
Quantum Information and Computation, Vol. 20, No. 9&10 (2020) 0721–0735
c© Rinton Press

SPACE-EFFICIENT QUANTUM MULTIPLICATION OF

POLYNOMIALS FOR BINARY FINITE FIELDS

WITH SUB-QUADRATOC TOFFOLI GATE COUNT

IGGY VAN HOOF

Mathematics and Computer Science, Technische Universiteit Eindhoven

Groene Loper 5, 5612 AE, Eindhoven, Netherlands

Received April 9, 2020

Revised July 20, 2020

Multiplication is an essential step in a lot of calculations. In this paper we look at

multiplication of 2 binary polynomials of degree at most n − 1, modulo an irreducible
polynomial of degree n with 2n input and n output qubits, without ancillary qubits,

assuming no errors. With straightforward schoolbook methods this would result in a

quadratic number of Toffoli gates and a linear number of CNOT gates. This paper
introduces a new algorithm that uses the same space, but by utilizing space-efficient

variants of Karatsuba multiplication methods it requires only O(nlog2(3)) Toffoli gates

at the cost of a higher CNOT gate count: theoretically up to O(n2) but in examples the
CNOT gate count looks a lot better.

Keywords: Quantum algorithm, Karatsuba multiplication, Binary polynomials

Communicated by: R Jozsa & M Mosca

1 Introduction

Multiplication of two polynomials in a finite field is an important step in many algorithms,

such as point addition in elliptic curve cryptography. For classical computers a wealth of

variations exist, often based around Karatsuba’s multiplication method [1].

In the classical setting, temporary results for the steps of Karatsuba calculations have

traditionally been stored separately. In 1993 Maeder [2] used around 2n additional space

for multiplying degree-n polynomials. This was improved by Thomé in 2002 to n temporary

space which at the time was believed to be optimal: “it does not seem likely that anything

better than this result can be obtained.” [3] However, in 2009 Roche did obtain a better

result: O(log n) space Karatsuba multiplication of polynomials without additional time by

doing many in-place operations [4]. This was expanded by Cheng [5] to also work for integers.

Despite the advantages these variants offer, these methods are still relatively unknown.

This bound of O(log n) temporary storage is still higher than the bound presented in

this paper, which is reduced to 0 by partly overwriting the input polynomial and restoring

it before the end. With this advantage we can modify the algorithms presented by Roche

[4] for the quantum setting. The algorithms in this paper have an exponential speedup over

other quantum algorithms that do not use extra space [6]. Other variants that reach the same

speedup as classical Karatsuba multiplication in the quantum setting so far have have done

721

722 Space-efficient quantum multiplication polynomials for binary finite fields with ...

so at the cost of space [7].

1.1 Overview

We introduce our notation for quantum computing by giving the elementary quantum gates in

section 2. Our new multiplication algorithm needs several subroutines, specifically modular

shifts and multiplication by a constant polynomial, introduced in section 3. We introduce

a Quantum Karatsuba algorithm for multiplication without reduction in section 4 and in

binary finite fields in section 5. Both algorithms run without ancillary qubits and have a

sub-quadratic Toffoli gate count. We implemented the algorithm in a simulated quantum

computer and present the gate counts for specific finite fields in section 6.

2 Quantum background

Quantum computing uses reversible gates, which unlike classical gates can be run in reverse

and require an equal number of input and output quantum bits (qubits). In this paper we

will not make use of the quantum properties of qubits, but the gates we use can be applied

to superpositions of qubits in states 1 and 0. For the purpose of multiplication we need two

gates to do reversible addition and multiplication:

• The CNOT, or Feynman, gate serves as the equivalent of XOR or F2-addition. This

gate takes 2 qubits as inputs and adds one input to the other qubit and outputs the

other qubit as itself: (a, b)→ (a, a⊕ b). It is reversible and its own inverse: applying it

twice would result in (a, a⊕ b⊕ a) = (a, b). In Figure 1 an example has been drawn. In

algorithms we write this as CNOT(a, b).

a • a

b a⊕ b

Fig. 1. The CNOT gate

• The Toffoli (TOF) gate serves as the equivalent of AND or F2-multiplication in our

case. This gate takes 3 qubits as inputs and adds the result of mulitplication of the frist

two qubits to the third qubit and outputs the other qubits as themselves: (a, b, c) →
(a, b, c⊕ (a · b)). It is also its own inverse. In Figure 2 an example has been drawn. In

algorithms we write this as TOF(a, b, c)

a • a

b • b

c c⊕ (a · b)

Fig. 2. The TOF gate

In addition to these operations, we will also need to swap some qubits. Unlike the previous

gates we do not build these in physical circuits. Rather, we change the index on some qubits:

if we were to swap qubits 1 and 2 we would simply refer to qubit 1 as “2” and qubit 2 as “1”

from that point on without counting any quantum gates. In Figure 3 an example has been

I. van Hoof 723

a × b
b × a

Fig. 3. The swap

drawn.

