) [1] guarantees that a message remains secure even if the keys leak at some

time in the future.

In this paper we introduce a sheme that achieve both the key recycling and UE properties,

and we explicitly prove that this can be achieved with low communication complexity. Our

scheme acts only on individual qubits with simple prepare-and-measure operations.
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1.2 Quantum Key Recycling

The most famous use of a quantum channel in the context of cryptography is Quantum Key

Distribution (QKD). First proposed in 1984 [5], QKD allows Alice and Bob to extend a

small key, used for authentication, to a longer key in an information-theoretically secure way.

Combined with classical OTP encryption this lets Alice and Bob exchange messages with

theoretically unconditional security. The QKD field has received a large amount of atten-

tion, resulting in QKD schemes that discard fewer qubits, various advanced proof techniques,

improved noise tolerance, improved rates, use of EPR pairs, higher-dimensional quantum sys-

tems etc. [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Much less known is that the concept of QKR

was proposed two years before QKD [2]. QKR encrypts a classical message into a quantum

‘cipherstate’ using basis choices that are a shared secret between Alice and Bob, and allows

for the re-use of this secret when no disturbance is detected. QKD and QKR have a lot in

common. (i) They both encode classical data in quantum states, in a basis that is not a

priori known to Eve. (ii) They rely on the no-cloning theorem [16] to guarantee that without

disturbing the quantum state, Eve can not gain information about the classical payload or

about the basis.

The security of QKD has been well understood for a long time (e.g. [7, 9, 11, 15]), while

a security proof for qubit-based QKR has been provided fairly recently [3]. A cipher with

near optimal rate using high-dimensional qudits was introduced in 2005 [17]. Unfortunately,

their method requires a quantum computer to perform encryption and decryption. In 2017,

a way of doing authentication (and encryption) of quantum states with Key Recycling was

proposed [18]. However this work did not lead to a prepare-and-measure variant.

The main advantage of QKR over QKD+OTP is reduced round complexity: QKR needs

only two passes. After the communication from Alice to Bob, only a single bit of authenticated

information needs to be sent back from Bob to Alice. Recently, it was shown that QKR over

a noisy quantum channel can achieve the same communication rate as QKD (in terms of

message bits per qubit) even if Alice sends only qubits [19]; a further reduction of the total

amount of communicated data.

1.3 Unclonable Encryption

In 2003, D. Gottesman introduced a scheme called Unclonable Encryptiona (UE) [1] where

the message remains secure even if the encryption keys leak at a later time (provided that

no disturbance is detected). His work was motivated by the fact that on the one hand

many protocols require keys to be deleted, but on the other hand permanent deletion of

data from nonvolatile memory is a nontrivial task. In this light it is prudent to assume that

all key material which is not immediately discarded is in danger of becoming public in the

future; hence the UE security notion demands that the message stays safe even if all this key

material is made public after Alice and Bob decide that they detected no disturbance. (In case

disturbance is detected, the keys have to remain secret forever or permanently destroyed.) It

is important to remark here that the ‘standard’ way of using QKD (building a pool of key

material for later use as one-time pad) is not unclonable encryption: the ciphertext is classical

and can be copied for later decryption.

aThis is slightly different from the unclonability notion of Broadbent and Lord [20] which considers two
collaborating parties who both wish to recover the plaintext.
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Gottesman remarked on the close relationship between UE and QKD, and in fact con-

structed a QKD variant from UE. The revealing of the basis choices in QKD is equivalent

to revealing keys in UE. It is interesting to note that Gottesman’s UE construction allows

partial re-use of keys. However, it still expends one bit of key material per qubit sent. In the

current paper we introduce qubit-based UE without key expenditure.

Since QKR sends a message directly instead of establishing a key for later use, QKR

protocols are natural candidates to have the UE property. In the case of noiseless quantum

channels, the high-dimensional encryption scheme [17] and the qubit-based schemes [3, 4]

seem to have UE; for noisy channels [4] with modified parameters also seems to have UE.

However, none of these conjectures have been explicitly stated or proven, which is a shame

since resilience against key leakage is an interesting security feature. The QKR protocol where

Alice sends only qubits [19] is clearly not unclonable, due to the fact that single-use keys are

stored at the end of each round.

2 Contributions

We construct an Unclonable Encryption scheme with recyclable keys, while aiming for low

communication complexity and high rate. We consider the following setting. Alice and Bob

have a reservoir of shared key material. Alice sends data to Bob in N chunks. Each chunk

individually is tested by Bob for consistency (sufficiently low noise and valid MAC). In case

of reject they have to access new key material from the reservoir. In case of accept, Alice

and Bob re-use their key material; this may be done either by keeping keys unchanged or by

re-computing keys without accessing the reservoir. If the N ’th round was an accept, all keys

of round N are assumed to become public.

• We define the Key Recycling (KR) and Unclonable Encryption (UE) properties in terms

of statistical indistinguishability. For these definitions we show a relation between KR and

UE: If a KR scheme re-uses all its long-term secrets in unchanged form upon accept, then

it also has the UE property.

• We introduce KRUE, a qubit-based prepare-and-measure scheme that satisfies KR and UE.

Alice sends a single transmission, which consists entirely of qubits. Bob responds with an

authenticated classical feedback bit. We provide a security proof by upper bounding the

diamond distance between the protocol and its idealized functionality. In particular, we

use a reduction to the diamond distance that is associated with the security of QKD [11].

In the case of a noiseless channel this reduction is almost immediate, without involving any

inequalities.

• KRUE by itself is not a fully functional scheme. It relies on an external mechanism to se-

curely transport some key material for the key update. We propose to employ the ‘Quantum

Alice and Silent Bob’ QKR scheme [19], which is highly efficient, as the external mecha-

nism. The advantage of using QKR is that it can be combined efficiently with KRUE to

yield a two-pass protocol, i.e. its advantage is low round complexity. We derive the asymp-

totic rate of the combined KRUE+QKR scheme for BB84 encoding and 6-state encoding.

In the case of BB84 encoding the asymptotic rate of KRUE+QKR is [1−2h(β)]2

1−h(β) , Here h is

the binary entropy function, and β is the tolerated bit error rate in the quantum channel.b

bFor comparison, the key generation rate of BB84 QKD is 1− 2h(β).



904 Qubit-based unclonable encryption with key recycling

We present a rate comparison between various constructions that achieve UE and KR

simultaneously. KRUE+QKR has the highest rate.

The outline of the paper is as follows. After introducing notation and preliminaries in

Section 3, we introduce the attacker model and security definitions in Section 4. We then

introduce the KRUE protocol (Section 5) and its EPR version (Section 6), We present the

security proof and the rate analysis in Section 7. In Section 8 we compare KRUE+QKR to

existing qubit-based alternatives and alternative external mechanisms for KRUE. In Section 9

we summarise and suggest topics for future work.

3 Preliminaries

3.1 Notation and terminology

Classical Random Variables are denoted with capital letters, and their realisations with lower-

case letters. The expectation with respect to X is denoted as Exf(x) =
∑
x∈X Pr[X = x]f(x).

For the ` most significant bits of the string s we write s[:`]. The Hamming weight of a string

s is denoted as |s|. The complement of a Boolean variable x ∈ {0, 1} is written as x̄ = 1− x.

The notation ‘log’ stands for the logarithm with base 2. The notation h stands for the binary

entropy function h(p) = p log 1
p + (1− p) log 1

1−p . Sometimes we write h(p1, . . . , pk) meaning∑k
i=1 pi log 1

pi
. Bitwise XOR of binary strings is written as ‘⊕’. The Kronecker delta is de-

noted as δab. We will speak about ‘the bit error rate β of a quantum channel’. This is defined

as the probability that a classical bit x, sent by Alice embedded in a qubit, arrives at Bob’s

side as the flipped value x̄. A linear error-correcting code with a ` × n generator matrix G

can always be written in systematic form, G = (1`|Γ), where the `× (n− `) matrix Γ contains

the checksum relations. For message p ∈ {0, 1}`, the codeword cp = p · G then has p as its

first ` bits, followed by n− ` redundancy bits.

For quantum states we use Dirac notation. A qubit with classical bit x encoded in basis

b is written as |ψbx〉. The set of bases is B. In case of BB84 states we have B = {x, z}; in

case of 6-state encoding B = {x, y, z}. A mixed state (also called density matrix) in Hilbert

space H is a positive semidefinite operator on H with unit trace. We write ‘tr’ for trace. We

write S(H) to denote the space of (not necessarily normalised) positive semi-definite operators

acting on H. Consider a density matrix ρ ∈ S(H) with eigenvalues {λi}. The 1-norm of ρ is

written as ‖ρ‖1 = tr |ρ| = tr
√
ρ†ρ =

∑
i |λi|. The trace norm is ‖ρ‖tr = 1

2‖ρ‖1. The trace

distance D(ρ, σ) between two density matrices ρ and σ is defined as D(ρ, σ) = 1
2 tr |ρ− σ|. It

is the generalisation of the statistical distance between classical random variables, and it is a

measure for the distinguishability of ρ and σ.

We use capitalised superscripts to label subsystems of a Hilbert space. Non-italic labels

‘A’, ‘B’ and ‘E’ indicate the subsystem of Alice/Bob/Eve. Consider classical variables X,Y

and a quantum system in Eve’s possession that depends on X and Y . The combined classical-

quantum state is ρXY E = Exy|xy〉〈xy|⊗ρE
xy. The state of a sub-system is obtained by tracing

out all the other subspaces, e.g. ρY E = trXρ
XY E = Ey|y〉〈y| ⊗ ρE

y , with ρE
y = Ex|yρE

xy. The

fully mixed state on HA is denoted as χA. We also use the notation µX = Ex|x〉〈x| for a

classical variable X that is not necessarily uniform. The distance from uniformity of X’s

distribution given Eve’s subsystem is given by D(ρXE, χX ⊗ ρE). This is a measure of Eve’s

ability to distinguish X from uniform, given quantum side information. Similarly, for non-
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uniform X, the distance D(ρXE, ρX ⊗ ρE) expresses how different the ‘posterior’ X|E is from

the prior distribution of X.

Any quantum channel can be described by a completely positive trace-preserving (CPTP)

map E : S(HA) → S(HB) that transforms a mixed state ρA to ρB: E(ρA) = ρB. For a map

E : S(HA) → S(HB), the notation E(ρAC) stands for (E ⊗ 1C)(ρAC), i.e. E acts only on the

A subsystem. Applying a map E1 and then E2 is written as the combined map E2 ◦ E1. The

diamond norm of E is defined as ‖E‖� = 1
2 supρAC∈S(HAC) ‖E(ρAC)‖1 with HC an auxiliary

system that can be considered to be of the same dimension as HA. The diamond norm

‖E − E ′‖� can be used to bound the probability of distinguishing two CPTP maps E and

E ′ given that the process is observed once. The maximum probability of a correct guess is
1
2 + 1

4‖E −E
′‖�. In quantum cryptography, a popular proof technique is to consider Alice and

Bob performing actions on noisy EPR pairs. These actions are described by a CPTP map

E acting on the input EPR states and outputting classical outputs for Alice and Bob, and

correlated quantum side information for Eve. The security of such a protocol is quantified

by the diamond norm between the actual map E and an idealised map F which produces

perfectly behaving outputs (e.g. perfectly secret QKD keys). When ‖E − F‖� ≤ ε we can

consider E to behave ideally except with probability ε; this security metric is composable with

other (sub-)protocols [15].

A family of hash functions H = {h : X → T } is called pairwise independent (a.k.a. 2–

independent or strongly universal) [21] if for all distinct pairs x, x′ ∈ X and all pairs y, y′ ∈ T it

holds that Prh∈H [h(x) = y ∧ h(x′) = y′] = |T |−2. Here the probability is over random h ∈ H.

