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It is demonstrated that in gate-based quantum computing architectures quantum walk

is a natural mathematical description of quantum gates. It originates from field-matter
interaction driving the system, but is not attached to specific qubit designs and can be

formulated for very general field-matter interactions. It is shown that, most generally,

gates are described by a set of coined quantum walks. Rotating wave and resonant
approximations for field-matter interaction simplify the walks, factorizing the coin, and

leading to pure continuous time quantum walk description. The walks reside on a graph

formed by the Hilbert space of all involved qubits and auxiliary states, if present. Physical
interactions between different parts of the system necessary to propagate entanglement

through such graph—quantum network—enter via reduction of symmetries in graph
edges. Description for several single- and two-qubit gates are given as examples.
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1 Introduction

Quantum information and computing relies on few basic quantum mechanical concepts, such

as quantum state, quantum superposition, quantum entanglement, quantum measurement.

In it’s standard form—gate-based quantum computing—it relies on quantum gates,1,2 manip-

ulating superpositions and entanglement. Supplemented by quantum measurements, it can

process information and solve complex problems at the rate not accessible to classical infor-

mation processing.3 As such, quantum computing is one of the best tests of basic quantum

mechanical principles abstracted out from actual physical systems implementing it. Yet, in

gate-based architectures, quantum gates have been intimately connected with physical sys-

tems in which they are implemented or for which they are designed.4–8 Furthermore, quantum

gate designs has been closely following developments in physical qubit architectures.13–20 On

the other hand, substantial effort has been ongoing to optimize quantum algorithms to make

them run faster21–23 and correct errors24,26–28 to reach fault tolerance. This effort however

is largely confined to elementary quantum gates supplied by specific qubit designs, with the

only degree of freedom being arrangement of such quantum gates. The combination of such

two approaches largely mimics current classical information processing strategy leaning to-

wards RISC (Reduced Instruction Set Computer) CPU architectures. This is not necessarily
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an optimal way of using physical resources available in quantum computing systems, which

was also the case for classical computing, benefiting from CISC (Complex Instruction Set

Computer) approach at early stages.

Quantum principles are unique as they incorporate freedom that is not present in classical

deterministic description—quantum particles are free to evolve in provided Hilbert space until

measured. This situation is in the very core of quantum computing concept. Yet, design of

quantum gates and quantum code compression typically aims to suppress this freedom by

relying on deterministic sequences of controls micromanaging quantum evolution and trajec-

tories. Recent analysis of few-qubit (entangling) quantum gates performed via continuous

time quantum walks driven by classical field29 have shown that by allowing greater freedom

for quantum particles during multiqubit rotations one can significantly speedup entangling

quantum gates. Yet, formulation of such gates have still been attached to chosen qubit ar-

chitectures by relying on resonant approximation that is very specific to the actual physical

system at hand.

Here I show that quantum walks31–37 is a general framework for quantum gates that is not

tight to a specific physical realization or qubit architecture, as far as I focus on gate-based

quantum computing strategy. I demonstrate that quantum gates are, in general, described by

a collection of coined quantum walks realized in a quantum network of available (multiqubit)

quantum states. Physical interactions necessary to carry and propagate entanglement enter

via symmetry of edges (connections) independently of whether resonant approximation is

used. Typical approximations, such as rotating wave38–40 and resonant8,29 approximations,

are naturally described withing the quantum walk approach and can be verified by specifically

designed quantum walks. I show that when resonant approximation is appropriate, quantum

coins are factored out and quantum gates are described by continuous time quantum walks. In

the latter case quantum walks constructed to implement quantum gates bear some similarity

with walks used in quantum-wire-based architectures.30 In contrast to the quantum wire

architectures, quantum walks constructed to implement gates are naturally controlled by

classical time-dependent control field (pulses) via graph edges. As the result, this description

incorporates standard quantum gates schemes when the size of available quantum network is

reduced to a minimum and multiple pulses are used instead of one. In the rest of this section

I briefly introduce the concepts of coined quantum walks, continuous time quantum walks,

and quantum gates as needed for subsequent sections. Quantum walks description is derived

in Sec. 2 and summarized in Sec. 5 where it is used to formulate quantum gates. Sections 3

and 4 show how some walks can be reduced to one-dimensional walks, which are easier to

solve, and generalize results to more complex filed-matter interactions.

1.1 (coined) quantum walks

Quantum walks are typically introduced by analogy with classical random walks.31–33 Con-

sidering walk on an infinite line as an example, one can define an amplitude of shifting to the

left adjacent site or to the right adjacent site. In this case the wave function of a walking

particle, initially localized at site “0” is

|ψ(t+ ∆t)〉 = A|−1〉+B|+1〉, |A|2 + |B|2 = 1, (1)

where ∆t time interval counts steps. One way to achieve this starting with state |0〉 is to use

the state of a qubit (two-sate quantum system), typically referred to as “quantum coin,” to
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supply amplitudes for the two different directions

|ψ(t+ ∆t)〉 = A|−1, 0〉+B|+1, 1〉. (2)

Here the second state index denotes the basis states of the coin. The coin amplitudes can

be superimposed onto the shifted states of the walking particle by a shift operator Ŝ that

couples the two systems. The state of the coin can be rotated prior to applying Ŝ by a coin

step operator Ĉ to influence the walk. Such quantum walks are referred to as coined quantum

walks. Although the term “discrete time” quantum walk is used as well. Note that the notion

of time here is not critical as it enters only via a sequence of events (steps), while the actual

value of ∆t is irrelevant and can be set to ∆t → dt → 0, if needed. Both, shift and coin

operators are unitary rotations

ŜŜ† = 1, ĈĈ† = 1. (3)

The overall step operator is

|ψ(t+ ∆t)〉 = ŜĈ|ψ(t)〉 (4)

In the case of a walk on a line, the shift operator can be defined as

Ŝ|ξ, c〉 = |ξ + (−1)c, c〉 → Ŝ =
∑
ξ

|ξ + 1〉〈ξ| ⊗ |0c〉〈0c|+
∑
ξ

|ξ − 1〉〈ξ| ⊗ |1c〉〈1c|, (5)

where indexes ξ denote vertices on the line (states) the walker can occupy, and c = 0, 1 refers

to the basis states of the coin (qubit). We will omit the direct product from now on and will

use different state operators or indices to refer to the particle they operate on. In general, the

shift operator can be any (unitary) operator that couples to the state of the coin and move

the walker, e.g., a (more natural) quantum evolution operator

Ŝ = e−iγ
∑
ξ(|ξ+1〉〈ξ||0c〉〈1c|+h.c.), (6)

where γ is some real number and h.c. stands for hermitian conjugate terms. The specific

operator chosen will implement specific walk. The coin does not have to be a two-state

system—it can have as many states as needed to determine the walk on available network

(graph) of states. Note that if the number of connections in the graph varies from vertex

to vertex, the coin must be local to accommodate this change. Similarly, Ĉ is any unitary

operator, such as, e.g., a Hadamard operator

Ĉ = Ĥ ≡ 1√
2

(
1 1
1 −1

)
(7)

in the case of a two-state coin. Because the system involves two quantum objects and we,

typically, do not have access to the state of the coin, the state of the worker is analyzed by

looking at the reduced density matrix with the coin degrees of freedom traced out