These 3 actions are the only essential ones we use in this paper. Although none of these are

explicit quantum actions, the quantum dimension comes from optimizing for low Toffoli gate

count. Currently no large quantum computer exists but current estimates put the cost of one

Toffoli gate at many times that of a CNOT gate.

3 Basic Arithmetic

In this section we discuss reversible in-place algorithms for the basic arithmetic of binary

polynomials.

3.1 Addition and binary shift

The first operation we consider, addition, can easily be implemented for binary polynomials.

Individual additions can be done with a CNOT gate, the addition of two polynomials of

degree at most n takes n+ 1 CNOT gates with depth 1. This operation uses ancillary qubits

and the result of the addition replaces either of the inputs. Since addition is component-wise,

addition for polynomials over F2 is the same as addition for elements of the field F2n .

Binary shifts are straightforward: they correspond to multiplying or dividing by x. This

requires no quantum computation by doing a series of swaps.

Finally, if we have a fixed n, a polynomial g(x) of degree at most n − 1 and want to

do a multiplication by x followed by a modular reduction by a fixed weight-ω and degree-

n polynomial m(x) that has coefficient 1 for x0, we can do this in 2 steps. We represent

m(x) as M where M is an ordered list of length ω that contains the degrees of the nonzero

terms in descending order, for example if m(x) = 1 + x3 + x10 we get M = [10, 3, 0]. Let

g(x) =
∑n−1

i=0 gix
i:

• Step 1: For every qubit gi change its index so that it represents the coefficient of

xi+1 mod n. Let hi be the coefficients of the relabeled polynomial, i.e. hi+1 mod n = gi.

Algorithm 1: MODSHIFTm(x) Reversible algorithm for in-place multiplication by x in
F2[x]/m(x) with m(x) an irreducible binary polynomial.

Fixed input : A constant irreducible binary polynomial m(x) of degree n,
represented as an ordered list M of length ω that contains the
degrees of the nonzero tems in descending order.

Quantum input: A binary polynomial g(x) of degree up to n− 1 stored in an array
G.

Result: G as g · x in the field F2/m(x).
1 for i = 1..n do
2 SWAP(G[n− i], G[n− i− 1])

3 for i = 1..ω − 2 do
4 CNOT(G[0], G[Mi])

724 Space-efficient quantum multiplication polynomials for binary finite fields with ...

• Step 2: Apply CNOT controlled by the x0 term h0 (gn−1 before Step 1) to hj , with

j = M1, . . . ,Mω−2. In the example of 1 + x3 + x10 we would apply 1 CNOT to h3
controlled by h0.

See Algorithm 1 for pseudocode and Figure 4 for an example. After a multiplication by x

the coefficient of x0 is always 0. Since m(x) always has coefficient 1 for x0, after a reduction

by m(x) that qubit will be 1 and if no reduction takes place that qubit is 0, which means

our modular shift algorithm is always reversible. This results in a total of ω− 2 CNOT gates

for a modular reduction, with depth ω − 2 and we do not use ancillary qubits. Since we use

reversible gates, running this circuit in reverse corresponds to dividing by x modulo m(x).

|g0〉 |h1〉
|g1〉 |h2〉
|g2〉 |h3〉
|g3〉 |h4〉
|g4〉 |h5〉
|g5〉 |h6〉
|g6〉 |h7〉
|g7〉 |h8〉
|g8〉 |h9〉
|g9〉 • |h0〉

Fig. 4. Binary shift circuit for F210 with g0 + · · · + g9x9 as the input and h0 + · · · + h9x9 =

g9 + g0x + g1x2 + (g2 + g9)x3 + g3x4 + · · · + g9x9 as the output.

3.2 Multiplication by a constant polynomial

|g0〉 • |g0 + g2〉
|g1〉 • |g1 + g2 + g3〉
|g2〉 • • × |g0 + g2 + g3〉
|g3〉 • × |g1 + g3〉

Fig. 5. Multiplication of g by 1 + x2 modulo 1 + x + x4. Depth 4 and 5 CNOT gates.

Multiplication by a constant non-zero polynomial in a fixed binary field is F2-linear: as the

field polynomial is irreducible, every input corresponds to exactly one output. We can see

that any such multiplication can be represented as a matrix, which we can turn into a circuit

using an LUP -decomposition, an algorithm also used by Amento, Rötteler and Steinwandt

[8]. For example, multiplication by 1 + x2 modulo 1 + x+ x4 can be represented by a matrix

Γ. Using the decomposition Γ = P−1LU we get an upper and lower triangular matrix which

we can translate into a circuit. Any 1 not on the diagonal in U and L is a CNOT controlled

by the column number on the row number. In cases of conflicta, for U CNOT gates should be

aConflicts exist if according to the triangular matrix a CNOT would both have to be applied on and controlled
by a qubit. By doing the controlled operation first and applying the operation on it afterwards, we ensure
that the matrix multiplication is correctly translated.