An information-theoretically secure MAC function can be constructed using pairwise in-

dependent hash functions and a shared key [21]. The probability of forging the authentication

tag that an information-theoretically secure MAC outputs is equal to the probability of ran-

domly guessing the key or the tag. When the smallest size of the key and tag is λ this is

2−λ.

3.2 Pairwise independent hashing with easy inversion

We will need a privacy amplification function that is easily computable in two directions.

Unfortunately the code-based construction due to Gottesman [1] does not work with the

proof technique of [11], which requires a family of universal hash functions. We will be using

a family of pairwise independent hash functions F : {0, 1}k → {0, 1}k that are easy to invert.

An easy way to construct such a family is to use an affine function in GF (2k) [22]. Let

u = (u1, u2) with u1, u2 ∈ GF (2k) randomly chosen. Define Fu(x) = u1 · x + u2, where the

operations are in GF (2k). Likewise F inv
u (z) = u−1

1 · (z + u2). A pairwise independent family

of hash functions Φ from {0, 1}k to {0, 1}`, with ` < k, can be obtained by taking the ` most

significant bits of Fu(x).c We denote this as

Φu(x)
def
= Fu(x)[:`]. (1)

The inverse operation is as follows. Given c ∈ {0, 1}`, generate random r ∈ {0, 1}k−` and

output F inv
u (c||r). It obviously holds that Φu(F inv

u (c||r)) = c. Computing an inverse in

cThe proof is straightforward. Write Fu(x) = c‖r, with c ∈ {0, 1}`. Let x′ 6= x. Then Pru[Φu(x) =
c ∧ Φu(x′) = c′] =

∑
r,r′∈{0,1}k−` Pru[Fu(x) = c‖r ∧ Fu(x′) = c′‖r′]. By the pairwise independence of F

this gives
∑
r,r′∈{0,1}k−` 2−2k = 2−2`.
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GF (2k) costs O(k log2 k) operations [23].

3.3 Post-selection

For protocols that are invariant under permutation of their inputs it has been shown [24] that

security against collective attacks (same attack applied to each qubit individually) implies

security against general attacks, at the cost of extra privacy amplification. Let E be a protocol

that acts on S(H⊗nAB) and let F be the perfect functionality of that protocol. If for all input

permutations π there exists a map Kπ on the output such that E ◦ π = Kπ ◦ E , then

‖E − F‖� ≤ (n+ 1)d
2−1 max

σ∈S(HABE)

∥∥∥(E − F)(σ⊗n)
∥∥∥

1
(2)

where d is the dimension of the HAB space. (d = 4 for qubits). The product form σ⊗n

greatly simplifies the security analysis: now it suffices to prove security against ‘collective’

attacks, and to pay a price 2(d2− 1) log(n+ 1) in the amount of privacy amplification, which

is negligible compared to n. We use the term ‘privacy amplification’ for the act of hashing to

a smaller message size in order to obtain a better security parameter.

3.4 Noise symmetrisation with random Pauli operators

In [11] it was shown that for n-EPR states in factorised form, as obtained from e.g. Post-

selection, a further simplification is possible. For each individual qubit j, Alice and Bob

apply the Pauli operation σαj to their half of the EPR pair, with αj ∈ {0, 1, 2, 3} random and

public; then they forget α. The upshot is that Eve’s state (the purification of the Alice+Bob

system) is simplified to the 4× 4 diagonal matrix Diag(1− 3
2γ,

γ
2 ,

γ
2 ,

γ
2 ). Only one parameter

is left over, the bit error probability γ caused by Eve. This symmetrisation trick is allowed

when the statistics of the variables in the protocol is invariant under the Pauli operations.

4 Attacker model and security definitions

4.1 Attacker model

We work in same setting as Gottesman [1], as discussed in Section 1.3. We distinguish between

on the one hand long-term secrets and on the other hand short-term secrets. A variable is

considered short-term only if it is createdd and immediately operated upon locally (without

waiting for incoming communication), and then deleted. All other variables are long-term.

(An example of a short-term variable is a nonce that is generated, immediately used a function

evaluation and then deleted. On the other hand, all keys that are stored between protocol

rounds are long-term.)

We consider two world views.

• World1. All secrets can be kept confidential indefinitely or destroyed.

• World2. Long-term secrets are in danger of leaking at some point in time.

There are several motivations for entertaining the second world view. (a) It is difficult to

permanently erase data from nonvolatile memory. (b) Whereas everyone understands the

necessity of keeping message content confidential, it is not easy to guarantee that protocol

implementations (and users) handle the keys with the same care as the messages.

dPerforming a measurement on a quantum state is also considered to ‘create’ a classical variable.



Daan Leermakers and Boris Škorić 907

QKR protocols are typically designed to be secure in world1. In this paper we prove

security guarantees that additionally hold in world2. One way of phrasing this is to say that

we add ‘user-proofness’ to QKR.

Alice sends data to Bob in N chunks. We refer to the sending of one chunk as a ‘round’.e In

each round Bob tells Alice if he noticed a disturbance (‘reject’) or not (‘accept’). In case

of reject they are alarmed and they know that they must take special care to protect the

keys of this round indefinitely (i.e. a fallback to World1 security). Crucially, we assume that

a key theft occurring before the end of round N is immediately noticed by Alice and/or Bob.

Without this assumption it would be impossible to do Key Recycling in a meaningful way.

We allow all keys to become public after round N .

The rest of the attacker model consists of the standard assumptions: no information, other

than specified above, leaks from the labs of Alice and Bob; there are no side-channel attacks;

Eve has unlimited (quantum) resources; all noise on the quantum channel is considered to be

caused by Eve.

4.2 Security definitions

We briefly introduce the formalism for describing quantum encryptions of classical messages,

and key recycling schemes.

Definition 1 A quantum encryption scheme QE with message space M, key space K, and

Hilbert space H consists of the following components:

1. A key generation function QE.Gen: 1λ → K, where λ is the security parameter.

2. A CPTP map QE.Encr:M×K× S(H) →M×K × S(H) that takes as input a message

m ∈ M and a key k ∈ K, acts on an initial quantum state π0 ∈ S(H), and outputs a

cipherstate πmk ∈ S(H) which may or may not contain a classical part. (The m and k

are not modified.) We write QE.Encr
(
|m〉〈m| ⊗ |k〉〈k| ⊗ π0

)
= |m〉〈m| ⊗ |k〉〈k| ⊗ πmk.

3. A measurement QE.Decr: K × S(H) → K ×M′ × {0, 1} that takes as input a key k ∈ K
and a cipherstate, and outputs a message m′ ∈ M′ and a flag ω ∈ {0, 1}. Here we have

defined M′ = M∪ {⊥}. (The k is not modified.) The flag is set as ω = 0 if m′ = ⊥
and ω = 1 otherwise. The POVM operators at given k are written as {Dk

m′}m′∈M′ , with

∀k
∑
m′∈M′ D

k
m′ = 1.

The measurement has a fully classical outcome. Without loss of generality we write

π0 = |0〉〈0|. The actions of Alice, Eve and Bob are described as follows. Alice and Bob

generate a shared key k = QE.Gen(). Alice draws a plaintext message m from a distribution

that is not necessarily uniform, and not necessarily known to Alice. The non-uniformity takes

into account that Eve may have prior knowledge about the likelihood of messages, or even

know part of the plaintext. Alice applies QE.Encr, yielding cipherstate πmk which she sends

to Bob.

Eve intercepts πmk. Eve entangles a quantum state of her own with πmk, resulting in a

state ρBF
mk = U(πmk ⊗ |e〉〈e|), where |e〉 is the initial state of Eve’s quantum system and U is

a unitary operation. The label ‘B’ stands for the subsystem forwarded to Bob. The ‘F’ part

eOne data transmission will be called a pass. A round consists of multiple passes.
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is the subsystem kept by Eve.f The above procedure, with postponed measurement on the F

system, is the most general action possible for Eve, and comprises options like e.g. copying

classical information, or completely keeping πmk. Eve’s overall action can be written as a

CPTP map A which acts as (A◦QE.Encr)
(
|mk0e〉〈mk0e|

)
= |mk〉〈mk| ⊗ ρBF

mk.g Bob acts on

the ‘B’ part of ρBF
mk with QE.Decr. He makes the value of ω public.

This whole sequence of events results in a final state that we refer to as the output of the

scheme, (QE.Decr◦A◦QE.Encr)
(
|mk0e〉〈mk0e|

)
= |mk〉〈mk|⊗

∑
m′∈M′ |m′〉〈m′|⊗tr BD

k
m′ρ

BF
mk

def
= |mk〉〈mk| ⊗

∑
m′∈M′ |m′〉〈m′|(trDk

m′ρ
BF
mk)⊗ ρF

mkm′ .

Writing the classical variables m, k, m′, ω as subsystems of a large quantum-classical

state, we express the output state as

ρMKM ′ΩF =
∑
m∈M

Pr[M = m]
∑
k∈K

1

|K|
∑

m′∈M′
(trDk

m′ρ
BF
mk)|mkm′ω(m′)〉〈mkm′ω(m′)| ⊗ ρF

mkm′ .

(3)

Correctness. We say that a quantum encryption scheme QE is ε-correct if Pr[Ω = 1 ∧M ′ 6=
M ] ≤ ε for any adversarial action A and any distribution of M . This definition adheres to the

correctness definition in the QKD literature (see e.g. [25, 15]). (In classical cryptography the

correctness requirement would be that Pr[Ω = 1∧M ′ = M ] ≥ 1− ε if Eve does not interfere.

We will see that our scheme satisfies both correctness notions.)

Security. A quantum encryption scheme is considered secure if the cipherstate does not give

Eve more information about the message than she already had. This can be expressed in

terms of the statistical distance (trace distance) between Eve’s a priori distribution of M and

Eve’s a posteriori distribution of M given Ω and the ‘F’ subsystem, where F may be obtained

via any adversarial action A as described above, and in particular can comprise the entire

cipherstate. We define the Encryption property (ENC) as follows.

Definition 2 Let QE be a quantum encryption according to Def. 1 with output state ρMKM ′ΩF =

(QE.Decr ◦ A ◦QE.Encr)(
∑
mk

Pr[M=m]
|K| |mk0e〉〈mk0e|) as described above. We say that QE is

ε-encrypting (ε-ENC) if the output satisfies

‖ρMΩF − ρM ⊗ ρΩF‖1 ≤ ε (4)

for all adversarial actions A and all distributions of M .

(The ε is referred to as the error). Note that in (4) M ′ has been traced out. In the case ω = 1

it is obvious that we are allowed to trace out M ′, as Eve gains no knowledge about M ′. But

in the case ω = 0 Eve learns that m′ = ⊥, so strictly speaking M ′ is not entirely hidden from

Eve. However, Eve already has access to Ω; given ω = 0, learning that m′ = ⊥ conveys no

additional information.h

Our Def. 2 differs from the more conventional “statistical privacy” property as defined in

e.g. [17], primarily in that we include the flag Ω. Our motivation for including Ω is that we

fHere we do not use the label ‘E’ because later in the paper that will be reserved exclusively for Eve’s quantum
side information, while F may contain classical variables as well.
gWe use combined notation |mk0e〉 for |m〉 ⊗ |k〉 ⊗ |0〉 ⊗ |e〉.
hAlternatively, in Def. 1 we could have assigned a random value to m′ in case of decryption failure. Then Eve
would have no access whatsoever to M ′.
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later want to express that a QKR scheme, which by default has the flag Ω, is ε-encrypting.