ρ̂(t) = Trc(|ψ(t)〉〈ψ(t)|) ≡
∑
c=0,1

〈c|ψ(t)〉〈ψ(t)|c〉. (8)
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Note that, in general, the walker becomes entangled with the coin and the density matrix ρ(t)

does not correspond to any pure state

ρ̂(t) 6= |ψ〉〈ψ| (9)

The probability to find the walking particle at site ξ can be easily found as

Pξ(t) = 〈ξ|ρ̂(t)|ξ〉 (10)

1.2 continuous time quantum walks

Continuous time quantum walks do not rely on auxiliary quantum coins to propagate. It is

an evolution due to a unitary rotation33

ψ(t+ dt) = e−idtĤψ(t) (11)

defined by Hamiltonian, Ĥ, and, thus, is simply a wave function of a discrete-state quantum

system evolving according to the Schroedinger equation

i
d

dt
ψ(t) = Ĥψ(t). (12)

Here and in what follows we will use the same units for energy and frequency, in which case

~ = 1. Continuous time quantum walks are typically based on time-independent Hamiltonians

with all dimensional parameters often lumped together into a prefactor

Ĥ = γÂ, (13)

although continuous time (classical) random walks on time-dependent graphs are possible

and so is the quantum analogy with Ĥ(t). The remaining matrix Â is adjacency matrices

describing connections in the given graph. In graph theory adjacency matrices with only 0 or 1

entries are natural. In this case 1 denotes existing connection (edge) between the two vertices

(column and row indexes) and 0 denotes no connection. A physical process corresponding to

some Hamiltonian and incorporating several parameters generally includes complex-number

entries in Â and factorization of all parameters out of the matrix structure is not common,

although possible in some cases. Diagonal entires of the Hamiltonian (in a given basis) have

the meaning of energies of the basis states. They can be incorporated into adjacency matrices

as self-loops (connecting a vertex to itself).

Continuous time and coined quantum walks are substantially different. Coined walk in-

corporates additional quantum object (coin) interacting with the walker. Yet they can result

in an identical evolution in some special cases when the coin can be factored out, so that

the reduced density matrix (8) remains the outer product of |ψ〉 and its hermitian conjugate.

Both types of quantum walks were proven to provide similar quantum speedup as regular

quantum computing.30,41,42

Recently it was demonstrated29 that continuous time quantum walks is a natural descrip-

tion of hardware quantum gates taking advantage of extended Hilbert space available in many

qubit architectures targeting gate-based quantum computing. A collection of auxiliary states

(states beyond the boolean computational domain), many of which participate in cross-qubit

interactions, can be naturally viewed as non-boolean (not qubit-based) quantum network.
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Appropriately designed continuous time quantum walks through such networks accumulate

nontrivial phase faster then traditional entangling gates under the same condition but rely-

ing on only small part of such network each time. However these earlier derivations29 were

obtained in resonant and rotating wave approximations. The question of whether quantum

walk description is valid in a more general case, when these approximations are inappropriate,

was not resolved.

In this work it is demonstrated that quantum walk is a natural mathematical framework

to construct quantum gates in qubit systems (with or without auxiliary states) controlled

via classical field (pulses). In the case when non-resonant physics can not be ignored, quan-

tum gates utilizing quantum networks are described by coined quantum walks. They turn

into continuous time quantum walks (without auxiliary quantum coins) when only resonant

processes are relevant. Both types of walks are based on the same graph with non-resonant

processes entering primarily via phases introduced by a feedback via the coin (or coins in

multi-mode case). In order to demonstrate this we first briefly discuss quantum gates and

show why continuous time quantum walks can potentially emerge as a description.

1.3 quantum gates

In gate-based quantum computing, a quantum gate is a coherent rotation of the wave function

by any unitary operator

|Ψ′〉 = Ûg|Ψ〉. (14)

Because wave functions are normalized superpositions of given basis states with some complex

amplitudes

|Ψ〉 =
∑

ξ1,ξ2,...

Bξ1,ξ2,...|ξ1ξ2...〉, (15)

the gate, in fact, is the rotation of the basis in which the wave function is considered (or

constructed) ∑
ξ1,ξ2,...

Bξ1,ξ2,...|ξ1ξ2...〉′ =
∑

ξ1,ξ2,...

Bξ1,ξ2,...Ûg|ξ1ξ2...〉. (16)

Entanglement—a basis dependent property of a multiqubit quantum system—can be al-

tered by gates that perform global rotations of basis. Local (single-qubit) rotations, such as,

e.g., Hadamard gate,

|0〉+ |1〉√
2

= Ûg(H)|0〉, |0〉 − |1〉√
2

= Ûg(H)|1〉, (17)

do not change entanglement and only affect single-qubit superpositions for individual qubits

or for many qubits at the same time if applied concurrently. Entangling gates, such as, e.g.,

a two-qubit control-NOT (CNOT) defined as

|i, (j + i) mod 2〉 = Ûg(CNOT, 1)|i, j〉, (18)

|(i+ j) mod 2, j〉 = Ûg(CNOT, 2)|i, j〉, (19)
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alter multi- (two-) qubit superpositions, but can not, in general, be applied concurrently if

they share qubits.

In both cases rotations of basis states are equivalent to the end result of a set of continuous

time quantum walks

|ξ1ξ2...〉′ = Ûg|ξ1ξ2...〉 (20)

In order to produce a gate, all such walks must be coordinated to produce the results such

as those stated in the above examples in Eqs. (17), (18), and (19). Equation (20), however,

does not yet prove that quantum walk provide any additional insight into construction of

quantum gates. To do so we must derive an evolution operator corresponding to a single

step of each such walk based on physical description of control used to perform the gate on

hardware qubits. This is done in the next section.

2 Quantum walks as framework for quantum gates

In gate-based quantum computing interaction between control apparatus and qubit system

occurs via a classical control field, i.e., via a bosonic field defined by commutation relations

between its creation/annihilation operators

[â, â†] = 1, (21)

and characterized by the coherent state wave function43

|α〉 = e−|α|
2/2eαâ

†
|0〉, â|α〉 = α|α〉, 〈α|â† = α∗〈α|, 〈α|α′〉 = eα

′α∗− |α|
2+|α′|2

2 , (22)

where α and α∗ are eigenvalues of annihilation and creation operators respectively. Such field

becomes fully classical in the thermodynamic limit of large (average) number of bosons

N = 〈â†â〉 = |α|2 →∞. (23)

A dipole field-matter interaction Hamiltonian is sufficient in most cases of qubit control

(more general coupling is considered in the next section). In rotating frame (interaction

representation), it can be written as

V̂ (t) =
∑
p

Φp(t)
∑

ωp; ~ξ>~ξ′∈G

(
E∗p,ωpe

iωpt + Ep,ωpe
−iωpt

)(
g∗~ξ,~ξ′ |

~ξ〉〈~ξ′|e−i∆E~ξ,~ξ′ t + h.c.
)
. (24)

Here the system of qubits and, possibly, additional (auxiliary) sates is represented by a graph

G with vertices labeled by ξ, and the subgraph

GQ ∈ G (25)

representing all qubit states (qubit or boolean domain). Each pulse of the control field (in-

dexed by p) has the overall envelop profile Φ(t) and a set of frequencies ωp. The magnitude of

the field at each frequency is represented by Ep,ωp . The sum over the frequencies
∑
ω Eωe