I. van Hoof 725

performed top row first, second row second and so on and for L CNOT gates from the bottom

row up. P represents a series of swaps, and can be represented either as a permutation matrix

or an ordered list with all elements from 0 to n− 1.

Γ =


1 0 1 0
0 1 1 1
1 0 1 1
0 1 0 1

 = P−1LU =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1




1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1

 (1)

Figure 5 shows how we translate Γ. According to [8] this costs up to n2 + n CNOT gates

with depth up to 2n. We can improve this count by noting L and U are each size n by n and

can have up to (n2−n)/2 non-diagonal non-zero entries, giving us up to n2−n CNOT gates.

Note that the LUP -decomposition is precomputed and for any fixed polynomial and field we

can give an exact CNOT gate count and depth.

Since this algorithm is introduced in [8] without correctness proof and we will use it later

for a bigger algorithm, we will write an explicit implementation and go over the correctness

of this algorithm. Note that since we are working with reversible algorithms, multiplying by

constant f(x) is the same as doing the reverse of multiplying by constant f(x)−1.

Theorem 1: Algorithm 2 correctly describes multiplication by a non-zero constant polyno-

mial in a fixed binary field.

Proof: Since multiplication by a non-zero constant in a finite field is a linear map, an invert-

ible matrix Γ to represent this linear map must exist. Since Γ is invertible, its decomposition

L,U, P−1 must also consist of linear maps. Since we are working in a binary field and U is an

invertible upper-triangular matrix, the diagonal of U is all-one. If we look at lines 1 through

4 of the algorithm, we can see it corresponds to applying linear map U to g, as it results in

gi =
∑n−1

j=0 ui,jgj for i = 0, .., n− 1. Analogously the same is true for L in lines 5 through 8.

We can also see that if P−1 is a row-permutation of the identity matrix, lines 9 through 13

will apply it correctly. Since P−1LU = Γ we have correctly applied the linear map Γ. �

Note that the algorithm is not optimized for depth, for example in circuit 5 the first and

second CNOT could be swapped so the depth would be 3 rather than 4.

3.2.1 Choice of field polynomials

When doing operations in a finite binary field we can choose what representation we use, as

long as the polynomial m(x) is irreducible. Our goal is to make the matrices L and U as

sparse as possible. For this purpose we also want our Γ to be as sparse as possible, which

can be achieved in two steps: pick irreducible polynomials with as few non-zero coefficients

as possible, i.e. trinomials when available and pentanomials otherwise, and pick irreducible

polynomials where the second highest non-constant term has the lowest possible degree. For

example, the pentanomial 1 + x3 + x4 + x19 + x20 would require 108 CNOT gates, the pen-

tanomial 1+x3 +x5 +x9 +x20 would require 55 CNOT gates, while the trinomial 1+x3 +x20

would require only 27. All 3 polynomials are irreducible. In Table 1 we can see some examples

of gate counts for various choices of n. The depth count is an upper bound without accounting

for swapping gates.

726 Space-efficient quantum multiplication polynomials for binary finite fields with ...

Algorithm 2: CONSTMODMULTf(x),m(x), from [8]. Reversible algorithm for in-place
multiplication by a nonzero constant polynomial f(x) in F2[x]/m(x) with m(x) an irre-
ducible polynomial.

Fixed input : A binary LUP -decomposition L,U, P−1 for a binary n by n matrix
that corresponds to multiplication by the constant polynomial f(x)
in the field F2[x]/m(x).

Quantum input: A binary polynomial g(x) of degree up to n− 1 stored in an array
G.

Result: G as f · g in the field F2/m(x).
1 for i = 0..n− 1 // U ·G
2 do
3 for j = i+ 1..n− 1 do
4 if U [i, j] = 1 then
5 CNOT(G[j], G[i])

6 for i = n− 1..0 // L · UG
7 do
8 for j = i− 1..0 do
9 if L[i, j] = 1 then

10 CNOT(G[j], G[i])

11 for i = 0..n // P−1 · LUG
12 do
13 for j = i+ 1..n− 1 do
14 if P−1[i, j] = 1 then
15 SWAP(G[i], G[j])
16 SWAP column i and j of P−1

4 Quantum Multiplication for binary polynomials

This section details schoolbook multiplication and we present our new Karatsuba algorithm.

4.1 Quantum Schoolbook Multiplication

The simplest way to multiply is schoolbook multiplication. For two polynomials of degree

at most n − 1 that takes n2 Toffoli gates, the number of pairs of qubits from the first and

second polynomial. While the computation does not use ancillary qubits, the result needs

to be stored separately from input in 2n − 1 qubits; unlike the previous circuits we cannot

replace either of the inputs with the result since the Toffoli gate requires a separate output.

If we want to apply modular reduction steps by a weight-k and degree-n odd polynomial, this

adds (n − 1) · (k − 2) CNOT gates and uses no ancillary qubits (by using the modular shift

algorithm after every n multiplications). The result is stored in n qubits.