ε-statistical privacy : ∀m0,m1∈M ‖Ekπm0k − Ekπm1k‖tr ≤ ε. (5)

Lemma 1 ε-ENC (Def. 2) implies ε-statistical privacy.

Proof: Consider the special case where M is deterministic, M = m0. Furthermore we take

the special case that Eve keeps the entire cipherstate. Then ρMF = |m0〉〈m0| ⊗ Ekπm0k and

ρM ⊗ ρF = |m0〉〈m0| ⊗ Emkπmk We get

‖Ekπm0k − Emkπmk‖1 = ‖|m0〉〈m0| ⊗ Ekπm0k − |m0〉〈m0| ⊗ Emkπmk‖1
= ‖ρMF − ρM ⊗ ρF ‖1 ≤ ‖ρMΩF − ρM ⊗ ρΩF ‖1 ≤ ε. (6)

Similarly, for deterministic M = m1 we get ‖Ekπm1k − Emkπmk‖1 ≤ ε. Together this yields

‖Ekπm0k − Ekπm1k‖1 ≤ 2ε.

Alice and Bob share a ‘reservoir’ of key material. The aim of Quantum Key Recycling

(QKR) is to use up this reservoir as slowly as possible, while having low round complexity and

high rate. We define a QKR scheme as a Quantum Encryption scheme with the additional

property that (most of) the key material can be re-used when Alice and Bob detect no

disturbance. This definition differs slightly from others used in the literature in two respects,

(i) In [3] an authentication scheme with key re-use is also referred to as QKR. However, as

mentioned in [3], message encryption is trivially added; (ii) We do not demand re-use of the

exact same key in unmodified form, but allow a small amount of fresh randomness to be

hashed into the old key.

Definition 3 A Quantum Key Recycling scheme QKR with message space M, key space K
and Hilbert space H consists of the following components:

1. A key generation function QKR.Gen: 1λ → K, where λ is the security parameter.

2. A CPTP map QKR.Encr:M×K×S(H)→M×K×S(H) that takes as input a message

m ∈ M and a key k ∈ K, acts on an initial state π0 ∈ S(H), and outputs a cipherstate

πmk ∈ S(H) which may or may not contain a classical part. (The m and k are not

modified.) We write QKR.Encr
(
|mk〉〈mk| ⊗ π0

)
= |mk〉〈mk| ⊗ πmk.

3. A measurement QKR.Decr: K × S(H) → K × S(M′) × {0, 1} that takes as input a key

k ∈ K and a cipherstate, and outputs (i) a message m′ ∈ M or the error message ⊥; (ii)

a flag ω which is set to ω = 0 (reject) if m′ = ⊥ and to ω = 1 (accept) if m′ ∈ M.

(The k is not modified.)

4. A function QKR.Refresh: K × {0, 1} → K × {0, 1} that takes as input a key k ∈ K and the

flag ω, and outputs a new key k̃ ∈ K. (The ω is not modified.) The Refresh function may

use randomness from the reservoir.

The part of a QKR protocol that differs from mere quantum encryption is that the flag ω

gets communicated from Bob to Alice, and then both parties do a key refresh. For the reject

case it has been shown [17] that Refresh needs at least log |M| bits of fresh randomness from

the reservoir. In some schemes, e.g. [3], the key remains unchanged (k̃ = k) in case of accept,

whereas in others [19] the k̃ is computed by hashing some randomness from the protocol into k

(without accessing the reservoir).
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Definition 4 (Rate) Let QKR be a quantum key recycling scheme according to Def. 3, with

message space M and a cipherstate that comprises n qubits. Let QKR.Refresh use κ bits from

the reservoir upon accept. The rate of QKR is defined as

rate =
log |M| − κ

n
. (7)

Def. 4 is a natural definition given the fact that qubits are the most expensive resource. For

κ = 0 the rate (7) measures how many actual message bits are received by Bob per expended

qubit. For κ > 0 (key material is spent from the reservoir) it is straightforward to define a

fair comparison w.r.t. schemes that do not tap into the reservoir: simply imagine sending

κ random bits inside the message instead of using the reservoir; this effectively reduces the

message length as in (7).i

The output state of a QKR protocol is ρMKM ′K̃ΩF = (QKR.Refresh ◦ QKR.Decr ◦ A ◦
QKR.Encr) (

∑
mk

Pr[M=m]
|K| |mk0e〉〈mk0e|). We introduce notation ρMKM ′K̃F

accept = ρMKM ′K̃,Ω=1,F

and

ρMKM ′K̃F
reject = ρMKM ′K̃,Ω=0,F, with ρMKM ′K̃F

accept + ρMKM ′K̃F
reject = ρMKM ′K̃ΩF. The accept and

reject part of the state are sub-normalised. We write k̃acccept = QKR.Refresh(k, 1).

Definition 5 A quantum key recycling scheme with output state ρMKM ′K̃ΩF is called ε-

recycling (ε-KR) if (i) the reservoir is not accessed for creating the updated key k̃accept and

(ii) the output state satisfies

‖ρMK̃ΩF − ρK̃ ⊗ ρMΩF‖1 ≤ ε. (8)

Intuitively, Def. 5 says that even in the case of known plaintext Eve’s posterior distribution

of K̃ is hardly distinguishable from the prior distribution. (For reject this is the case because

the key gets refreshed from the reservoir; for accept it is the case because Eve cannot learn

much when she causes little disturbance.) Upon accept it is then safe to re-use key material,

in the form of k̃, without accessing the reservoir. The indistinguishability formulation (8) is

the same as in [17] and is also used for part of the key material in [3].

As mentioned in Section 4.1, looking at the KR property makes sense only before the end

of round N . It is assumed in the attacker model that the ‘old’ keys do not leak during this

period. Hence it is possible to write (8) in a form that has K traced out.

Definition 6 A scheme with output state ρMKM ′K̃ΩF is called ε-unclonable (ε-UE) if it

satisfies

‖ρMKK̃F
accept − ρM ⊗ ρKK̃F

accept‖1 ≤ ε. (9)

Intuitively, Def. 6 states that either the accept probability is low due to Eve’s interfer-

ence, or else Eve’s posterior distribution of M , given that k and k̃ leak after completion of

an accepting protocol run, is hardly distinguishable from the prior distribution. This UE

definition specifies no requirement for the reject case, since the ENC property already exists

to keep M safe in case of reject (even if Eve keeps the whole cipherstate).

Note that other definitions exist than the ones given above. For instance, Fehr and Salvail

[3] have a definition of recycling that allows Alice and Bob to re-use their keys in unmodified

iNote that Def. 4 is consistent with the notion of key generation rate in QKD. QKD followed by transfer of
a one-time-padded message µ ∈ M can be seen as a special case of Def. 3, where QKR.Decr involves a lot of
communication, and K is the key space of the MACs.
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form even if Eve obtains some information about part of the key (the measurement basis B),

as long as the min-entropy of B remains high enough. Such leakage may occur e.g. when Eve

observes the feedback bit ω after slightly manipulating the cipherstate. In our definition of

recycling, on the other hand, Eve is not allowed to know even a single bit about the updated

key K̃.

Furthermore, Def. 6 differs from Gottesman’s definition of unclonable encryption [1],

∀m0,m1∈M:m1 6=m0
and for a fraction ≥ 1− ε of keys k ∈ K :

‖ρF
accept(m0, k)− ρF

accept(m1, k)‖1 ≤ ε. (10)

The main difference is that we have to keep track of K̃ as well as K since we are in the QKR

setting. Apart from this detail, Def. 6 and (10) are very similar. In fact, if the K in (10) is

read as K, K̃ together, then Def. 6 implies (10). This can be seen as follows. (i) Going from

the register M to specific values m0,m1 follows the same step as in the proof of Lemma 1.

(ii) Def. 6 works with an average over k, and hence the desired ‖ · · · ‖1 ≤ ε property may fail

to hold for a fraction ε of all values k ∈ K. Hence in a fraction 1− ε of k-values the property

does hold, which is the same fraction as in (10).

Our preference for our KR and UE definitions stems from (i) the fact that they allow for

a unified treatment of all the componentsj of k; (ii) compatibility with the proof technique of

[11, 24], which makes it possible to prove security of high-rate schemes; (iii) having the same

type of definition for UE and KR. Furthermore our KR definition is compatible with [17].

Note that our KR and UE do not automatically imply ENC. The ENC property has to

be considered as a separate requirement. For the combination of ENC and KR we have the

following two lemmas.

Lemma 2

‖ρMK̃ΩF − ρM ⊗ ρK̃ ⊗ ρΩF‖1 ≤ ε =⇒ ε-ENC ∧ 2ε-KR. (11)

Proof. Taking the lhs of (11) and tracing over K̃ yields ε-ENC. Furthermore, using the triangle

inequality we write ‖ρMK̃ΩF − ρK̃ ⊗ ρMΩF‖1 ≤ ‖ρMK̃ΩF − ρM ⊗ ρK̃ ⊗ ρΩF‖1 +‖ρM ⊗ ρK̃ ⊗
ρΩF − ρK̃ ⊗ ρMΩF‖1. Both terms individually are bounded by ε by the lhs of (11); the first

term directly, the second term after taking the K̃-trace. This proves 2ε-KR.

Lemma 3

(K̃accept = K) ∧ ε1-ENC ∧ ε2-KR =⇒ (ε1 + ε2)-UE. (12)

Proof. With K̃accept = K we have ‖ρMKK̃F
accept −ρM ⊗ρKK̃F

accept‖1 ≤ ‖ρMKF
accept−ρM ⊗ρK ⊗ρF

accept‖1
+‖ρM ⊗ ρK ⊗ ρF

accept − ρM ⊗ ρKF
accept‖1. The first term is bounded by taking the trace over K

and using ε1-ENC. For the second we take the trace over M , yielding ‖ρKF
accept−ρK⊗ρF

accept‖1.

This expression is bounded by ε2, which is seen by taking the M -trace of (8).

Lemma 2 allows us to prove both ENC and KR by upperbounding a single quantity.

Lemma 3 is an important statement: any ENC scheme that upon accept re-uses its keys

in unmodified form and satisfies KR is automatically a UE scheme. It is interesting to note

je.g. measurement basis, MAC key, and seeds for hash functions.
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that [3] has K̃accept = K but does not satisfy our KR definition, whereas [4, 19] satisfies our

KR definition but does not have K̃accept = K. By Theorem 4 in [17] and Lemma 3, the

high-dimensional scheme of Damg̊ard et al. [17] has the UE property.

4.3 CPTP maps in the EPR formulation

EPR version of preparing and sending a state.

In order to make contact with the proof technique of Section 3.3 we re-formulate the state-

ments of Section 4.2 in terms of CPTP maps that act on noisy EPR pairs. In the EPR version

of a protocol in general, Alice’s act of sending an n-qubit state (which then gets entangled

with Eve’s state) to Bob is replaced by the following sequence. (i) Eve creates an arbitrary

pure state; (ii) Eve then sends n-qubit subsystems to Alice and Bob while keeping her own

subsystem which is entangled with the other two; (iii) Alice performs a measurement in the

same basis as the one in which she was originally preparing; (iv) Alice sends a classical mes-

sage to Bob which depends on her (random) measurement outcome and the state that she

wanted to send.k The security equivalence between Alice preparing & sending a state and the

EPR version has been shown in the context of QKD [26, 27] and has been the basis for the

proof framework of Renner et al. [28, 11].

CPTP maps for the EPR formulation of QKR.