−iωt,

particularly in the continuous limit
∑
ω →

∫
dω, already describes any function of time. In-

troduction of the overall profile Φ(t) helps by dramatically reducing the number of frequencies
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needed to represent a given pulse profile, i.e., by describing switching the field on and off. Be-

cause each pulse is already introduced with the most general temporal profile, we will assume

that pulses with different p do not overlap in time. Functions g∗ξξ′ are dipole matrix elements

corresponding to the transitions between states to which the field couples, and

∆E~ξ,~ξ′ = E~ξ − E~ξ′ ≥ 0 (26)

are energy gaps between the corresponding states, with the numbering convention for the

states such that ∆E~ξ,~ξ′ are positive. The driving Hamiltonian V̂ (t) in Eq. (24) is written

in the interaction representation, i.e., in the rotating basis. This basis exactly follows the

evolution of the non-driven system—that is evolution of phase for each individual state in

accordance with its energy. These are build-in local rotations. In most cases qubits are

formed in the rotating frame of reference to eliminate energies (and, thus, such uncontrollable

rotations) from the quantum computing description as unnecessary complication.

The evolution produced by driving a quantum system with Hamiltonian (24) up to time

tg can be most generally written as a time-ordered exponential integral44

Ûg = Te−i
∫ tg
0 dtV̂ (t) ≡ e−idtV̂ (tg) ... e−idtV̂ (2dt)e−idtV̂ (dt). (27)

When applied to some initial state ψ(0), each exponential on the right-hand side appears as

a single step in evolution of a continuous time quantum walk

ÛS(t)→ e−idtV̂ (t). (28)

This, however, is still not very insightful—it is not generally tractable analytically and is

costly to implement numerically because V̂ (t), potentially, is a large matrix with non-trivial

time-dependent coefficients and, thus, an exact diagonalization is required at each time step

to compute ÛS(t). It is desirable to represent ÛS(t) via a finite sequence of step operators

that are either time-independent or have trivial time dependence such as

e−idtf(t)X̂ = Ûe−idtf(t)Û†X̂Û Û†, (29)

where Û is some time-independent unitary rotation and Û†X̂Û is a diagonal matrix. Note

that time-series expansion of (28) to the second order

e−idtV̂ (t) = 1− idtV̂ (t) +O(dt2) (30)

is possible and can be used as an intermediate step in analytical derivations, being exact in the

limit of dt→ 0. However, this is not practical in numerical calculations as it will lead to very

quick and dramatic loss of unitarity after just few steps, rendering the solution unphysical.

In order to simplify ÛS(t), we should go back to Hamiltonian (24). Such driving Hamilto-

nian can be obtained from field-matter interaction Hamiltonian

V̂p(t) =
Φ(t)√
N

∑
ω; i∈E{G}

(
E∗p,ωp â

†
ωpe

iωpt + Ep,ωp âωpe
−iωpt

)(
g∗i ĉie

−i∆Eit + giĉ
†
ie
i∆Eit

)
(31)

in the thermodynamic, Eq. (23), and coherent, Eqs. (22), limits of bosonic field represented

via creation and annihilation operators â†ωp and âωp for each frequency of the control field.

Here we introduce rising/lowering operators

ĉ†i = |~ξ′i〉〈~ξi|, ĉi = |~ξi〉〈~ξ′i|, ĉ†i = [ĉi]
†, (32)
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by noticing that the summation in Eq. (24) is in fact over the edges of the graph—each edge,

i, of graph G is represented by two vertex indices ξi and ξ′i which it connects. Note that

operators ĉ
(†)
i with different i do not commute if they share any of the vertices. When the

gate aims to coherently manipulate qubits, the thermodynamic limit, Eq. (23), is critical.

The wave function of the combined system of a particle evolving on quantum network defined

by graph G and bosons of the control field is given by

|Ψ〉 =

∫
dα′∗dα′|α′〉〈α′|ÛS(tg) ... ÛS(2dt)ÛS(dt)|ψ(0)〉|α〉 (33)

This function is not generally factorisable, except in some special cases—bosons and the

quantum particle become entangled very quickly. The entanglement becomes vanishingly

small in the thermodynamic limit (23)

lim
N→∞

|Ψ〉 → |ψ(tg)〉|α〉. (34)

Here we incorporate all acquired phases into |ψ(tg)〉. Without this limit, driving field will

introduce significant decoherence to the qubits being driven and, thus, this is the require-

ment that the driving field must satisfy, not an approximation. Note that development of

entanglement between a quantum particle and the field in Eq. (33) is similar to evolution

of coined quantum walk described in Sec. 1.1. This suggests that each walk in (20), before

the thermodynamic limit is taken, can potentially be a coined quantum walk rather than a

continuous time walk. In order to investigate this further we first focus on single mode ω.

2.1 a single-mode pulse

The Hamiltonian (31) naturally splits into two parts

V̂ω(t) = V̂ +
ω (t) + V̂ −ω (t), (35)

where

V̂ −ω (t) =
Φ(t)√
N

∑
i∈E{G}

(
E∗ωg

∗
i ĉiâ

†e−iδ
(−)
i t + h.c.

)
, (36)

V̂ +
ω (t) =

Φ(t)√
N

∑
i∈E{G}

(
Eωg

∗
i ĉiâe

−iδ(+)
i t + h.c.

)
, (37)

and

δ
(±)
i = ∆Ei ± ω, (38)

δ
(+)
i = δ

(−)
i + 2ω (39)

are detuning. While V̂ ±ω (t) do not commute with each other, ÛS(t) can still be split into two

unitary rotations to the leading order in dt using Baker-Hausdorff formula

edt(X+Y ) = edtXedtY e−dt
2[X,Y ]/2 × ... = edtXedtY +O(dt2). (40)

We obtain

ÛS(t) = e−idtV̂
−
ω (t)e−idtV̂

+
ω (t) +O(dt2). (41)
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Time dependence in both factors can be removed

ÛS(t) = eitĤ0e−idtV̂
−
ω e−idtV̂

+
ω e−itĤ0 (42)

by introducing

Ĥ0 =
∑
ξ

Eξ|ξ〉〈ξ|+ ωâ†â. (43)

The rotations due to diagonal noninteracting Hamiltonian (43) appear to depend on current

time at each step (42). By simple examination of several steps

ÛS(t)ÛS(t− dt) = eitĤ0e−idtV̂
−
ω e−idtV̂

+
ω e−idtĤ0e−idtV̂

−
ω e−idtV̂

+
ω e−i(t−dt)Ĥ0 (44)

we notice that this is not the case and that they are local and do not depend on accumulated

time. Re-groping the terms, we see that the gate evolution operator is given by

Ûg = lim
N→∞

eitgĤ0ÛS(tg)...ÛS(2dt)ÛS(dt), (45)

with each step defined as

ÛS(t) = e−idtV̂
−
ω e−idtV̂

+
ω e−idtĤ0 . (46)

Note that each V̂ ±ω still depend on time via slowly changing Φ(t), pulse envelop function, but

this dependence is trivial, see Eq. (29).