4.2 Classic Karatsuba multiplication in binary polynomial rings

Rather than using schoolbook multiplication, methods like Karatsuba multiplication [1] can

speed up multiplication of large numbers. We can look at in-place multiplication in the

I. van Hoof 727

Degree Irreducible polynomial Source CNOT gates Depth upper bound
4 [4, 1, 0] [9] 5 4
8 [8, 4, 3, 1, 0] [9] 20 14
16 [16, 5, 3, 1, 0] [9] 47 30
32 [32, 7, 3, 2, 0] [9] 133 93
64 [64, 4, 3, 1, 0] [9] 264 182
127 [127, 1, 0] [9] 396 293
128 [128, 7, 2, 1, 0] [9] 626 443
163 [163, 7, 6, 3, 0] [10] 740 975
163 [163, 89, 74, 15, 0] [11] 1885 1646
233 [233, 74, 0] [10] 3319 2976
256 [256, 10, 5, 2, 0] [9] 1401 1030
283 [283, 12, 7, 5, 0] [10] 2117 1700
283 [283, 160, 123, 37, 0] [11] 6785 6368
571 [571, 10, 5, 2, 0] [10] 4027 3177
571 [571, 353, 218, 135, 0] [11] 33182 32331
1024 [1024, 19, 6, 1, 0] [12] 8147 6624

Table 1. Comparison of the CNOT gates required for various instances of Algorithm 2. Source is

the source of the polynomial.

classical case for ideas [4]. As input we take two polynomials of size up to n, f(x) and g(x)

as well as a polynomial of size 2n: h(x). As output we desire h + f · g. For some k such

that n
2 ≤ k < n (we will always use k = dn2 e) we can split each polynomial as follows:

f = f0 + f1x
k, g = g0 + g1x

k and h = h0 + h1x
k + h2x

2k + h3x
3k.

We compute intermediate products α = f0 · g0, β = f1 · g1 and γ = (f0 + f1) · (g0 + g1).

Finally, we add these in the right way for Karatsuba multiplication:

h+ f · g = h+ α+ (γ + α+ β)xk + βx2k (2)

For cleanliness, we can split up our α, β, γ in the same way as f and g to get a result with no

overlap, which is useful for checking correctness:

h+f ·g = (h0+α0)+(h1+α0+α1+β0+γ0)xk+(h2+α1+β0+β1+γ1)x2k+(h3+β1)x3k (3)

Alternatively, we can rewrite this another way that will prove useful:

h+ f · g = h+ (1 + xk)α+ xkγ + xk(1 + xk)β. (4)

4.3 Reversible Karatsuba multiplication in binary polynomial rings

Based on these equations we can split our multiplication algorithm into 2 parts: given

f(x), g(x), h(x) calculate h+ f · g and given k, f(x), g(x), h(x) with k > max(deg(f),deg(g))

calculate h+ (1 + xk)f · g. We will look at our algorithms for the 2 parts, which can then be

used recursively to provide a significant improvement to the schoolbook algorithm in terms

of Toffoli gate count.

Lemma 1: Let k = dn2 e. Given polynomials f, g of degree up to n − 1 with n > 1 and h of

degree up to 2n− 2. Assuming Algorithm 4 correctly calculates h′+ (1 + xk)f ′g′ for f ′, g′ up

728 Space-efficient quantum multiplication polynomials for binary finite fields with ...

Algorithm 3: KMULTn. Reversible algorithm for multiplication of 2 polynomials of
degree up to n− 1.

Fixed input : A constant integer n to indicate polynomial size and an integer
k < n ≤ 2k with k = dn2 e for n > 1 and k = 0 for n = 1, to indicate
upper and lower half.

Quantum input: Two binary polynomial f, g of degree up to n− 1 stored in arrays F
and G respectively of size n. A binary polynomial h of degree up to
2n− 2 stored in array H of size 2n− 1.

Result: F and G as input, H as h+ fg
1 if n > 1 then
2 KMULT1xkk,k(F [0..k − 1], G[0..k − 1], H[0..3k − 2])
3 KMULT1xkk,n−k(F [k..n− 1], G[k..n− 1], H[k..2n− 2])
4 CNOT(F [k..n− 1], F [0..n− k − 1])
5 CNOT(G[k..n− 1], G[0..n− k − 1])
6 KMULTk(F [0..k − 1], G[0..k − 1], H[k..3k − 2])
7 CNOT(G[k..n− 1], G[0..n− k − 1])
8 CNOT(F [k..n− 1], F [0..n− k − 1])

9 else
10 TOF(F [0], G[0], H[0])

to degree k − 1 and h′ up to degree 3k − 2, and Algorithm 3 correctly calculates h′′ + f ′′g′′

with f ′′, g′′ of degree k − 1 and h′′ of degree 2k − 2 without altering the values of f ′′ and g′′.

Then Algorithm 3 correctly calculates h + fg in F2[x]. The values of f and g are the same

after the algorithm as they were before.