Eve prepares a high-dimensional state ρABE, gives subsystem A to Alice and B to Bob, and

keeps E herself. Alice’s subsystem is an n-qubit space, and Bob’s subsystem likewise. The

AB system can be seen as n noisy EPR pairs, with the purification held by Eve. Alice and

Bob first execute an initialisation procedure I which prepares the message and the key in

the ‘MK’ quantum subsystem. Then Alice acts on the MKA system with a measurement

that acts like QKR.Encr (Def. 3) and results in a random outcome. She sends some classical

data to Bob, which depends on m, k, and the random outcome; effectively this turns the B

system into the cipherstate as specified by QKR.Encr. E is Eve’s quantum side information.

The QKR.Decr acts on the KB system. One detail remains to complete the translation from

the original prepare-send-measure description to the EPR version. If the cipherstate in Def. 3

comprises a classical part T (‘transcript’) then (i) Alice sends t to Bob over a classical channel;

(ii) the ‘F’ system in Section 4.2 consists of T and E.

In what follows, the notation E(ρABE) stands for the CPTP map QKR.Refresh◦QKR.Decr◦
QKR.Encr ◦ I acting on the AB part of ρABE. The output is E(ρABE) = ρMKM ′K̃TΩE. The

different nature of the KR and UE property forces us to introduce additional notations. On

the one hand, we write EUE = trM ′ ◦ E , so that EUE(ρABE) = ρMKK̃TΩE. On the other

hand we write EKR = trKM ′ ◦ E , with EKR(ρABE) = ρMK̃TΩE. Furthermore we introduce

the notation EacceptUE for EUE followed by selecting the Ω = 1 part of the state, and similarly

ErejectUE .l

The ‘ideal’ version of E is denoted as F , with notations FUE, Faccept
UE and FKR defined

as for E . The F is 0-ENC, 0-KR and 0-UE. The F satisfies FKR(ρABE) =
∑
m∈M Pr[M =

m]
∑
k̃∈K

1
|K| |mk̃〉〈mk̃| ⊗ trMK̃EKR(ρABE), Freject

UE = ErejectUE , and Faccept
UE (ρABE)

kConsider Alice who in the original prepare-and-send formulation wants to send a bit x encoded as |ψbx〉 in
some basis b. In the EPR setting, Alice measures her own part of the EPR pair in basis b. Alice gets a random
result s ∈ {0, 1}; she sends x ⊕ s, which informs Bob whether his state is a ‘flipped’ version of the one that
Alice wants to send.
l EacceptUE and ErejectUE are not trace-preserving.
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=
∑
m∈M Pr[M = m]|m〉〈m| ⊗ trMEacceptUE (ρABE). m

We consider again the sequence of N chunks. The KR property must hold in the first

N − 1 rounds. The ENC and UE property must hold in all rounds. The following condition

implies that the 0-KR and 0-UE properties hold except with probability ε,

∀j∈{1,...,N}
∥∥∥E(j)

UE ◦ E
(j−1)
KR ◦ · · · ◦ E(1)

KR − F (j)
UE ◦ F

(j−1)
KR ◦ · · · ◦ F (1)

KR

∥∥∥
�
≤ ε, (13)

where the superscript is the round index. We can arrive at a simplified statement using the

following lemma.

Lemma 4 For any CPTP maps A,A′,B,B′, it holds that

‖A ◦ B −A′ ◦ B′‖� ≤ ‖A−A′‖� + ‖B − B′‖�. (14)

Proof:

‖A ◦ B −A′ ◦ B′‖� = ‖A ◦ B −A′ ◦ B′ +A′ ◦ B − A′ ◦ B‖� (15)

≤ ‖(A−A′) ◦ B‖� + ‖A′ ◦ (B − B′)‖� (16)

≤ ‖A−A′‖� + ‖B − B′‖� (17)

where the last inequality holds because a CPTP map can never increase the trace distance.

Using Lemma 4 it is easily seen that the following condition implies (13),

(N − 1)‖EKR −FKR‖� + ‖EUE −FUE‖� ≤ ε. (18)

It is therefore sufficient to upper bound the single-round quantities ‖EKR − FKR‖� and

‖EUE −FUE‖�,

‖EKR −FKR‖� =
1

2
sup
ρABE

∥∥∥EKR(ρABE)− Emk̃|mk̃〉〈mk̃| ⊗ trMK̃ EKR(ρABE)
∥∥∥

1
(19)

‖EUE −FUE‖� =
1

2
sup
ρABE

∥∥∥EacceptUE (ρABE)− Em|m〉〈m| ⊗ trM EacceptUE (ρABE)
∥∥∥

1
. (20)

5 The proposed scheme

5.1 Structure

We propose a qubit-based prepare-and-measure scheme for Unclonable Encryption with Key

Recycling. It consists of two components: (i) a core part that we call KRUE, which protects

the message, and (ii) a quantum key recycling scheme QKR for refreshing some of the keys.

KRUE involves two passes: one from Alice to Bob, followed by a short feedback message

from Bob to Alice. We do not specify QKR, but only demand that it is likewise a two-pass

scheme.

We denote the composition of KRUE and QKR as “KRUE+QKR”. This composition is a

two-pass protocol, defined as follows.

1. Alice sends the first pass of KRUE and the first pass of QKR together.

m 0-ENC and 0-KR follow from Lemma 2. Given 0-ENC the behaviour of EUE in case of reject is already
ideal.
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2. Bob sends the second pass of KRUE and the second pass of QKR together.

3. Alice and Bob both execute QKR.Refresh and then KRUE.Refresh.

If KRUE has accept but QKR has reject then QKR is re-run again on its own until it

succeeds. This is safe since QKR serves only to transport random keys for the next round.

Note that it is possible, without loss of security, to run QKR ‘in the background’ to

transport key material. Our motivation for the parallel structure is to reduce the total number

of communication rounds.

5.2 KRUE building blocks

KRUE consists of publicly known algorithms Gen, Encr, Decr and Refresh. It works with bit-

lengths λ, `, k, and n which are publicly known. KRUE needs the following ingredients, which

Alice and Bob have agreed on beforehand.

• A set B of measurement bases. In particular the BB84 set consisting of the standard basis

and the Hadamard basis, or the 6-state set consisting of the bases in the ±x, ±y, ±z
direction.

• An information-theoretically secure MAC function Γ : {0, 1}λ × {0, 1}`−λ → {0, 1}λ, out-

putting a tag τ of length λ, where λ is the security parameter. For an adversary who does

not know the key, the probability of forgery is 2−λ.

• The pairwise independent hash families {Fu} : {0, 1}k → {0, 1}k and {Φu} : {0, 1}k →
{0, 1}` as discussed in Section 3.2. We use the {Φu} for privacy amplification in the

‘standard’ way, except that Alice is now able to choose the outcome of the hashing.

• A binary linear error correcting code which has encoding function Enc : {0, 1}k → {0, 1}n
in systematic form and decoding function Dec : {0, 1}n → {0, 1}k. The code is built to

correct bit error rate β with certainty. (The distance of the code is 2βn.) Asymptotically

the codeword length n as a function of k and β is given by n→ k
1−h(β) .

5.3 KRUE protocol steps

In round j, Alice wants to send a message µj ∈ {0, 1}`−λ. We will often drop the index j

for notational brevity. The protocol steps are described below. Section 5.4 lists some of the

considerations that lie at the basis of this protocol design.

KRUE.Gen:

The KRUE.Gen generates the shared key material between Alice and Bob. This consists of a

mask z ∈ {0, 1}`, a MAC key kMAC ∈ {0, 1}λ, a basis sequence b ∈ Bn, keys ϕ0, ϕ1 ∈ {0, 1}λ
for authenticating the feedback bit, a key u ∈ {0, 1}2k for universal hashing and a key e ∈
{0, 1}n−k to mask the redundancy bits. Alice and Bob furthermore have a reservoir of spare

key material (krej) from which to refresh key material in case of reject.

The protocol steps are listed below and depicted in Fig. 1.

KRUE.Encr:

Alice generates a random string r ∈ {0, 1}k−`. She computes the authentication tag τ =

Γ(kMAC, µ), the augmented message m = µ‖τ , the ciphertext c = z⊕m, the reversed privacy

amplification p = F inv
u (c‖r) ∈ {0, 1}k and the qubit payload x = Enc(p) ⊕ (~0k‖e) ∈ {0, 1}n.

She prepares |Ψ〉 =
⊗n

i=1 |ψbixi〉 and sends it to Bob.

KRUE.Decr:

Bob receives |Ψ〉′. He measures |Ψ〉′ in the basis b. The result is x′ ∈ {0, 1}n. He decodes
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p̂ = Dec(x′ ⊕ (~0k‖e)). He computes ĉ = Φu(p̂) and µ̂‖τ̂ = ĉ ⊕ z. He sets ω = 1 (accept) if

Γ(kMAC, µ̂) == τ̂ and the ECC decoding did not abort, otherwise ω = 0 (reject). He sends

ϕω to Alice; Alice deduces ω from Bob’s feedback, or aborts if she does not receive either ϕ0

or ϕ1.

KRUE.Refresh:

Alice and Bob perform the following actions (a tilde denotes the key for the next round):

— Re-use b, u, kMAC, ϕω.

— Refresh ϕω, e to entirely new ϕ̃ω, ẽ using an external mechanism.

— In case of accept re-use z. In case of reject take fresh z̃ from krej.

After round N , according to the attacker model, all keys from all rounds leakn except for

masks z associated with reject events. I.e. what leaks is: b, u, kMAC, {ϕ(j)
0 , ϕ

(j)
1 , e(j)}Nj=1,

and if round N was accept also z(N).

-

�

Shared keys:
z, u, b, e, kMAC, '0, '1, krej

ALICE BOB

Random r 2 {0, 1}k�`

Tag ⌧ = �(kMAC, µ)

Augm.message m = µk⌧
Ciphertext c = m � z

Priv.amp. p = F inv
u (ckr)

Payload x = Enc(p) � (~0ke)
Prepare states | bi

xi
i | i =

Nn
i=1 | bi

xi
i Receive | 0i;

measure in basis b, yielding x0 2 {0, 1}n

ECC decode p̂ = Dec(x0 � (~0ke))
Ciphertext ĉ = �u(p̂)

Augm.message µ̂k⌧̂ = ĉ � z

If Dec succeeded and ⌧̂ == �(kMAC, µ̂)

then ! = 1; else ! = 0

' = '!'Receive '0

Verify '0 2 {'0, '1}

Re-use u, b, kMAC, '!

Refresh '! , e using external mechanism

If ! = 1: Re-use z. If ! = 0: refresh z from krej

30

Fig. 1. A single round of KRUE.

nOptionally this leakage can be made part of the protocol, i.e. Alice and Bob publish the keys.
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5.4 Design rationale

The rationale behind the various design choices in our scheme is as follows.

• The payload x ∈ {0, 1}n needs to be uniform (as seen by Eve), otherwise Eve can get

information about the basis b from the qubit states |ψbixi〉. Uniformity is most difficult to

achieve in the case of known plaintext µ. We make x uniform in three steps. The z masks

the ` bits of m ∈ {0, 1}`; then appending r increases that to k bits; finally the e masks the

n− k redundancy bits. Here we need that the error-correcting code is in systematic form.

• The tag τ allows Bob to verify if the received string m has been manipulated.

• The UE property holds for the following reason. After the keys have been revealed, Eve

extracts partial information about x from her quantum system. If x itself was a ciphertext,

she would be able to perform decryption and thus obtain some non-negligible amount of

information about the plaintext. However, the actual ciphertext c is obtained from x by a

privacy amplification step (similar to QKD), and hence Eve knows almost nothing about

the ciphertext.

• The usual steps of information reconciliation (error correction Enc,Dec) and privacy am-

plification (Φu) are performed. What is special here is that we do not want the outcome

of the hash Φu to be random, but equal to some target value c. For this reason we are

applying the construction of Section 3.2 with the truncation of the invertible Fu.