Equation (46) defines coined quantum walk

|Ψ(t+ dt〉 = ŜĈ|Ψ(t)〉 (47)

on graph G with step operator

Ŝ = e−idtV̂
−
ω e−idtV̂

+
ω e−idt

∑
ξ Eξ|ξ〉〈ξ|, (48)

and coin rotation

Ĉ = e−idtωâ
†â. (49)

The coin is represented by the collection of bosons participating in the control pulse and has

initial state |α〉. The probability distribution can be formally computed as

Pξ(tf ) = lim
N→∞

〈ξ|〈αN |Ŝ†f (tf )Ĉ†f (tf )[ŜĈ ... ŜĈ]|ξ〉|αN 〉, (50)

where

|αN 〉
|α|2=N
≡ |α〉 (51)

and

Ŝf (t) = e−it
∑
ξ E|ξ〉〈ξ| =

[
lim
E→0

Ŝ

]t/dt
, (52)

Ĉf (t) = e−itωâ
†â = [Ĉ]t/dt. (53)
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Because we are only interested in the thermodynamic limit of the above evolution we can

further simplify Ŝ and Ĉ. By comparing (24) and (31) we notice that in the thermodynamic

limit â†/
√
N and â/

√
N are merely placeholders for eiωt and e−iωt respectively. In other

words, these operators commute

â√
N

â†√
N

=
â†√
N

â√
N

+
1

N
(54)

to oder 1/N and, once operators Ĉ are removed, can be rearranged to push all â† to the left

acting on 〈αN | and all â to the right acting on |αN 〉, each producing
√
N times a phase factor

that can be lumped together with Eω. Thus in the thermodynamic limit we can define

Î+ = â†/
√
N, Î− = â/

√
N, Î+Î− − Î−Î+ = O(1/N)→ 0, (55)

and

Îz = â†â−N. (56)

This are, in fact, operators associated with quasienergy states45–47 describing the sys-

tem with a periodic driving Hamiltonian, such as (24). They move quantum particle up or

down the equidistant quasienergy ladder. These quasienergy states of the coin are there to

accumulate the correct phase, distributing it at each step via Ŝ.

2.2 multimode pulses

Generalization of the above derrivation to account for multiple modes, defined by ω and Eω,

and multiple pulses, defined by Φp(t), is now straightforward. The summation over frequency

can be restored in each term without affecting the results. Note that each frequency must

have its own coin. We obtain

Ŝp = e
−idt

∑
ωp
V̂ −p,ωp e

−idt
∑
ωp
V̂ +
p,ωp e−idt

∑
ξ Eξ|ξ〉〈ξ|, Ŝp,f (t) =

[
lim
E→0

Ŝp

]t/dt
, (57)

Ĉp = e
−idt

∑
ωp
ωpÎ

z
ωp , Ĉp,f (t) = [Ĉp]

t/dt, (58)

with the replacement in V̂ ±

âωp/
√
N → Î−ωp , â†ωp/

√
N → Î+

ωp . (59)

Because we have initially introduced pulses that do not overlap in time, quantum walks

evolution due to each is computed independently with the result

|ψ(tf )〉 = 〈N |

[∏
p

lim
N→∞

|N〉〈N |Ŝ†p,f (tf )Ĉ†p,f (tf )
(
ŜpĈp...ŜpĈp

)]
|ψ(0)〉|N〉, (60)

where |ψ(0)〉 is the initial state of the walker and

|N〉 =
∏
ωp

|αN,ωp〉 (61)

is the initial (and final when N → ∞) state of the coins. Note that the limit must be taken

after every pulse p, as shown in (60). Once again, we note that N → ∞ limit is needed, see

Eq. (34), to formulate quantum gates, which will be done in a later section. It is not essential

to the walk itself. Note also that while Ŝp,f (tf ) does depend on the size of graph G, it does

not depend on the composition of the pulses entering via Ep,ωo , see Eq. (57).
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2.3 rotating wave approximation

In many qubit architectures

ωp � ∆Ei − ωp (62)

and the time scale defined by 1/ωp is significantly shorter (faster) than any other time scales

in the problem. As the result, operators V̂ +
p,ωp that accumulate phase factors of e

−itδ+i,ωp rotate

on much faster time scale, as compared to V̂ −p,ωp . Define dt− = n−dt such that n− � 1, but

dt−, defining the time scale of the slow V̂ − processes, is still vanishingly small, i.e., dt− → 0.

We can then consider n− steps of walk (60) factoring out slow evolution as

ŜpĈp...ŜpĈp︸ ︷︷ ︸
n−

= Ŝ−p Ĉ
−
p

Ŝ+ †
p,f (n−dt)Ĉ

†
p,f (n−dt) Ŝ

+
p Ĉp...Ŝ

+
p Ĉp︸ ︷︷ ︸

n−

 , (63)

where

Ŝ−p = e
−idt−

∑
ωp
V̂ −p,ωp e−idt−

∑
ξ Eξ|ξ〉〈ξ|, Ŝ−p,f (t) =

[
lim
E→0

Ŝ−p

]t/dt
, (64)

Ĉ−p = e
−idt−

∑
ωp
ωpÎ

z
ωp , Ĉ−p,f (t) = [Ĉ−p ]t/dt, (65)

and

Ŝ+
p = e

−idt
∑
ωp
V̂ +
p,ωp e−idt

∑
ξ Eξ|ξ〉〈ξ|, Ŝ+

p,f (t) =

[
lim
E→0

Ŝ+
p

]t/dt
. (66)

For large enough n− rotations

Ŝ+ †
p,f (n−dt)Ĉ

†
p,f (n−dt) Ŝ

+
p Ĉp...Ŝ

+
p Ĉp︸ ︷︷ ︸

n−

→ 1, (67)

i.e., this auxiliary walk effectively averages itself to 1 and we obtain

|ψ(tf )〉 = 〈N |

[∏
p

lim
N→∞

|N〉〈N |Ŝ−†p,f (tf )Ĉ−†p,f (tf )
(
Ŝ−p Ĉ

−
p ...Ŝ

−
p Ĉ
−
p

)]
|ψ(0)〉|N〉. (68)

2.4 resonant approximation

In many systems where rotating wave approximation is applicable, the time scale defined by

dt− can be further split into resonant and non-resonant time scales. The latter is still defined

by dt− and is due to the set of non-zero detunings {δ−i,ωp 6= 0}. A much slower time scale

is associated with the subset of {Ep,ωpgi}, for which δ−i,ωp = 0. Introducing dtR = nRdt− to

follow the slow scale, such that nR � 1, but dtR → 0, we can rearrange nR steps of walk (68)

as

Ŝ−p Ĉ
−
p ...Ŝ

−
p Ĉ
−
p︸ ︷︷ ︸

n−

= Ŝ∈Rp ĈRp

Ŝ− 6∈Rp,f (nRdt−)†Ĉ−†p,f (nRdt−) Ŝ− 6∈Rp Ĉ−p ...Ŝ
− 6∈R
p Ĉ−p︸ ︷︷ ︸

nR

 , (69)
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where

Ŝ∈Rp = e
−idtR

∑
ωp
V̂ −,∈Rp,ωp e−idtR

∑
ξ Eξ|ξ〉〈ξ|, Ŝ∈Rp,f (t) =

[
lim
E→0

Ŝ∈Rp

]t/dt
(70)

ĈRp = e
−idtR

∑
ωp
ωpÎ

z
ωp , ĈRp,f (t) = [ĈRp ]t/dt, (71)

and

Ŝ− 6∈Rp = e
−idt−

∑
ωp
V̂ −, 6∈Rp,ωp e−idt−

∑
ξ Eξ|ξ〉〈ξ|, Ŝ− 6∈Rp,f (t) =

[
lim
E→0

Ŝ− 6∈Rp

]t/dt
. (72)

Here the sum over i and ωp in matrix V̂ −p,ωp was split into two terms

V̂ −p,ωp = V̂ −,∈Rp,ωp + V̂ −,6∈Rp,ωp , (73)

depending on whether a given term i has ∆Ei, corresponding to the i-th edge of graph G,

equal to ωp, in which case the term is labeled as “∈ R” term, or not, in which case it is labeled

as “6∈ R”. The exponential of V̂ −p,ωp can then be factored out into two to order O(dt2R). By

noting that all terms in the left-hand side of (69) commute to order O(dt2R) we obtain Eq. (69).