Proof: Table 2 gives the result of each line on array H, split into 4 parts of size k, k, k and

2n − 1 − 3k respectively: h = h0 + h1x
k + h2x

2k + h3x
3k. As can be seen in the table, the

final result corresponds to (h0 + α0) + (h1 + α0 + α1 + β0 + γ0)xk + (h2 + α1 + β0 + β1 +

γ1)x2k + (h3 + β1)x3k = h + f · g as discussed in Section 4.2. Lines 7 and 8 are the inverses

of lines 4 and 5 so return F and G to their original states. �

Line H in KMULTn

H[0..k − 1] H[k..2k − 1] H[2k..3k − 1] H[3k..2n− 2]
1 h0 h1 h2 h3
2 h0 + α0 h1 + α0 + α1 h2 + α1 h3

3-5 h0 + α0 h1 + α0 + α1 + β0 h2 + α1 + β0 + β1 h3 + β1
6-8 h0 + α0 h1 + α0 + α1 + β0 + γ0 h2 + α1 + β0 + β1 + γ1 h3 + β1

Table 2. Step by step calculation of Algorithm 3.

Algorithm 3 computes h+ fg with 4(n− k) CNOT gates, at a depth of 4, 1 call to itself

for a k-by-k multiplication, 1 call to Algorithm 4 for a k-by-k multiplication and 1 call to

Algorithm 4 for an (n − k)-by-(n − k) multiplication. For n = 1 we just have a single TOF

gate.

I. van Hoof 729

Algorithm 4: KMULT1xkk,n. Reversible algorithm for multiplication of the product
of 2 polynomials of degree up to n− 1 by the polynomial 1 + xk.

Fixed input : A constant integer k > 0 to indicate part size as well as an integer
n ≤ k to indicate polynomial size. ` = max(0, 2n− 1− k) is the size
of h2 and (fg)1. In the case of Karatsuba we will have either n = k
or n = k − 1.

Quantum input: Two binary polynomials f(x), g(x) of degree up to n− 1 stored in
arrays F and G respectively of size n. A binary polynomial h(x) of
degree up to k + 2n− 2 stored in array H of size 2k + `.

Result: F and G as input, H as h+ (1 + xk)fg
1 if n > 1 then
2 CNOT(H[2k..2k + `− 1], H[k..k + `− 1])
3 CNOT(H[k..2k − 1], H[0..k − 1])
4 KMULTn(F [0..n− 1], G[0..n− 1], H[k..2k + `− 1])
5 CNOT(H[k..2k − 1], H[0..k − 1])
6 CNOT(H[2k..2k + `− 1], H[k..k + `− 1])

7 else
8 CNOT(H[k], H[0])
9 TOF(F [0], G[0], H[k])

10 CNOT(H[k], H[0])

Lemma 2: Given polynomials f, g of degree up to n− 1 with n > 1, polynomial h of degree

up to k+ 2n− 2 with some k ≥ n and assuming Algorithm 3 correctly calculates h+ fg with

degrees of f, g and h bounded as above, Algorithm 4 correctly calculates h + (1 + xk)fg in

F2[x] without altering the values of f and g.

Proof: Let ` = max(0, 2n−1−k). Table 3 gives the result of each step on array H, split into

3 parts of size k, k and `−1 respectively: h = h0 +h1x
k +h2x

2k. The final result corresponds

to h0 + (fg)0 + (h1 + (fg)0 + (fg)1)xk + (h2 + (fg)1)x2k = h0 + h1x
k + h2x

2k + fg+ fgxk =

h+ (1 + xk)fg, where (fg)0 is the first k terms of f · g and (fg)1 is the last up to ` terms.

Line H in KMULT1xkk,n

H[0..k − 1] H[k..2k − 1] H[2k..2k + `− 1]
1 h0 h1 h2
2 h0 h1 + h2 h2
3 h0 + h1 + h2 h1 + h2 h2
4 h0 + h1 + h2 h1 + h2 + (fg)0 h2 + (fg)1
5 h0 + (fg)0 h1 + h2 + (fg)0 h2 + (fg)1
6 h0 + (fg)0 h1 + (fg)0 + (fg)1 h2 + (fg)1

Table 3. Step by step calculation of Algorithm 4.

730 Space-efficient quantum multiplication polynomials for binary finite fields with ...

f and g do not have their values altered because arrays F and G remain unchanged. �

Algorithm 4 computes h+ (1 + xk)fg with at most 2k+ 2` ≥ 2k+ 2(2n− 1− k) = 4n− 2

CNOT gates, at a depth of 4 per layer and 1 call to Algorithm 3 for an n-by-n multiplication.

For n = 1 both the depth and number of gates is 2 CNOT and 1 TOF gates.

Theorem 2: Given polynomials f, g of degree up to n − 1 and h of degree up to 2n − 2,

Algorithm 3 correctly calculates h+fg. The values of f and g are the same after the algorithm

as they were before.

Proof: We use proof by induction. For n = 1 line 10 of Algorithm 3 correctly calculates

h+ fg without altering f or g.