• We want to re-use the basis b in unmodified form. Our definition of the KR property

(Def. 5) demands that Eve learns next to nothing about b, with a formulation in terms

of a trace distance, until we let b leak after round N . This requirement is impossible

to satisfy if Eve has access to the feedback bit ω. She may make a guess for b in a small

number of qubit positions, just small enough to be on the edge of the ECC’s error-correction

capability, measure those qubits in the guessed bases and forward the resulting state to Bob.

Observing ω then yields non-negligible information about b. In order to avoid this problem

we encrypt ω temporarily. Bob’s feedback ϕω simultaneously encrypts and authenticates ω.

(Note that all ω’s are revealed after round N , because all keys leak eventually.) The keys

ϕ0, ϕ1 essentially form a single-use random codebook.

• It is always safe to re-use the key kMAC and the seed u. Intuitively this is clear from the fact

that z, e, r together entirely mask the relation between the payload x and the augmented

message m. Since the tag is part of m, the kMAC can safely be re-used when m is secure.

• The reason for doing the refreshment of ϕω, e via an external mechanism is that it would

be inefficient to send them via Unclonable Encryption. These keys are revealed after round

N , so they do not need the extra level of protection. In Section 7.6 we study the case where

ϕ̃ω, ẽ are sent as part of µ; it turns out that this causes a severe penalty on the rate.

Remark. It is possible to send the current-round e via QKR instead of the next-round key

ẽ. This would make e into a short-term variable instead of a long-term key, and would make

it possible to elegantly use Lemma 3 in the security proof of KRUE. However, it would also

complicate the security analysis of the combined scheme. We will not pursue this possibility.
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5.5 Correctness

It is straightforward to see that KRUE satisfies 2−λ-correctness as defined in Section 4.2. Bob

only accepts (sets ω = 1) if the reconstructed tag successfully authenticates the reconstructed

plaintext τ̂ == Γ(kMAC, µ̂). The information-theoretically secure MAC and Eve’s ignorance

of kMAC then guarantee that Pr[Ω = 1 ∧M ′ 6= M ] ≤ 2−λ. Furthermore, if Eve’s interference

on the quantum channel results in fewer than nβ bit flips then the error correction takes care

of the noise, resulting in Pr[Ω = 1 ∧M ′ = M ] = 1.

6 EPR version of KRUE

The security proof (Section 7) will be based on the EPR variant of the scheme. Here we first

present the EPR version of KRUE (see Fig. 2) and its description in terms of CPTP maps.

6.1 Protocol steps in the EPR version

n noisy singlet states are produced by an untrusted source, e.g. Eve. One half of each EPR

pair is sent to Alice, the other half to Bob. Then Alice measures her qubits in the basis

b ∈ Bn, resulting in a string s ∈ {0, 1}n. Bob too measures his qubits in basis b, which yields

t ∈ {0, 1}n.o Alice computes x as specified in Section 5.3, then computes a = x⊕s and sends

a to Bob over an authenticated classical channel. Bob receives a, computes x′ = t̄ ⊕ a and

performs the decryption steps specified in Section 5.3. KRUE.Refresh is performed as before.

HHHHj
����⇡ EPR

-

�

Shared keys:
z, u, b, e, kMAC, '0, '1, krej

ALICE BOB

Measure in basis b, yielding s 2 {0, 1}n

Random r 2 {0, 1}k�`

Tag ⌧ = �(kMAC, µ)

Augm.message m = µk⌧
Ciphertext c = m � z

Priv.amp. p = F inv
u (ckr)

Payload x = Enc(p) � (~0ke)
a = x � s

a

Measure in basis b, yielding t 2 {0, 1}n

x0 = a � t̄

ECC decode p̂ = Dec(x0 � (~0ke))
Ciphertext ĉ = �u(p̂)

Augm.message µ̂k⌧̂ = ĉ � z

If Dec succeeded and ⌧̂ == �(kMAC, µ̂)

then ! = 1; else ! = 0

' = '!
'

Receive '0

Verify '0 2 {'0, '1}
Re-use u, b, kMAC, '!

Refresh '! , e using external mechanism

If ! = 1: re-use z. If ! = 0: refresh z from krej

31

Fig. 2. EPR version of KRUE. The dashed line is a communication that is public but cannot be
altered by Eve.

oIf the EPR pairs are noiseless then t = s̄; the inversion occurs because we work with singlet states.
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Notation Meaning
a ∈ {0, 1}n bitmap from random s (EPR) to payload x
b ∈ Bn measurement basis
B set of qubit bases
β ECC correctable error rate

c ∈ {0, 1}` ciphertext; c = m⊕ z
e ∈ {0, 1}n−k mask for the ECC redundancy bits
F pairwise independent hash
Φ truncated version of F

ϕ0, ϕ1 ∈ {0, 1}λ authentication tags for the feedback bit ω
γ ∈ [0, 1

2 ] bit error prob. caused by Eve
Γ MAC function
h entropy function
k ECC message length

kMAC ∈ {0, 1}λ MAC key for Alice’s message tag
` length of message + tag
λ tag length; security parameter

m ∈ {0, 1}` augmented message µ‖τ
µ ∈ {0, 1}`−λ Alice’s message
n number of qubits; ECC codeword length
N number of rounds
ω ∈ {0, 1} reject/accept feedback bit

p ∈ {0, 1}k temporary variable; ECC message

r ∈ {0, 1}k−` randomness for privacy amplification
s ∈ {0, 1}n Alice’s measurement outcome (EPR)
t ∈ {0, 1}n Bob’s measurement outcome (EPR)

τ ∈ {0, 1}λ tag

u ∈ {0, 1}2k hash seed
x ∈ {0, 1}n ‘payload’; data encoded in the qubits

z ∈ {0, 1}` One Time Pad for the augmented message

6.2 CPTP maps for the EPR version of KRUE

We specify the CPTP maps which represent the actions of Alice and Bob executed on the

noisy EPR pairs. We follow Section 4.3 and fill in the specific variables that make up the

abstract ‘K’ and ‘T ’. We start with EUE and write EKR = TKR ◦ EUE, where TKR is a partial

trace operation. The EUE can be viewed as four consecutive maps: an initialization step I that

prepares the input variables; a measurement step M; a post-processing step P representing

all further computations; and a partial trace step TUE where all variables that are not part of

the output are traced away,

EUE = TUE ◦ P ◦M ◦ I. (21)

The initialization merely appends the input variables,

I(ρABE) = Embzue|mbzue〉〈mbzue| ⊗ ρABE. (22)

Here b, z, u, e are uniform, but m not necessarily. The measurement acts on the classical

b-register and on ρABE, outputting the strings s, t and Eve’s state ρE
bst, which is correlated to

the measurement basis b and the outcomes s, t,

M(|b〉〈b| ⊗ ρABE) = Est|b|bst〉〈bst| ⊗ ρE
bst. (23)

Here the distribution of s and t is governed by the precise details of the ρABE created by Eve.

Anticipating the post-selection and random-Paulis technique applied in Section 7.1 we write

the effect of Eve’s actions as i.i.d. noise with noise parameter γ. The marginals of s and t are

uniform, while for all j ∈ {1, . . . , n} it holds that Pr[sj = tj ] = γ.

Anticipating another simplification introduced in Section 7.1, in the formulas below we

ignore the fact that the two authentication tags (τ and ϕω) can each be forged by Eve with
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probability 2−λ; the price for this omission is paid elsewhere, namely a term 2 · 2−λ in the

overall error of the scheme.

The flag ω is computed as a function of s and t, which we will denote as ω = θst. Then

θst =

{
1 if |s̄⊕ t| ≤ nβ
0 if |s̄⊕ t| > nβ

. (24)

We will use the notation Pcorr(n, β, γ) (“correctable”) for the probability of the event θst = 1.

Pcorr(n, β, γ)
def
= Estθst =

bnβc∑
c=0

(
n

c

)
γc(1− γ)n−c. (25)

The result of applying I,M,P is given by

(P ◦M ◦ I)(ρABE) = Embzuest|mbzuest〉〈mbzuest| ⊗ ρE
bst ⊗∑

capxx′ωz̃

Er|capxx′ωz̃r〉〈capxx′ωz̃r|δa,s⊕xδc,m⊕z

δp,F inv
u (c‖r)δx,p‖[Red(p)⊕e]δx′,t̄⊕aδω,θst

[
ωδz̃z +

ω

2`
]
. (26)

Here r is uniform and ‘Red(p)’ stands for the redundancy bits appended to p in the systematic-

form ECC encoding Enc(p). In the final step TUE we trace away all variables that are not

part of the transcript or the output: s, t, c, p, x, x′, r. These variables exist only temporarily

and can be quickly discarded by Alice and Bob; they are never stored in nonvolatile memory.

The a and ω are observed by Eve as part of the communication. (The ω initially in encrypted

form, but the keys ϕ0, ϕ1 are assumed to leak in the future.) The b, z, u, e are assumed to

leak in the future and thus they have to be kept as part of the state. We obtainp

EUE(ρABE) = Embzue
∑
az̃ω

|mbzueaz̃ω〉〈mbzueaz̃ω| ⊗ Estρ
E
bst

∑
p

2`δΦu(p),m⊕z

2−kδs⊕a,p‖[Red(p)⊕e]δω,θst

[
ωδz̃z + ω2−`

]
. (27)

As discussed in Section 4.2, only the accept part (the ω = 1 part) of the idealized FUE is

relevant. This is obtained as Faccept
UE (ρABE) = Em|m〉〈m| ⊗ trMEaccept

UE (ρABE). We get

Faccept
UE (ρABE) = Embzue

∑
az̃

|mbzueaz̃〉〈mbzueaz̃|δz̃z

⊗Estρ
E
bstθst

∑
p

2`−kδs⊕a,p‖[Red(p)⊕e] Em′δΦu(p),m′⊕z. (28)

Note that this expression is sub-normalized; its trace equals Pcorr. We write

(Eaccept
UE −Faccept

UE )(ρABE) = Embzue
∑
az̃

|mbzueaz̃〉〈mbzueaz̃|δz̃z

⊗Estρ
E
bstθst

∑
p

2`−kδs⊕a,p‖[Red(p)⊕e][δΦu(p),m⊕z − Em′δΦu(p),m′⊕z]. (29)

pNote that tracing out u or zz̃ in (27) yields a state in which the M -subspace is completely decoupled from the
rest of the Hilbert space. This shows that the scheme, when merely viewed as an encryption scheme, protects
m unconditionally as soon as the adversary does not know u or zz̃.
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For the description of EKR we have to take (27) and trace out z, e, ω.

EKR(ρABE) = Embu2−n
∑
az̃

|mbuaz̃〉〈mbuaz̃| ⊗ Estρ
E
bst

[
θstδΦu((s⊕a)[:k]),m⊕z̃ + 2−`θst

]
. (30)

The ideal functionality FKR has m, b, u, z̃ decoupled from the rest of the system. We have

FKR(ρABE) = Embu2−`
∑
z̃ |mbuz̃〉〈mbuz̃| ⊗ trMBUZ̃EKR(ρABE), which yields

FKR(ρABE) = Embu2−n−`
∑
az̃

|mbuaz̃〉〈mbuaz̃| ⊗ EstEb′ρ
E
b′st. (31)

Note that EstEb′ρE
b′st = ρE.

Lemma 5 Let ρABE denote the purification of a 4n-dimensional state ρAB. Let b ∈ Bn be a

qubit-wise orthonormal basis. It holds that ρE
b = ρE.