As earlier, nR-step non-resonant walk averages to 1

Ŝ− 6∈Rp,f (nRdt−)†Ĉ−†p,f (nRdt−) Ŝ− 6∈Rp Ĉ−p ...Ŝ
− 6∈R
p Ĉ−p︸ ︷︷ ︸

nR

→ 1. (74)

This effectively resets the coins on every step, dtR, of the slow time scale, which can be thought

of as Markovian approximation of removing memory effects in the environment (coins). The

averaging depends on separation of scales of resonant and non-resonant evolution. It will not

occur if such separation is insufficient, resulting in decoherence if coins’ degrees of freedom

are subsequently traced out. If separation of scale is sufficient to guarantee (74) to desired

accuracy we obtain

|ψ(tf )〉 = 〈N |

[∏
p

lim
N→∞

|N〉〈N |Ŝ∈R†p,f (tf )Ĉ∈R†p,f (tf )
(
Ŝ∈Rp ĈRp ...Ŝ

∈R
p ĈRp

)]
|ψ(0)〉|N〉 (75)

Quantum walk (75) can be simplified further by noticing that rotation e−idtR
∑
ξ Eξ|ξ〉〈ξ|

counters all the phase introduced to the walker by ĈRp in all steps, including finally with

the product Ŝ∈R†p,f (tf )Ĉ∈R†p,f (tf ). This is a manifestation of the fact that all entries in matrix

V̂ −,∈Rp,ωp were chosen such that ∆Ei is equal to one of the frequencies ωp. Therefore operators

Î±ωp located there introduce no phase. They simply shift the appropriate coin states and can be

removed without any change in the thermodynamic limit of N →∞. As the result, evolutions

of the coin and the walker are completely independent—the coin is factored out and can be

removed. The remaining Ŝ∈Rp rotations commute and can be re-combined as follows

Ŝ∈Rp ...Ŝ∈Rp = e
−i

tg∫
0

dtΦ(t)Λ̂
= e−iτgΛ̂ =

[
e−idτΛ̂

][tg/dτ ]

, (76)
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with the redefinition of a single step to

Û∈RS = e−idτΛ̂. (77)

Here

τ =

t∫
0

dtΦ(t), dτ = dtΦ(t), (78)

where the overall pulse profile Φ(t) enters as a metric connecting real and effective time axes.

The walk is given by

|ψ(tf )〉 = [Û∈RS ][tg/dτ ]|ψ(0)〉 = e−iτΛ̂|ψ(0)〉 (79)

This is a continuous time quantum walk with time-independent adjacency matrix Λ propa-

gating in time τ .

3 Quantum walk on a line

Solving coined or continuous time quantum walks on general large graphs is difficult. Analyt-

ical solutions can be obtained in some special cases, such as the case of one-dimensional (1D)

graphs that are chains of states of different lengths. For example, without any symmetry on

edges, continuous time quantum walks on 1D chains can be solved analytically and explicitly

for chains of up to 5 states — 4 complex parameters (one for each edge) forming a general

polynomial equation of degree 4. Longer chains can often be reduced to solvable polynomials

if the system is sufficiently symmetric.

Larger graphs and respective quantum walks can be reduced to 1D chains by performing

rotations of basis in appropriate parts of the graph.48–50 In order to benefit from this approach

when constructing quantum gates we must make sure that initial and final sets of nodes (basis

states) still reside in qubit domain, i.e. on graph GQ. They should remain unchanged, or, at

least, do not mix with any of the intermediate nodes residing in G−GQ. Such transformation

can be formally written as

LTE(G−GQ){X̂} ≡ T̂ X̂T̂
†. (80)

It produces a superposition for each edge transition operator

∑
i

g∗i LTE(G−GQ){ĉi} =
∑
i,i′

g∗i Tηi′ ,ξiT
∗
η′
i′ ,ξ
′
i
|ηi′〉〈η′i′ | =

∑
i′

[∑
i

g∗i Tηi′ ,ξiT
∗
η′
i′ ,ξ
′
i

]
ĉ′i′ . (81)

Multiple simple transformations can be done consecutively to reduce the graph. Examples

are given in Sec. 5 and Appendix A.

In all discussed walks, i.e., Eqs. (60), (68), and (79), such basis rotation directly affects

only Ŝp. It enters via

e
−idt

∑
ωp
V̂ ±p,ωp → e

−idt
∑
ωp
LTE(G−GQ){V̂

±
p,ωp
}

= e
−idt

∑
i′ωp

[
E(∗)
p,ωp

g′∗
i′ ĉi′ Î

±
ωp

+h.c.
]
, (82)

g′∗i′ =
∑
i

g∗i Tηi′ ,ξiT
∗
η′
i′ ,ξ
′
i
, (83)
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In the case of Eqs. (60) and (68), it also affects the non-coined phase term in Ŝp

e−idt
∑
ξ Eξ|ξ〉〈ξ| → e−idt

∑
ξ EξT̂ |ξ〉〈ξ|T̂

†
= e−idt

∑
ξ,η,η′ EξTη,ξT

∗
η′,ξ′ |η〉〈η

′| (84)

making it non-diagonal. Thus, in the case of walks (60) and (68), such rotations potentially

add additional non-trivial continuous time walk rotation at every step. The graph for the

coined walk is G′ as obtained after transformation LTE(G−GQ). The additional non-coined

continuous time quantum walk evolves on graph G′′ obtained from the right-hand side of

Eq. (84). It is not equal to G or G′. Thus, LTE(G−GQ) must therefore be chosen to balance

the complexity of G′ and G′′ to simplify the overall solution. Fortunately, as we will see later,

in many cases G′′ is still a simple disjointed graph with only few 1D segments and all other

vertices unconnected (except for energy self-loops). The phase term (84) is not present for

resonant walk and the transformation is applied to Λ̂ in Eq. (77) simplifying the solution

directly without any side effects.

4 More general field-matter interactions

In some cases, e.g., for trapped ions qubit architectures,19,20 a different interaction with

bosonic control field is necessary. In order to show that the quantum walk description obtained

above is still applicable, we generalize interaction (31) to

V̂p = Φ(t)
∑

ω; i∈E{G}

F

(
E∗p,ωp

â†ω√
N

+ Ep,ωp
âω√
N

)(
g∗i ĉi + giĉ

†
i

)
, (85)

where

F(x) =

∞∑
m=0

F(m)(0)

m!
xm. (86)

is an arbitrary Taylor-series expandable function. Using the replacement suggested earlier in

Eqs. (55) and (59) for the thermodynamic limit we obtain

V̂p = Φ(t)
∑

m,ω; i∈E{G}

F(m)(0)

m!