For n = 2 two calls are made to Algorithm 4 and one call to Algorithm 3 with n′ = 1 and

k′ = 1. Lines 7-9 of Algorithm 4 correctly calculate h′ + (1 + xk)f ′g′.

For n > 2 we use lemmas 1 and 2 as our inductive steps. Every time Algorithm 3 is called

recursively to calculate h′ + f ′g′ with f ′, g′ of degree n′ − 1, it is with either n′ = dn2 e or

n′ = n− dn2 e = bn2 c.

The series dn2 e, d
dn2 e
2 e, d

d
dn

2
e

2 e
2 e, ... reaches 1 in O(log n) steps and bn2 c ≤ d

n
2 e. From this

we can see that we reach n′ = 1 or 2 in finite steps. By induction Algorithm 3 correctly

calculates h+ fg and returns f and g to their original values.�

5 Reversible Karatsuba multiplication in binary finite fields

With this basis, we can move on to the modular multiplication. We will need Algorithm

2, which we will also run in reverse for multiplication by an inverse, and the binary shifts

from Section 3.1, which we will refer to as MODSHIFT, as well as the previous Karatsuba

algorithms. Unlike before, we will assume we start with an all-zero input. We can see in

Algorithm 11 the number of operations we use:

• 3 calls to Algorithm 3: twice for k-by-k multiplication and once for (n− k)-by-(n− k)

multiplication.

• 2 calls to Algorithm 2 (once in reverse), each time for multiplication by the same poly-

nomial 1 + xk.

• k calls to Algorithm 1 for multiplication by xk.

• 4 times (n− k) CNOT gates, half of which can be performed at the same time.

Note that Algorithm 3 can multiply two polynomials f and g of degree at most dn2 e− 1 while

needing n space for the output polynomial h, which has degree n− 1 at most in the case that

n is odd. We make recursive calls to Algorithm 3 rather than Algorithm 11 because it uses

significantly fewer CNOT operations and fits in the required space.

Theorem 3: Algorithm 11 correctly calculates fg in a field F2[x]/m(x) and the values of f

and g are the same after the algorithm as they were before.

Proof: Table 4 gives the result of each line on array H. As can be seen in the table, the final

result corresponds to (1 + xk)α+ xkγ + xk(1 + xk)β mod m. Lines 4 and 5 are the inverses

I. van Hoof 731

Algorithm 5: MODMULTZEROm(x). Reversible algorithm for multiplication of 2 poly-
nomials in F2[x]/m(x) with m(x) an irreducible polynomial.

Fixed input : A constant integer n to indicate field size, k = dn2 e. m(x) of degree
n as the field polynomial. The LUP -decomposition precomputed
for multiplication by 1 + xk modulo m(x).

Quantum input: Two binary polynomials f(x), g(x) of degree up to n− 1 stored in
arrays F and G respectively of size n. An all-zero array H of size n

Result: F and G as input, H as f · g mod m.
1 CNOT(F [k..n− 1], F [0..n− k − 1])
2 CNOT(G[k..n− 1], G[0..n− k − 1])
3 KMULTk(F [0..k − 1], G[0..k − 1], H[0..n− 1])
4 CNOT(G[k..n− 1], G[0..n− k − 1])
5 CNOT(F [k..n− 1], F [0..n− k − 1])

6 CONSTMODMULT−1
1+xk,m(x)

(H[0..n− 1])

7 KMULTn−k(F [k..n− 1], G[k..n− 1], H[0..n− 1])
8 for i = 0..k − 1 do
9 MODSHIFTm(x)(H[0..n− 1])

10 KMULTk(F [0..k − 1], G[0..k − 1], H[0..n− 1])
11 CONSTMODMULT1+xk,m(x)(H[0..n− 1])

Line H in MODMULTZEROm(x)

1,2 0
3-5 γ
6 (1 + xk)−1γ mod m
7 (1 + xk)−1γ + β mod m
9 xk((1 + xk)−1γ + β) mod m
10 α+ xk((1 + xk)−1γ + β) mod m
11 (1 + xk)α+ xkγ + xk(1 + xk)β mod m

Table 4. Step-by-step calculation of Algorithm 11.

of lines 1 and 2 so return F and G to their original states. �

Algorithm 6 provides a version of Algorithm 11 without the requirement of an all-zero H,

with Table 5 giving the results of each line. Due to the k added calls to MODSHIFT it uses k

more CNOT gates if m(x) is a trinomial and 3k more CNOT gates if m(x) is a pentanomial

compared to Algorithm .

6 Results

Algorithm 11 uses the same number of Toffoli gates as regular Karatsuba multiplication: 3

half-sized multiplications. This means the asymptotic number of Toffoli gates is the same as

for regular Karatsuba: O(nlog(3)) ≈ O(n1.58). This is a significant improvement over the n2

Toffoli gates required for schoolbook multiplication. The number of CNOT gates is less clear

as the number of CNOT gates required for the multiplications with constant polynomials is

strongly dependent on our choice of field polynomial. It is not within the scope of this paper

to find a stronger bound than O(n2) for the number of CNOT gates, which is currently used

732 Space-efficient quantum multiplication polynomials for binary finite fields with ...

Algorithm 6: MODMULTm(X). Reversible algorithm for multiplication of 2 polyno-
mials in F2[x]/m(x) with m(x) an irreducible polynomial and adding the product to a
third polynomial.