Proof: Let PA
bs denote a projection operator on subsystem ‘A’ corresponding to a measurement

in basis b with outcome s ∈ {0, 1}n. We have ρE
b

def
= EstρE

bst =
∑
st tr AB(PA

bs ⊗ PB
bt ⊗ 1)ρABE

= tr AB([
∑
s P

A
bs]⊗ [

∑
t P

B
bt ]⊗1)ρABE = ρE. We use the fact that

∑
s P

A
bs = 1 and

∑
t P

B
bt = 1

for any b.

Lemma 5 allows us to write

(EKR −FKR)(ρABE) = Embu2−n−`
∑
az̃

|mbuaz̃〉〈mbuaz̃| ⊗ Estρ
E
bstθst[2

`δΦu((s⊕a)[:k]),m⊕z̃ − 1].

(32)

7 Security proof

7.1 Proof technique

We work in the proof framework developed by Renner et al. [11, 28]. We give a security

proof for the EPR version of the protocol, making use of Post-selection (Section 3.3) and

the random-Pauli noise symmetrisation technique (Section 3.4). Security of the EPR version

implies security of the prepare-and-measure protocol of Section 5.3.

We are allowed to use Post-selection because KRUE is invariant under permutation of

the EPR pairs. The permutation invariance follows from the following two observations.

(i) The initialisation procedure I which creates the shared keys and the message (variables

that could potentially break permutation symmetry), occurs after Eve has sent out the ‘A’

and ‘B’ subsystems. Hence, Eve has to perform her entanglement at a moment when none

of the protocol variables yet exist. (ii) A permutation re-arranges the noise in the observed

strings s and t over the bit positions {1, . . . , n}, which could potentially break the symmetry;

however, the error correction step is insensitive to such a change.

The use of the noise symmetrisation technique is allowed because the statistics is invariant

under the Pauli operations, i.e. the probability distributions of all the random variables remain

the same. In the case of BB84 encoding and 6-state encoding, the Paulis cause bit flips in the

string x ∈ {0, 1}n in positions known to Alice and Bob, which does not change the protocol

in any essential way.q

qIn 8-state encoding [29], applying a Pauli matrix modifies the basis b in a way known to Alice and Bob.
Again, this does not affect the probability distribution of b.
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In our analysis we will use λ as the security parameter, i.e. we will strive to make all

diamond distances smaller than 2−λ. In the asymptotics this will not always be explicitly

visible, as λ drops out of the expressions for asymptotic rate.

7.2 Intermezzo: QKD asymptotics

In Appendix 1, we consider a version of QKD where privacy amplification is implemented as

in Section 5.3, and the syndrome is sent to Bob in OTP’ed form; we show that this leads to

a bound of the form

‖EQKD −FQKD‖� ≤ 1
2Embu

1

2n+`

∑
ac

∥∥Estρ
E
bstθst2

`[δc,m⊕Φu(a⊕s) − Em′δc,m′⊕Φu(a⊕s)]
∥∥

1
, (33)

which after some algebra gives rise to

‖EQKD −FQKD‖� ≤ min
(
Pcorr,

1

2
Ebtr

√
2`Ess′δss′ρE

bsρ
E
bs′

)
, (34)

and that from (34) the well known asymptotic QKD rate is obtained: 1−2h(β) for BB84 [15]

and 1 − h(1 − 3β
2 ,

β
2 ,

β
2 ,

β
2 ) for 6-state QKD [11]. If the syndrome (σ = Synx) is sent in the

clear, the right hand side of (33) acquires an extra
∑
σ outside the trace norm and a factor

δσ,Syn(s⊕a) inside the trace norm; the effect on (34) is an extra factor 2n−k under the square

root; while this alteration reduces ` by an amount n − k, it has no effect on the rate since

spending key material to OTP the syndrome would incur a penalty of exactly the same size.

7.3 Security of KRUE; qubit expenditure

We are now ready to prove the security of KRUE. We first show that when the fraction `/n

approaches the asymptotic key generation rate of QKD with one-way postprocessingr, KRUE

satisfies ENC, KR and UE. In Section 7.4 we analyse the reduction of the rate due to the

use of QKR as the external mechanism. Both KRUE and the composition KRUE+QKR have

κ = 0 in Definition 4. The rate directly follows from the number of qubits used.

Since our analysis focuses on the asymptotics, it is not necessary to specify security param-

eters in detail. It suffices to state that KRUE has to satisfy the ENC, KR, and UE properties

with some arbitrary ‘epsilon’ error values that are small but constant, i.e. do not increase

when ` is sent to infinity. Similarly, for the composition with QKR we only have to show that

the error of the combined scheme is still constant. That being said, our results allow for a

non-asymptotic analysis as well, but we leave this for future work since it would require too

much space.

In KRUE there are two authentication tags. Each of these has forgery probability 2−λ.

In the diamond norm formalism we can say that we are at trace distance 2 · 2−λ away from

ideality. Thus we can pretend that the two tags cannot be forged and simply add a constant

penalty 2 ·2−λ to the error. The penalty term does not affect the asymptotics. This procedure

allows us to write the CPTP maps for the protocol in a simplified form as in Section 6.2, i.e. not

needing various case distinctions due to accidentally successful forgeries.

Theorem 1 Asymptotically, the KRUE protocol can satisfy the ENC, KR and UE prop-

erties as defined in Section 4.2 with any fixed security parameter while achieving the following

rAs opposed to QKD protocols with more passes that allow Alice and Bob to perform advantage distillation,
which yields a higher rate.
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ratio r = `/n,

rKRUE4state = rQKD
4state = 1− 2h(β) ; rKRUE6state = rQKD

6state = 1− h(1− 3β
2 ,

β
2 ,

β
2 ,

β
2 ). (35)

Proof of Theorem 1: We denote the maximally achievable value of `, at given n and security

parameter, as `max. We need to determine `max for both the UE and the KR property

individually and take the smaller of the two. From (19) and (20) in Section 4.3 we know

the ENC, KR and UE properties follow from the upper bounds on the diamond distances

‖EKR − FKR‖� and ‖EUE − FUE‖�. We bound UE-distance starting from (29) (part 1) and

the KR-distance starting from (32) (part 2).

Part 1. First we note that (29) is the difference of two sub-normalised states that both have

trace equal to Pcorr. This immediately yields the bound ‖EUE−FUE‖� ≤ Pcorr. Furthermore,

from (29) we get, by using the orthogonality of the eigenspaces of the classical subsystems,

‖EUE −FUE‖� =

Embzue 1
2n

∑
a

∥∥∥∥∥Estρ
E
bstθst

∑
p

2`+n−kδs⊕a,p‖[Red(p)⊕e][δΦu(p),m⊕z − Em′δΦu(p),m′⊕z]

∥∥∥∥∥
1

(36)

which resembles (33). The main difference is the 2n−k
∑
p δs⊕a,p‖[Red(p)⊕e]. In the derivation

as shown in Appendix 1, upon doubling as in (A.5), applying the Eu then yields instead of

δss′ the following expression,

(2n−k)2
∑
pp′

δpp′δs⊕a,p||(e⊕Redp)δs′⊕a,p′||(e⊕Redp′) = (2n−k)2δss′δe,(s⊕a)[k+1:n]⊕Red((s⊕a)[:k]).

(37)

The factor (2n−k)2δe,···, together with the Ee outside the trace norm, together have the same

effect as having the plaintext syndrome in the QKD derivation: a factor 2n−k under the

square root in (34). Asymptotically this yields `UE,4state
max = n − 2nh(β) and `UE,6state

max =

n− nh(1− 3β
2 ,

β
2 ,

β
2 ,

β
2 ).

Part 2. First we note that (32) is the difference of two sub-normalised states that both have

trace equal to Pcorr. This immediately yields the bound ‖EKR−FKR‖� ≤ Pcorr. Furthermore,

from (32) we find

‖EKR −FKR‖� = 1
2Embu

1

2n+`

∑
az̃

∥∥Estρ
E
bstθst[2

`δΦu((s⊕a)[:k]),m⊕z̃ − 1]
∥∥

1
. (38)

This expression very closely resembles (33), with z̃ precisely playing the role of c, and the

term Em′δc,m′⊕Φu(a⊕s) replaced by the constant ‘1’. Carrying the ‘1’ through steps (A.5)

and further in Appendix 1 yields the same result as the QKD derivation, except for one

important difference: the (s + a)[:k] restriction to the first k bits yields a modification of

δss′ to the first k bits only. In the end result the parameter n is entirely replaced by k.

Hence we obtain asymptotically `KR,4state
max = k − kh(β) = n(1 − h(β))2 and `KR,6state

max =

k + kh(β)− kh(1− 3β
2 ,

β
2 ,

β
2 ,

β
2 ) = n[1− h(β)][1 + h(β)− h(1− 3β

2 ,
β
2 ,

β
2 ,

β
2 )].

It is easily seen that `UE
max ≤ `KR

max. For brevity we use shorthand notation h = h(β)

and H = h(1 − 3β
2 ,

β
2 ,

β
2 ,

β
2 ), noting that H > h and H < 2h. For BB84 encoding we see

`KR
max/`

UE
max = (1−h)2

1−2h ≥ 1. For 6-state we see `KR
max/`

UE
max = (1−h)(1+h−H)

1−H = 1−H+h(H−h)
1−H ≥ 1.
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Remark: In the zero-noise case (β = 0) there is no mask e. Then we have, without inequalities,

‖EUE − FUE‖� = ‖EKR − FKR‖� = ‖EQKD − FQKD‖� = Emubza‖EstθstρE
bst

[
2`δΦu(s⊕a),m⊕z −

1
]
‖1, i.e. the KR and UE properties reduce to QKD security.

Also note that for β = 0 we could invoke Lemma 3 to prove UE, by slightly cheating and

viewing the constant-length keys ϕ0, ϕ1 as ‘external’ to the proof.

For β > 0 we are not allowed to invoke Lemma 3, since not all the key material is carried

to the next round in unmodified form: upon accept the e is updated. The e plays an integral

role in the bounding of the diamond norm (36) and cannot be moved outside that part of the

proof.

7.4 Security and rate of the composition KRUE+QKR

We consider the composition of KRUE with the ‘Quantum Alice and Silent Bob’ QKR scheme

[19], which is a two-pass protocol with the following properties: (i) its asymptotic rate equals

the QKD rate; (ii) Alice’s pass comprises only qubits and no classical communication.

First we show that security-wise the effect of the composition is that the errors simply

add up or remain unchanged. Hence, the composition does not complicate the asymptotic

analysis.

Theorem 2 Let QKR be a ε1-KR scheme in which Alice makes one pass. Let P be a

ε2-KR, ε3-UE scheme in which Alice makes one pass. Let Q be the composition of QKR and

P such that Alice sends her messages in parallel, and the message of QKR is used as key

material in P . Then Q is (ε1 + ε2)-KR, and it is ε3-UE with respect to the message of P .

Proof: See Appendix B.

Next, we determine the asymptotic rate of KRUE+QKR. Due to the additional qubits

spent in QKR, the rate is lower than the `
n fraction of KRUE (and therefore lower than the

QKD rate).

Theorem 3 The asymptotic rate of the composed scheme KRUE+QKR in the case of

4-state and 6-state encoding is given by

rKRUE+QKR
4state =

[1− 2h(β)]2

1− h(β)
; rKRUE+QKR

6state =
[1− h(1− 3β

2 ,
β
2 ,

β
2 ,

β
2 )]2

1− h(1− 3β
2 ,

β
2 ,

β
2 ,

β
2 ) + h(β)

. (39)

Proof: Let µ ∈ {0, 1}L. Sending µ via KRUE needs n = L/rKRUE qubits. Asymptotically,

the size of k̃OTP and k̃fb is negligible compared to ẽ. The size of ẽ is nh(β). Sending ẽ via

QKR takes nh(β)/rQKR = Lh(β)/(rQKRrKRUE) qubits. The total number of qubits spent is

q = L/rKRUE + Lh(β)/(rQKRrKRUE). Using rKRUE = rQKD and rQKR = rQKD this can be

written as q = L(rQKD + h(β))/(rQKD)2. Finally the overall rate is L
q = (rQKD)2

rQKD+h(β) , with

rQKD as given in (35).