(
E∗p,ωp Î

+
ω + Ep,ωp Î

−
ω

)m (
g∗i ĉi + giĉ

†
i

)
. (87)

Binomial expansion and relations in Eq. (55) can be used to split rising and lowering operators

into two terms. We obtain(
E∗p,ωp Î

+
ω + Ep,ωp Î

−
ω

)m
=

m∑
k=0

(
m

k

)
E∗ kp,ωpE

m−k
p,ωp [Î+

ω ]k[Î−ω ]m−k (88)

=
∑

k≤m/2

(
m

k

)
E∗ kp,ωpE

m−k
p,ωp [Î−ω ]m−2k +

∑
k>m/2

(
m

k

)
E∗ kp,ωpE

m−k
p,ωp [Î+

ω ]2k−m

= δm∈even

(
m

m/2

)
|Ep,ωp |m +

 ∑
k>m/2

(
m

k

)
E∗ kp,ωpE

m−k
p,ωp [Î+

ω ]2k−m + h.c.


The derived quantum walk description, see Eqs. (60), (68), and (79), is based on V̂ ±p

defined in Eqs. (36) and (37). For a general form of coupling to control field they must be
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redefined to

V̂ −p = Φ(t)
∑

ω; i∈E{G}

∑
m∈even,k>m/2

F(m)(0)

m!

(
m

k

)
|Ep,ωp |m (g∗i ĉi + h.c.) (89)

+Φ(t)
∑

ω; i∈E{G}

∑
m,k>m/2

(
F(m)(0)

m!

(
m

k

)
E∗ kp,ωpE

m−k
p,ωp g

∗
i ĉi[Î

+
ω ]2k−m + h.c.

)

and

V̂ +
p = Φ(t)

∑
ω; i∈E{G}

∑
m,k>m/2

(
F(m)(0)

m!

(
m

k

)
Ekp,ωpE

∗m−k
p,ωp g∗i ĉi[Î

−
ω ]2k−m + h.c.

)
(90)

All other derivations remain the same. While Eq. (89) has a sum over powers of Î+ and Î−

not present in Eq. (36) beyond linear terms, it is still straightforward to split it into resonant

and non-resonant parts.

5 Gates by quantum walks

We begin here by summarizing the above derivations. As outlined in Eq. (20), quantum gates

are rotations of the basis states of a single or multi-qubit sub-system. These rotations can be

represented by quantum walks derived in the previous sections as

|ξ1ξ2...〉′∈GQ =

∏
p

lim
N→∞

〈N |S†p,fC
†
p,f [ŜpĈp ... ŜpĈpŜpĈp︸ ︷︷ ︸

tg/dt

]|N〉

 |ξ1ξ2...〉∈GQ , (91)

|ξ1ξ2...〉′∈GQ = Ûg|ξ1ξ2...〉 ≡
∑

ξ′1ξ
′
2...∈GQ

Uξ′1ξ′2...,ξ1ξ2...|ξ
′
1ξ
′
2...〉, (92)

where Uξ′1ξ′2...,ξ1ξ2... are entries in the Ûg matrix in a given basis. Each quantum walk begins

from one of the qubit basis states |ξ1ξ2...〉, propagates (in general) through the entire available

quantum network and returns to state |ξ1ξ2...〉′ in GQ that is a specific superposition of qubit

states as defined by the gate in Eq. (92). All walks must return completely and at the same

time. When a single pulse is used to achieve that, we have a set of walks Wg ∈ Ug, each

defined as

lim
N→∞

〈N |〈ξ1ξ2...|′∈GQ Ŝ
†
p,f Ĉ

†
p,f [ŜpĈp ... ŜpĈpŜpĈp︸ ︷︷ ︸

tg/dt

]|N〉|ξ1ξ2...〉∈GQ = 1, (93)

where

|N〉 ≡
∏
ωp

|αN,ωp〉 (94)

is the combined state of all quantum coins realizing the walk, and

Ŝp,f =

[
lim

Ep,ωp→0
Ŝp

]tg/dt
, Ĉp,f =

[
Ĉp

]tg/dt
(95)
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are control-field-independent final phase adjustments. One quasienergy (or bosonic) coin per

each control field frequency is required. The coin operator is defined as

Ĉp = e
−idt

∑
ωp

ωpÎ
z
ωp

, (96)

as explained in Section 2. When no approximations are used, the walks advance via shift

operator

Ŝp = e−idτΛ̂ e
−idτ

∑
ωp 6∈Ri,i∈E{G}

(
E∗ωpg

∗
i ĉiÎ

+
ωp

+h.c.
)
e
−idτ

∑
ωp,i∈E{G}

(
Eωpg

∗
i ĉiÎ

−
ωp

+h.c.
)
e
−idt

∑
ξ

Eξ|ξ〉〈ξ|
, (97)

where Ri denotes frequencies that are (exactly) in resonance with the transition at edge i,

and

ĉi = |ξi〉〈ξ′i|, ĉ†i = |ξ′i〉〈ξi|, ξi, ξ
′
i ∈ [E{G}]i, |ξ〉 ∈ G (98)

are jump operators associated with each (i-th) edge of graph G, as mentioned earlier. Note

that, except for the last (diagonal) phase factor, the shift operator propagates in its own time

τ defined by

dτ = Φ(t)dt, (99)

with the metric given by the overall pulse envelop profile.

When rotating wave approximation is appropriate, the shift operator simplifies to

Ŝp → e−idτΛ̂ e
−idτ

∑
ωp 6∈Ri,i∈E{G}

(
E∗ωpg

∗
i ĉiÎ

+
ωp

+h.c.
)
e
−idt

∑
ξ

Eξ|ξ〉〈ξ|
. (100)

In this case coined non-counter-rotating term, the third exponential in Eq. (97), rotates too

quickly providing a negligible contribution to the final result, as can be estimated by quantum

walk (67) as explained in Sec. 2. Physically this happens when control field frequencies are

much larger then frequencies associated with the field amplitudes (Rabi frequencies), i.e.,

ωp � Ep,ωpgi and ωp � dΦ(t)/dt. In most optically controlled qubit systems they differ by

many orders of magnitude and, thus, this approximation is nearly exact.

In resonant approximation only frequencies that are in exact resonance with some

transitions, ωp ∈ Ri, are included. In this case all coins evolve independently and can be

factored out. The shift operator simplifies to bare minimum

Ŝp → e−idτΛ̂, Λ̂ =
∑

i∈E{G}

(
E∗ωp∈Rig

∗
i ĉi + h.c.

)
, (101)

and Eq. (91) is simply a collection of continuous time quantum walks

|ξ1ξ2...〉′∈GQ = e−idτΛ|ξ1ξ2...〉∈GQ , (102)

chosen to satisfy the gate. This approximation is valid when all non-zero detunings δ−i , defined

in Eq. (38) are much greater than frequencies associated with control field amplitudes, i.e.,

δ−i � Ep,ωpg
′
i and δ−i � dΦ(t)/dt. This can be verified by performing walk (69). It is
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applicable in many cases, but the inequalities must be carefully verified for all transitions

that can be potentially affected by the control field. Thus, the validity of the approximation

depends heavily on the details of specific qubit architecture.