Fixed input : A constant integer n to indicate field size, k = dn2 e. m(x) of degree
n as the field polynomial. The LUP -decomposition precomputed
for multiplication by 1 + xk modulo m(x).

Quantum input: Three binary polynomials f(x), g(x), h(x) of degree up to n− 1
stored in arrays F , G and H respectively of size n.

Result: F and G as input, H as h+ f · g mod m.
1 for i = 0..k − 1 do
2 MODSHIFT−1m(x)(H[0..n− 1])

3 CNOT(F [k..n− 1], F [0..n− k − 1])
4 CNOT(G[k..n− 1], G[0..n− k − 1])
5 KMULTk(F [0..k − 1], G[0..k − 1], H[0..n− 1])
6 CNOT(G[k..n− 1], G[0..n− k − 1])
7 CNOT(F [k..n− 1], F [0..n− k − 1])

8 CONSTMODMULT−1
1+xk,m(x)

(H[0..n− 1])

9 KMULTn−k(F [k..n− 1], G[k..n− 1], H[0..n− 1])
10 for i = 0..k − 1 do
11 MODSHIFTm(x)(H[0..n− 1])

12 KMULTk(F [0..k − 1], G[0..k − 1], H[0..n− 1])
13 CONSTMODMULT1+xk,m(x)(H[0..n− 1])

for the constant multiplication. In a strict comparison of these CNOT gates, this is worse than

the O(n) CNOT gates used by modular schoolbook multiplication, even if we can find a better

estimate, but our primary goal is minimizing the number of Toffoli gates without introducing

ancillary qubits. In our implementation, even the sum of CNOT and Toffoli gates ends up

lower after some degree than the number of Toffoli gates for schoolbook multiplication.

We implemented Algorithm 11 in Java to simulate the execution. Code can be found in

[13]. We used the program to automatically count the number of gates and give an estimate

of the depth, see Table 6 for the results. Depth count is done by maintaining a set of gates

and checking every gate: if they overlap with the previous gate(s) the depth is increased by

Line H in MODMULTm(x)

1 h
2-4 x−kh mod m
5-7 γ + x−kh mod m
8 (1 + xk)−1(γ + x−kh) mod m
9 (1 + xk)−1γ + β + x−k(1 + xk)−1h mod m
11 xk(1 + xk)−1γ + xkβ + (1 + xk)−1h mod m
12 α+ xk(1 + xk)−1γ + xkβ + (1 + xk)−1h mod m
13 (1 + xk)α+ xkγ + xk(1 + xk)β + h mod m

Table 5. Step-by-step calculation of Algorithm 6.

I. van Hoof 733

Degree schoolbook TOF gates Algorithm 11 TOF gates CNOT gates Depth
2 4 3 9 9
4 16 9 44 32
8 64 27 200 124
16 256 81 678 365
32 1,024 243 2,238 1,110
64 4,096 729 6,896 3,129
127 16,129 2,185 20,632 8,769
128 16,384 2,187 21,272 9,142
163 26,569 4,387 37,168 17,906
233 54,289 6,323 63,655 29,530
256 65,536 6,561 64,706 26,725
283 80,089 10,273 89,620 41,548
571 326,041 31,171 270,940 121,821
1024 1,048,576 59,049 591,942 234,053

Table 6. CNOT and TOF gate count and depth upper bounds for various instances of Algorithm
11 as well as TOF gate count for schoolbook multiplication. Field polynomials used are the same

as in Table 1, with the irreducible polynomial chosen that has the lowest CNOT count. Depth

numbers are upper bounds from the java implementation.

1 and if they are not overlapping the gate is added to the set of gates to check against. The

set of gates is cleared and replaced with the last gate whenever the depth is increased. The

author is aware of methods to improve the depth but leaves this to future work.

When doing classical Karatsuba multiplication, the recursive Karatsuba multiplication is

often substituted for schoolbook multiplication starting at a cutoff. For example, if multipli-

cation is at most 7 times as expensive as addition, multiplication of two polynomials of degree

at most 2 might be replaced by schoolbook multiplication to get 4 TOF gates instead of 3

TOF and 8 CNOT gates. However, the author is unaware of any realistic estimates of cost

difference between CNOT and Toffoli gates where the difference is this small.

6.1 Comparison to other instances of binary finite field multiplication

F2n Toffoli gates CNOT gates qubits
n = Here [7] [14] Here [7] [14] Here [7] [14]

4 9 9 16 44 22 3 12 17 12
16 81 81 256 678 376 45 48 113 48
127 2185 2185 16129 20632 13046 126 381 2433 381
256 6561 6561 65536 64706 57008 765 768 7073 768
n O(nlog2 3) O(nlog2 3) n2 O(n2) O(nlog2 3) O(n) 3n O(nlog2 3) 3n

Table 7. Comparison of this work with the works of Kepley and Steinwandt [7] and Maslov et al.