Interestingly, the rate rKRUE+QKR
4state that we achieve here is twice the rate of the composition

{QKD followed by Gottesman’s Unclonable Encryption scheme [1]}.s

sThe rate for that combination is obtained as follows. The UE step needs nUE = L/[1− 2h(β)] qubits. Then
nUE bits of key need to be refreshed using QKD; this takes nQKD = nUE/[1 − 2h(β)] qubits. The rate is

L/(nUE + nQKD) = 1
2
· [1−2h(β)]2

1−h(β) .



924 Qubit-based unclonable encryption with key recycling

7.5 Combining KRUE with QKD

We briefly comment on the option of combining KRUE with a QKD scheme instead of a

QKR scheme as the external mechanism. QKD spends as many qubits as QKR; hence KRUE

combined with QKD achieves the rate given in Theorem 3. However, the drawback of QKD

is that it is not a two-pass protocol.

7.6 KRUE∗: sending key updates via KRUE itself

In order to get a more ‘self-contained’ scheme, we study the option of not using an external

mechanism to transport the next-round keys ϕ̃ω, ẽ. Instead we reserve space in the message

µ for this purpose. We refer to the resulting scheme as KRUE∗. The security of KRUE∗ is the

same as for KRUE. The rate, however, is seriously reduced, since the effective message size is

now smaller by an amount λ + n − k, which asymptotically goes to nh(β). This causes an

reduction of the rate by an amount h(β), i.e. rKRUE
∗

= rKRUE − h(β).

8 Comparison to other schemes

We briefly comment on the round complexity and the asymptotic rate of the protocols pro-

posed in this paper as compared to other schemes. The word ‘round complexity’ here is not

to be confused with the N rounds in our protocol. For a given message chunk µj we count

the number of times Alice has to send something, and refer to this number as Alice’s number

of passes.

We compare against other information-theoretically secure schemes which also do not use

upt key material,

• QKD+OTP. Key establishment using Quantum Key Distribution, followed by One Time

Pad classical encryption. We consider efficient QKD with negligible waste of qubits [10]

and the smallest possible number of communication rounds: only 2 passes by Alice.

• QKR. Qubit-wise prepare-and-measure Quantum Key Recycling as described in [4, 19].

Only a single pass by Alice is needed, since Alice and Bob already share key material.

• QKD+[1]. Key establishment using QKD, followed by Gottesman’s Unclonable Encryp-

tion [1]. At least two passes by Alice are needed.

• QKR+[1]. Key establishment using QKR, followed by Gottesman’s Unclonable Encryp-

tion. Only a single pass by Alice is needed when the two are performed in parallel.u

The scheme properties are summarised in Table 1, and the rates are plotted in Fig. 3.

(We only show 4-state encoding. The comparison holds qualitatively for 6-state encoding as

well, but with slightly higher rates.) QKR is an improvement over QKD in terms of round

complexity, while achieving the same rate. However, QKD and QKR over a noisy channel do

not have the Unclonable Encryption property.

To our knowledge, the only existing scheme with an explicit proof of the UE property

before our work was Gottesman’s construction [1]. (And thus “QKD/QKR + [1]” was the

only known way to have UE without net expenditure of key material.) Our best performing

tOur schemes use up key material, but this is amortised over N rounds. We neglect this expenditure for the
purpose of the comparison.
uWe don’t give a proof for this combination as [1] uses a different proof technique.
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Alice Asymptotic
Protocol #passes rate (4-state) Unclonability

QKD + OTP 2 1 − 2h(β) no
QKR [4, 19] 1 1 − 2h(β) no

QKD + [1] 2 1
2
· [1−2h(β)]2

1−h(β) yes

QKR + [1] 1 1
2
· [1−2h(β)]2

1−h(β) yes

KRUE∗ 1 1 − 3h(β) yes

KRUE+QKD 2 [1−2h(β)]2

1−h(β) yes

KRUE+QKR 1 [1−2h(β)]2

1−h(β) yes

Table 1. Comparison of schemes that have no net expenditure of key material upon accept.

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Asymptotic communication rates (4-state) as a function of the noise parameter β.

scheme is KRUE+QKR, with one pass from Alice and double the rate of QKR + [1]. Our

sub-optimal scheme KRUE∗ has a better rate than QKD/QKR + [1] at noise levels below

β ≈ 0.052.

The above comparison does not contain the key recycling schemes [17, 3], because [17]

is defined only for the noiseless case β = 0, while [3] has low rate (≤ 1
3 ) and limited noise

tolerance. Note that [17] has the UE property by Lemma 3, and we suspect that [3] satisfies

a version of unclonability with a somewhat modified definition that allows for a reduction of

the min-entropy of some of the keys. We believe that the QKR scheme [4] can be tweaked to

have the UE property by doing more privacy amplification; this would probably lead to the

same rate as KRUE∗.

We briefly comment on the key sizes as a function of the message length L. The keys

in KRUE are the OTP z ∈ {0, 1}`, the hash seed u ∈ {0, 1}2k, the basis choice B ∈ Bn,

the redundancy mask e ∈ {0, 1}n−k, the authentication key kMAC ∈ {0, 1}λ and the random

codebook (ϕ0, ϕ1) ∈ {0, 1}2λ. Counting only contributions proportional to n, the total size

in bits is `+ k+ n+ n logB+O(1). With L ≈ `, ` ≈ rQKDn, k ≈ n[1− h(β)], the key size of

KRUE (in the case of 4-state encoding) is approximately L 4−3h(β)
1−2h(β) ≥ 4L.

Furthermore, sending nh(β) bits via the QKR scheme [19] takes a further 4 nh(β)
1−2h(β) key
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bits. This adds up to L 4−7h(β)+6[h(β)]2

[1−2h(β)]2 as the total key size for KRUE+QKR.

The keys are expended over a block of N rounds (or ≤ N in case of reject). If there are

no rejects, the ‘amortised’ key expenditure per round equals the above key size divided by

N , which can be made much smaller than L.

Gottesman’s scheme has somewhat shorter keys, total length L 2−h(β)
1−2h(β) +O(1), but it needs

to refresh ≈ L/[1− 2h(β)] bits every round.

9 Discussion

We have proven, in the proof framework developed by Renner et al., that quantum encryp-

tion over noisy channels can have Unclonability (as defined by Gottesman) as well as Key

Recycling. The rate of KRUE, when disregarding the external mechanism, equals the QKD

rate. The rate of KRUE+QKR is lower ( [1−2h(β)]2

1−h(β) in the case of 4-state encoding), but (i)

positive on the same β-interval as QKD and (ii) better than alternative schemes that achieve

both UE and KR. It is an open question whether the low rate of UE schemes compared to

QKD is unavoidable. The error-correction redundancy data has to be somehow protected;

this requirement does not exist in QKD. Yet, the UE requirement makes it difficult to protect

the redundancy, as long-term keys will leak eventually. Perhaps an error-correcting scheme

like [30], which was used in [3], can help here.

Our scheme was designed by starting from QKR and making the privacy amplification a

step in the computation of the qubit payload. Gottesman’s construction [1] does something

very similar, and hence one might try to construct a variant of KRUE that is closer to [1]. This

would have the advantage that there is no longer a seed u that needs to be stored as part of

the keys, as [1] employs ECC-based privacy amplification. However, the proof technique that

we use, with its reliance on hash families, does not work for ECC-based privacy amplification.

Our protocols (temporarily) hide the accept/reject feedback bit ω. This is a technicality

that allows us to re-use b in un-altered form. The alternative would be to send ω in the clear

and then either (i) partially refresh b as in [4], or (ii) find a way to cope with a reduced

entropy of b as in [3]. Note that it is not realistic to hide a large accumulation of ω-feedbacks

from Eve. Alice and Bob would have to act for a long time in a way that, to an external

observer, does not depend on the ω’s. For a small accumulation (e.g. size N) we expect that

it is realistic to hide the feedbacks temporarily.

It is of course possible to tweak KRUE in various ways to make it more efficient. It may

be possible to improve on the length of the hash seed, or the length of the MAC key, or the

entropy of b. We did not pursue such optimisations as our focus was on the rate.

The downside associated with encoding a message directly into qubits is the vulnerability

to erasures (particle loss) on the quantum channel. Whereas QKD can just ignore erasures,

in QKR they have to be compensated by the error-correcting code, which incurs a serious

rate penalty. A protocol like the one proposed in section 6.2 of [4], where Alice sends qubits

but Bob sends the message, could solve this problem.
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References

1. D. Gottesman. Uncloneable encryption. Quantum Information and Computation, 3(6):581602,
2003.

2. C.H. Bennett, G. Brassard, and S. Breidbart. Quantum Cryptography II: How to re-use a one-time
pad safely even if P=NP. Natural Computing, 13:453458, 2014. Original manuscript 1982.

3. S. Fehr and L. Salvail. Quantum authentication and encryption with key recycling. In Eurocrypt,
pages 311338, 2017.

4. D. Leermakers and B. Skoric. Security proof for Quantum Key Recycling with noise. Quantum
Information and Computation, 19, 2019.

5. C.H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing.
IEEE International Conference on Computers, Systems and Signal Processing, pages 175179, 1984.

6. A.K. Ekert. Quantum cryptography based on Bells theorem. Phys. Rev. Lett., 67:661 663, 1991.
7. D. Bru. Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett.,

81(14):30183021, 1998.
8. D. Gottesman and J. Preskill. Secure quantum key distribution using squeezed states. Phys. Rev.

A, 63:022309, 2001.
9. P. Shor and J. Preskill. Simple proof of security of the BB84 quantum key distribution protocol.

Phys.Rev.Lett., 85:441, 2000
10. H.-K. Lo, H.F. Chau, and M. Ardehali. Efficient Quantum Key Distribution scheme and proof of

its unconditional security. Journal of Cryptology, 18:133165, 2005.
11. R. Renner. Security of quantum key distribution. PhD thesis, ETH Zurich, 2005.
12. B. Kraus, N. Gisin, and R. Renner. Lower and upper bounds on the secret key rate for quantum

key distribution protocols using one-way classical communication. Phys.Rev.Lett., 95:080501, 2005.
13. M. Ben-Or, M. Horodecki, D.W. Leung, D. Mayers, and J. Oppenheim. The universal composable

security of quantum key distribution. In Theory of Cryptography, volume 3378 of LNCS, pages
386406, 2005.

14. T. Sasaki, Y. Yamamoto, and M. Koashi. Practical quantum key distribution protocol without
monitoring signal disturbance. Nature, 509:475478, 2014.

15. M. Tomamichel and A. Leverrier. A largely self-contained and complete security proof for quantum
key distribution. Quantum, 1:14, 07 2017.

16. W.K. Wootters and W.H. Zurek. A single quantum cannot be cloned. it Nature, 299:802803, 1982.
17. I.B. Damgard, T.B. Pedersen, and L. Salvail. A Quantum Cipher with Near Optimal Key-

Recycling. CRYPTO, 2005.
18. C. Portmann. Quantum authentication with key recycling. In Jean-Sebastien Coron and Jes-

per Buus Nielsen, editors, Advances in Cryptology Eurocrypt, 2017, pages 339368, Cham, 2017.
Springer International Publishing.

19. D. Leermakers and B. Skoric. Quantum Alice and silent Bob: Qubit-based Quantum Key
Recycling with almost no classical communication. Quantum Information and Computation,
21(1+2):118, 2021.