In all cases, with or without approximations, quantum walks (91) performing the gate are

governed primarily by resonant,

Ωi ≡ giEp,ωp∈Ri , (103)

and non-resonant,

giEp,ωp 6∈Ri (104)

amplitudes of the control field at each edge of graph G. The former define Λ̂ in each Ŝp.

Because control field is shaped by the user, these amplitudes are adjustable complex param-

eters. Note that gi are not the property of the control field and, thus, are not in general

adjustable (although, they can be tunable in some cases via other control mechanisms, e.g.,

by changing confinement that defines basis states in G). The parameters are chosen to ensure

that Eq. (93) is satisfied for all qubit basis sates on which the given gate is defined. This is

not always possible. It depends on physical interactions between different parts of quantum

network described by graph G. When graph G is simply a collection of non-interacting qubits

(even with additional states per each qubit), Eq. (93) based on any entangling gate can not

be satisfied irrespective of control field used. Mathematically, physical interactions in graph

G enter via symmetries in the adjacency matrix Λ̂. The symmetries are defined as

Ωi = s
∀j∈Si0
i0

Ωi, (105)

where sji0 is the symmetry operator connecting amplitudes Ωi at different graph edges

sji0Ωi0 = Ωi0+j ∀ωp, {sj1i0 , s
j2
i0
, ...} = Si0 . (106)

All such operators form group Si0 that defines a set of identical edges with edge i0 as one of

the elements. Note that this symmetry merely distributes amplitudes between resonant (103)

and non-resonant (104) sets. Because evolution produced by each set is very different, such

distribution directly affects all quantum walks (91) whether or not rotating wave or resonant

approximations are made. This is emphasized by the first factor in Eqs. (97), (100), and

(101). The symmetries Si are the greatest for a non-interacting system that have no physical

interactions between qubits (or extended qubit systems)

Si = SQ. (107)

In this case each index in |ξξ′...〉 simply numbers the sate in each qubit system (note that

ξ can be lager than 1 when auxiliary states are available). When physical interactions are

present, we can still mark all basis states by non-interacting indexes, e.g., |ξξ′...〉 = |01...〉, for

convenience, assuming adiabatic connection with non-interacting case. However symmetries

Si will change because gi and ∆Ei are different. The graph (edges) will be less symmetric

Si < SQ (108)
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This symmetry reduction is discussed in details in Ref. 29 within resonant approximation, i.e.,

as it applies to adjacency matrix Λ̂. Here we see that it is a general requirement for entangling

gates irrespective of approximations made. In what follows we give few examples of single and

two-qubit gates with all walks optimized analytically within resonant approximation. Some

other examples based on resonant approximation can be found in Ref. 29.

5.1 single-qubit gates: Z, Hadamard

Single-qubit Z gate has the simplest quantum walk description. When resonant approximation

is appropriate, connecting one auxiliary state with one of the qubit states is sufficient. In this

case adjacency matrix written in the basis {|2〉, |1〉, |0〉} is

Λ̂ =

 0 0 Ω
0 0 0

Ω∗ 0 0

 (109)

The single complex parameter Ω must be set to organize a non-trivial return walk

walk : |0〉 Rπ via |2〉−−−−−−−→ |0〉 e−iτΛ̂|0〉 = |0〉 (110)

at time τg. This is accomplished if τgΩ = π(2n + 1), with n ∈ Z, as follows from evaluating

the exponential of iτgΛ for this effectively two-state system. The resulting gate shown in the

basis {|1〉, |0〉} is

Ûg(Z) ≡ Ẑ =

(
1 0
0 −1

)
(111)

In this example we see that quantum walks simply describe the standard single-qubit control

via a single leg of a “Λ” system (a three-state quantum system).

Another example relying on the same “Λ” system, the Hadamard gate, can be realized

if two adjustable amplitudes (corresponding to two resonant frequencies) are present in the

control pulse. In the basis {|1〉, |2〉, |0〉} we have

Λ̂ =

 0 Ω1 0
Ω∗1 0 Ω∗2
0 Ω2 0

 (112)

This time we need two continuous time quantum walks to occur (and terminate) at the same

(effective) time

walk 1 : |0〉 via |2〉−−−−→ |0〉+ |1〉√
2

e−iτΛ|0〉 =
|0〉+ |1〉√

2
(113)

walk 2 : |1〉 via |2〉−−−−→ |0〉 − |1〉√
2

e−iτΛ|1〉 =
|0〉 − |1〉√

2
(114)

This is accomplished by setting |Ω1|/|Ω2| =
√

2−1, argΩ1−argΩ2 = π, and τ
√
|Ω1|2 + |Ω2|2 =

π(2n+ 1), with n ∈ Z. This result can be obtained from the exact solution, see, e.g., Sec. 5.2

in Ref. 29, and can be verified by direct exponentiation. The resulting gate operator is

Ûg(H) ≡ Ĥ =
1√
2

(
1 1
1 −1

)
(115)
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Walk 1 Walk 2 Walk 3 Walk 4

Fig. 1: Quantum walks involved in CZ gate.

When single-qubit gates are performed in a multiqubit register, all edges involved in the

gates must either have the highest symmetry (Si = S0), i.e., must not be part of the network

affected by interactions, or be part of walks designed such that the reduced symmetry does

not affect the propagation. Note that symmetry Si can always be made higher artificially by

choosing appropriate values for pulse amplitudes, but it can not be made lower. In contrast,

multiqubit entangling gates performed on the same network must engage edges that are

affected by interactions and, thus, have lower symmetry, i.e., Si < S0. In this case walks

must be designed to probe this symmetry reduction as shown in the next subsection.

5.2 two-qubit gates: Control-Z

The simplest example of an entanglement-manipulating two-qubit gate is a CZ gate

Ûg(CZ) ≡ ĈZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (116)

When qubits are in direct vicinity, it can be performed by walks propagating in subgraph

G defined on states |ξξ′〉 with ξ, ξ′ = 0, 1, 2. Here we assume that the symmetry between

edges |ξ1〉 ↔ |ξ2〉 with ξ = 1, 2 (and also |1ξ′〉 ↔ |2ξ′〉 with ξ′ = 1, 2) is broken, while edges

|ξ1〉 ↔ |ξ2〉 with ξ = 0, 1 (and also |1ξ′〉 ↔ |2ξ′〉 with ξ′ = 0, 1) remain identical. The gate

can be accomplished by performing four walks

walk 1 : |00〉 trivial−−−−→ |00〉, e−iτΛ|00〉 = |00〉, (117)

walk 2 : |01〉 R0, via |02〉−−−−−−−→ |01〉, e−iτΛ|01〉 = |01〉, (118)

walk 3 : |10〉 R0, via |20〉−−−−−−−→ |10〉, e−iτΛ|10〉 = |10〉, (119)

walk 4 : |11〉 Rπ , via |12〉,|21〉,|22〉−−−−−−−−−−−−−→ |11〉, e−iτΛ|11〉 = −|11〉, (120)

where R0 is a return walk that comes back with no additional phase and Rπ is a return

walk that accumulate a phase of π. Walk 4 in this case probes the reduced symmetry. The

subgraphs with non-zero edge amplitudes corresponding to each walk are shown in Fig. 1.