[14] in terms of Toffoli and CNOT gates as well as qubit count.

We compare our algorithm to two previous instances of multiplication: a variant by Kepley

and Steinwandt [7] that optimizes TOF gate count and a variant by Maslov, Mathew, Cheung

and Pradhan [14] that does not use Karatsuba. Other variants exist, such as a Karatsuba

variant by Parent, Roetteler and Mosca [6], that are worse in terms of space or Toffoli gate

count. Since Kepley and Steinwandt use Clifford and T-gates rather than CNOT and Toffoli,

734 Space-efficient quantum multiplication polynomials for binary finite fields with ...

we translate 7 of their T-gates and 8 Clifford gates to 1 Toffoli gate, and translate any

remaining Clifford gates to CNOT. The resulting comparison is in Table 7. We can see that

although Algorithm 11 does not compare favorably in every regard, both the number of Toffoli

gates and the number of qubits are best compared to the alternatives.

7 Conclusion

Algorithm 11 provides a multiplication algorithm for binary polynomials in finite fields with-

out using ancillary qubits and which has sub-quadratic Toffoli gate count. The CNOT gate

count is high and the depth is not optimized, which is left open for future work: multiplica-

tion by a constant polynomial in F2n can likely be done in approximately linear time, which

would bring down the theoretical CNOT gate count to the same order as classical Karatsuba.

The saving in Toffoli gate count is the same as for Karatsuba on classical computers: for

cryptographic field sizes the savings in Toffoli gates ranges from 80 to over 90 percent. This

provides a basis for future work on elliptic curve problems on quantum computers as well as

potential other work.

Acknowledgements

The author thanks Tanja Lange for her insights into quantum algorithms and classical finite

field operations, Tanja Lange and Gustavo Banegas for their advice and supervision both on

this paper and the master thesis this paper originates from, and to Daniel J. Bernstein for his

insights into both quantum computing and classical multiplication algorithms. The author

also thanks the referees for providing valuable feedback on the paper.

References

1. A. A. Karatsuba and Y. P. Ofman (1962), Multiplication of many-digital numbers by automatic
computers, Doklady Akademii Nauk, vol. 145, pp. 293–294.

2. R. Maeder (1993), Storage Allocation for the Karatsuba Integer Multipliation Algorithm, Design
and Implementation of Symbolic Computation Systems, International Symposium, DISCO ’93,
Gmunden, Austria, September 15-17, 1993, Proceedings, pp. 59–65.

3. E. Thomé (2002), Karatsuba multiplication with temporary space of size ≤ n,
https://members.loria.fr/EThome/files/kara.pdf.

4. D. S. Roche (2009), Space- and Time-Efficient Polynomial Multiplication, Proceedings of the 2009
international symposium on Symbolic and algebraic computation, pp. 295–302.

5. Y. Cheng (2016), Space-Efficient Karatsuba Multiplication for Multi-Precision Integers, arXiv
preprint arXiv:1605.06760.

6. A. Parent, M. Roetteler, and M. Mosca (2017), Improved reversible and quantum circuits for
Karatsuba-based integer multiplication, 12th Conference on the Theory of Quantum Computation,
Communication and Cryptography, TQC 2017, June 14-16, 2017, Paris, France, pp. 7:1–7:15.

7. S. Kepley and R. Steinwandt (2015), Quantum circuits for F2n -multiplication with subquadratic
gate count, Quantum Information Processing, vol. 14, no. 7, pp. 2373–2386.

8. B. Amento, M. Rötteler, and R. Steinwandt (2013), Efficient quantum circuits for binary elliptic
curve arithmetic: reducing T-gate complexity, Quantum Information & Computation, vol. 13,
no. 7-8, pp. 631–644.

9. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren, eds. (2005),
Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall/CRC.

10. FIPS (2013), PUB 186-4: Federal information processing standards publication. digital signature
standard (DSS), Information Technology Laboratory, National Institute of Standards and Tech-

I. van Hoof 735

nology (NIST), Gaithersburg, MD.
11. G. Banegas, R. Custódio, and D. Panario (2018), A new class of irreducible pentanomials for

polynomial-based multipliers in binary fields, Journal of Cryptographic Engineering, pp. 1–15.
12. G. Seroussi (1998), Table of low-weight binary irreducible polynomials, Hewlett-Packard Labora-

tories.
13. I. van Hoof (2019), QMKMBP: Quantum modulo Karatsuba multiplier for binary polynomials,

Github, https://github.com/ikbenbeter/QMKMBP.
14. D. Maslov, J. Mathew, D. Cheung, and D. K. Pradhan (2009), An O(m2)-depth quantum algo-

rithm for the elliptic curve discrete logarithm problem over GF (2m)a, Quantum Information &
Computation, vol. 9, no. 7, pp. 610–621.