20. A. Broadbent and S. Lord. Uncloneable quantum encryption via random oracles. 2019.
https://eprint.iacr.org/2019/257.

21. M.N. Wegman and J.W. Carter. New hash functions and their use in authentication and set
equality. Journal of computer and system sciences, 22:265279, 1981.

22. M. Luby and A. Wigderson. Pairwise independence and derandomization. Foundations and Trends
in Theoretical Computer Science, 1, 1999.

23. R.T. Moenck. Fast Computation of GCDs. In Proceedings of the fifth annual ACM Symposium on
Theory of Computing, STOC 73, pages 142151, New York, NY, USA, 1973. ACM.

24. M. Christandl, R. Konig, and R. Renner. Postselection technique for quantum channels with
applications to quantum cryptography. Phys. Rev. Lett., 102:020504, Jan 2009.

25. C. Portmann and R. Renner. Cryptographic security of quantum key distribution. 2014.
https://arxiv.org/abs/1409.3525.

26. A.K. Ekert. Quantum cryptography based on Bells theorem. Phys.Rev.Lett., 67(6):661663, 1991.



928 Qubit-based unclonable encryption with key recycling

27. C.H. Bennett, G. Brassard, and N.D. Mermin. Quantum cryptography without Bells theorem.
Phys. Rev. Lett., 68:557, 1992.

28. R. Renner, N. Gisin, and B. Kraus. Information-theoretic security proof for quantum-key-
distribution protocols. Phys.Rev. A, 72:012332, 2005.

29. B. Skoric̀ and M. de Vries. Quantum Key Recycling with eight-state encoding. (The Quantum One
Time Pad is more interesting than we thought). International Journal of Quantum Information,
2017.

30. Y. Dodis and A. Smith. Correcting errors without leaking partial information. In ACM STOC,
pages 654663, 2005.

Appendix A: QKD asymptotics

We consider a QKD version that looks as much as possible like our protocol, and apply

Renner’s proof technique to quickly derive bounds on the diamond norm. For brevity we

ignore message authentication tags and their failure probability, since they do not affect the

asymptotics. We do not consider two-way postprocessing tricks like advantage distillation.

We refer to the resulting rates in this Appendix as the asymptotic rate of QKD-with-one-

way-postprocessing.

QKD Protocol.

Eve sends EPR pairs, in the singlet state. Alice and Bob randomly choose measurement bases

from the set B, perform their measurements, and then publicly announce their basis choices.

They disregard all events where they chose different bases, and are left with n bits. Alice has

measurement outcome s ∈ {0, 1}n, Bob has t ∈ {0, 1}n. Alice generates random x ∈ {0, 1}n,

u ∈ {0, 1}n. She computes a mask a = s ⊕ x and OTP z = Φu(x). She sends a to Bob over

an authenticated channel. She also sends the syndrome σ = Syn(x) ∈ {0, 1}n−k, either in the

clear or OTP’ed. (We will analyze both options.)

Bob computes x′ = t⊕ ā and tries to reconstruct x from x′ and σ. If he finds a x̂ satisfying

|x̂⊕ x′| ≤ nβ he sets ω = 1, otherwise ω = 0. He sends ω to Alice.

In case ω = 0 Alice sets c = ⊥. In case ω = 1 she sets c = m ⊕ z. Alice sends c, u. If

ω = 1 Bob reconstructs ẑ = Φu(x̂) and m̂ = c⊕ ẑ.

Analysis in case of OTP’ed syndrome.

Eve observes b, u, a, c, ω and holds a quantum state ρE
bst correlated to b, s, t. The message m

must be secure given Eve’s information. The output state of the QKD protocol is given by

EQKD(ρABE) = Embu2−n
∑
acω

|mbuacω〉〈mbuacω|⊗Estρ
E
bstδω,θst [ωδc,m⊕Φu(a⊕s) +ωδc⊥]. (A.1)

The idealized output state is obtained as Em|m〉〈m| ⊗ trMEQKD(ρABE), which yields

FQKD(ρABE) =Embu2−n
∑
acω

|mbuacω〉〈mbuacω| ⊗ Estρ
E
bstδω,θst [ωEm′δc,m′⊕Φu(a⊕s) + ωδc⊥].

(A.2)

The difference is given by

(EQKD −FQKD)(ρABE) = Embu2−n
∑
ac

|mbuac, ω = 1〉〈mbuac, ω = 1|

⊗Estρ
E
bstθst[δc,m⊕Φu(a⊕s) − Em′δc,m′⊕Φu(a⊕s)]. (A.3)
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This expression can be seen as the difference between two sub-normalized states which both

have norm Pcorr. Hence an upper bound ‖EQKD − FQKD‖� ≤ Pcorr immediately follows.

Furthermore, from (A.3) it follows that

‖EQKD −FQKD‖� ≤ 1
2Embu2−n−`

∑
ac

∥∥Estρ
E
bstθst2

`[δc,m⊕Φu(a⊕s) − Em′δc,m′⊕Φu(a⊕s)]
∥∥

1
.

(A.4)

Expanding the trace norm as ‖A‖1 = tr
√
A†A we write the right hand side as

1
2Embu2−n−`

∑
ac

tr
(

Ess′tt′θstθs′t′ρ
E
bstρ

E
bs′t′2

2` (A.5)

·[δΦu(a⊕s),m⊕c − Em′δΦu(a⊕s),m′⊕c][δΦu(a⊕s′),m⊕c − Em′′δΦu(a⊕s′),m′′⊕c]
)1/2

.

Using Jensen’s inequality for operators we ‘pull’ Eu and Em under the square root and then

make use of the pairwise-independent properties of Φu when acted upon with Eu. This yields

22`Emu[δΦu(a⊕s),m⊕c−Em′δΦu(a⊕s),m′⊕c][δΦu(a⊕s′),m⊕c−Em′′δΦu(a⊕s′),m′′⊕c]

= 2`δss′(1−Emm′δmm′) < 2`δss′ (A.6)

which leads to

‖EQKD −FQKD‖� < 1
2Ebtr

√
2`Ess′tt′θstθs′t′ρE

bstρ
E
bs′t′δss′ . (A.7)

Next we use θst ≤ 1 and EtρE
bst = ρE

bs, yielding ‖EQKD − FQKD‖� < 1
2Ebtr

√
2`Ess′ρE

bsρ
E
bs′δss′ .

Combining the two obtained bounds gives

‖EQKD −FQKD‖� ≤ min
(
Pcorr,

1
2Ebtr

√
2`Ess′ρE

bsρ
E
bs′δss′

)
. (A.8)

Using Post-selection, random Paulis and smooth Rényi entropy techniques, it has been shown

[11, 4] that the right hand side of (A.8) can be upper bounded as ∝
√

2`−n+nh(β) for BB84

bases, and as ∝
√

2`−n−nh(β)+nh(1− 3
2β,

β
2 ,
β
2 ,
β
2 ) for 6-state QKD.

When n is increased then either Pcorr becomes exponentially small (if Eve’s noise γ exceeds

β) or (when γ ≤ β) the expression under the square root becomes exponentially small,

provided ` is set smaller than some threshold value `max. This threshold is given by `BB84
max =

n − nh(β) and `6state
max = n + nh(β) − nh(1 − 3

2β,
β
2 ,

β
2 ,

β
2 ). Taking into account the key

expenditure for masking the syndrome Syn(x), the asymptotic rate is r = `max/n− h(β), i.e.

rBB84 = 1− 2h(β); r6state = 1− h(1− 3
2β,

β
2 ,

β
2 ,

β
2 ).

Analysis in case of plaintext syndrome

We indicate the differences w.r.t. the analysis above. Eq. (A.1) gains an extra part due to the

syndrome σ and becomes

Eplain
QKD(ρABE) = Embu2−n

∑
acσω

|mbuacσω〉〈mbuacσω|

⊗Estρ
E
bstδω,θstδσ,Syn(a⊕s)[ωδc,m⊕Φu(a⊕s) + ωδc⊥]. (A.9)



930 Qubit-based unclonable encryption with key recycling

The factor δσ,Syn(a⊕s) is carried along untouched in the whole computation up to (A.5), where

it gets doubled to δσ,Syn(a⊕s)δσ,Syn(a⊕s′). However, the δss′ produced in (A.6) undoes the

doubling. One extra step is needed. The sum
∑
e is rewritten as 2n−k · 1

2n−k

∑
σ, and

Jensen’s inequality is used, ‘pulling’ the averaging operation 1
2n−k

∑
σ into the square root,

where it acts on δσ,Syn(a⊕s), giving rise to a constant 2k−n.

‖Eplain
QKD −F

plain
QKD‖� ≤ min

(
Pcorr,

1
2Ebtr

√
2`2n−kEss′ρE

bsρ
E
bs′δss′

)
. (A.10)

The `max is decreased by an amount n− k, but the rate is exactly the same as before, since

this time there is no key expenditure of n− k bits for encrypting the syndrome.

Appendix B: Proof of Theorem 2

We consider the EPR version of Q. Eve creates a state that can be written as ρA1B1A2B2E,

where the labels ‘1’ and ‘2’ refer to the EPR pairs intended for QKR and P respectively, and

A,B refers to the EPR parts going to Alice and Bob. As in Section 4.3 we introduce different

notation for the same CPTP map depending on the property that we are looking at (KR or

UE). Thus we have CPTP maps Q1KR, Q1UE, Q2KR, Q2UE, with

(Q2KR ◦ Q1KR)(ρA1B1A2B2E) = Q2KR(ρM1K̃1T1A2B2E) = ρK̃1T1M2K̃2T2E (B.1)

(Qacc
2UE ◦ Q1UE)(ρA1B1A2B2E) = Qacc

2UE(ρM1K1K̃1T1A2B2E) = ρM1K1K̃1T1M2K2K̃2T2E
[Ω=1] . (B.2)

With respect to the KR property, the ideal functionality is Qideal
2KR ◦ Qideal

1KR . With respect to

UE the ideal functionality is as follows. In case of reject there are no requirements. In case

of accept the M2 is protected by Qacc,ideal
2UE even if Q1UE does not behave ideally; hence the

ideal functionality is described by the mapping Qacc,ideal
2UE ◦ Q1UE. We have

(Qideal
2KR ◦ Qideal

1KR)(ρA1B1A2B2E) = Qideal
2KR(ρM1K̃1 ⊗ ρT1A2B2E)

= ρK̃1M2K̃2 ⊗ ρT1T2E (B.3)

(Qacc,ideal
2UE ◦ Q1UE)(ρA1B1A2B2E) = Qacc,ideal

2UE (ρM1K1K̃1T1A2B2E)

= ρM2 ⊗ ρM1K1K̃1T1K2K̃2T2E
[Ω=1] . (B.4)

It is given that ‖Q1KR−Qideal
1KR‖� ≤ ε1, and ‖Q2KR−Qideal

2KR‖� ≤ ε2, and ‖Q2UE−Qideal
2UE ‖� ≤ ε3.

The KR property of Q follows trivially from∥∥∥Q2KR ◦ Q1KR −Qideal
2KR ◦ Qideal

1KR

∥∥∥
�
≤
∥∥∥Q1KR −Qideal

1KR

∥∥∥
�

+
∥∥∥Q2KR −Qideal

2KR

∥∥∥
�
≤ ε1 + ε2. (B.5)

Finally, the UE property with regard to M2 follows from∥∥∥Q2UE ◦ Q1UE −Qideal
2UE ◦ Q1UE

∥∥∥
�
≤
∥∥∥Q2UE −Qideal

2UE

∥∥∥
�
≤ ε3. (B.6)