Walk 1 is trivial. Walks 2 and 3 are accomplished by choosing τΩA = 2πnA, τΩA′ = 2πnA′

with nA, nA′ ∈ Z. Walk 4 is performed by choosing
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
|ΩA′Ω∗B − ΩAΩ∗B′ | = π2

τ2 nm

|ΩAΩB + ΩA′ΩB′ | = π2

τ2
nm
|a|

√
(n+m)2 − (nm|a| + |a|)2

|a| = nm/
√
n2
A + n2

A′

m ≤
√
n2
A + n2

A′ ≤ n

, (121)

where n and m are any odd non-equal integers ordered as 0 < m < n. This can be obtained

by transforming the subgraph corresponding to walk 4, see Fig. 1, to a linear chain of 4 states

as introduced in Sec. 3 and detailed in Appendix A.3. Return walks on the latter graph can

be obtained analytically for arbitrary complex hopping amplitudes, see Sec. 5.3 in Ref. 29,

resulting in system (121).

6 Summary

I demonstrated that quantum walks is a general mathematical description naturallyencom-

passing any quantum gates in gate-based quantum computing architectures. It follows from

the observation that classical driving field (as the limiting case of quantum control field)

connects available states into a complex quantum network for the duration of the gate. The

structure in this network depends on two factors: (i) physical interactions between under-

laying qubits and (ii) spectral composition of the control field. More (physically) interacting

systems produce less-symmetric networks. Control field can manipulate node-to-node transi-

tion rates (weights associated with edges) as allowed per symmetry and can also increase this

symmetry. Quantum gates are realized in such Hilbert space network as free evolution. The

size of the network depends on spectral composition of control field and is typically very small

(two or three connected nodes) for traditionally-designed gates. Yet much larger networks can

be easily assembled and were recently shown8,29 to produce much faster gates under resonant

approximation when gate evolution turns into continuous time quantum walks.

We also demonstrated that quantum walk description is applicable to a driven multiqubit

system in general, irrespective of approximations made. Evolution of such system is identical

to that of coined quantum walk with one multi-state coin per Fourier harmonic of the control

field, as has been summarized in Eq. (91). The states of the coin (at each frequency) identify

different quasienery bands in the system. They originate from bosonic equidistant energy

ladder of quantum field underlaying classical time-dependent control.

The overall evolution of periodically driven system can develop three distinct time scales:

(i) fast, (ii) intermediate, and (iii) slow. The fast evolution scale correctly accounts for counter-

rotating terms in quantum systems driven by cosωt field, see Eq. (37). It does not conserve

the total number of excitations (coin + qubits). The intermediate time scale involves evolution

which conserves the total number of excitations of the coin-qubits system. The slowest time

scale concerns with resonant processes in which some transitions in the qubit system are in

exact resonance with coin transitions (at a given frequency), i.e., in Eq. (38) δ
(−)
i = 0.

All these time scales are necessarily much faster than the time scale of the overall gate

applied to the qubit via the driving field. When time scales (i), (ii) and (iii) are clearly iden-

tifiable and are well separated, two consecutive approximations—rotating wave and resonant

approximations—can be made. Rotating wave approximation ignores processes at time scale

(i), and resonant approximation also ignores processes at time scale (ii). These approxima-
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tions are naturally identifiable in the quantum walk description—each time scale involves its

own quantum walk, which averages to identity if that time scale is well separated (involves

many steps of walk without significant interference from other processes). Quantum walks on

both scales (i) and (ii) depend on the states of the coin at each frequency, see Eqs (60) and

(68). At time scale (iii), all coins are completely factored out and the evolution is that of a

continuous time quantum walk, see Eq. (79).

If time scales (i), (ii), and (iii) are not sufficiently distinguishable (corresponding walks

are too short), rotating wave and resonant approximations will lead to incorrect description—

coins’ degrees of freedom will not be accounted correctly (rotating wave approximation) or

will be completely ignored (resonant approximation), which effectively traces out all coins

resulting in decoherence. While initial system of qubits is a closed quantum system, clas-

sical oscillating driving field performing the gate introduces additional “hidden” degrees of

freedom—quasienergy bands. These degrees of freedom appear as quantum coins influencing

qubit evolution. They provide an additional channel to carry information between different

steps of the evolution and, thus, can be thought of as environmental degrees of freedom. As

the result, rotating wave and resonant approximations in this system can be interpreted as

Markovian assumption in which information transfered from qubits to environment (coins) is

lost and does not return back to qubits.

In Sec. 5 I demonstrated that the symmetry of the network edges Si determines how

evolution is split between scales (iii) and (i) and (ii). As the result, it is not an artifact of

the resonant approximation, but rather a fundamental factor in the overall evolution of the

system. It is also the key factor in forming entangling quantum gates. Entanglement can

only be manipulated if the symmetry is sufficiently low, otherwise only single-qubit control is

possible. Examples of several gates were given.
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Appendix A Reducing complex graphs

Here we give several examples of transformation G → G′ introduced in Eq. (80) together

with transformation of the diagonal energy term, Eq. (84), forming graph G0, and producing

additional continuous time quantum walk factor with graph G′′. Only local transformations

within subgraphs δG and δG0 of the graph G and G0 are given. The entire graph can be

manipulated by applying multiple transformations in any order as necessary as far as they

operate on subgraph G − GQ, that is outside of the qubit domain, or at least in subgraph

G − GG (GG ∈ GQ), where GG is a collection of qubit basis states affected by the gate.

Rotation of states in GG, which are the end points (initial and final) of all quantum walks

performing the gate, may scramble operation of the gate.

A.1 One-segment branch

We first consider a linear subgraph δG with a single-segment branch and arbitrary complex

hopping amplitudes (edges). This graph can be transformed by moving the branch by two
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(a) (b) (c) (d)

Fig. 2: Transformations LT δG → δG′ and LT δG0 → δG′′ for a linear chain with a single-segment
branch.

segments along the chain. Applying this local rotations several times, depending on the

structure of the rest of the graph, may remove the branch. When several non-connected

branches are present, the procedure can be applied iteratively to each. The cases of connected

branches (loops) are addressed in the next subsections. The total number of available free

parameters (amplitudes) remains unchanged.

The Hamiltonian of subgraph δG is

ĤδG = a|1〉〈2|+ a′|1〉〈1′|+ b|2〉〈3|+ h.c., (122)

as illustrated in Fig. 2(a). It is connected to graph G via vertices 1 and 3. The first step in

the transformation is to define two orthogonal states |x〉 and |x′〉 as{
|x〉 = a∗|2〉+a′∗|1′〉

Ωx

|x′〉 = a′|2〉−a|1′〉
Ωx

, (123)

with

Ωx =
√
|a|2 + |a′|2. (124)

This rotation replaces the first two terms in Eq. (122) with Ωx|1〉〈x|. The last term splits

into two, because {
|2〉 = a|x〉+a′∗|x′〉

Ωx

|1′〉 = a′|x〉−a∗|x′〉
Ωx

. (125)

As the result, the transformed Hamiltonian is

ĤδG′ = Ωx|1〉〈x|+
ab

Ωx
|x〉〈3|+ a′b∗

Ωx
|3〉〈x′|+ h.c. (126)

The corresponding graph δG′ is shown in Fig. 2(b).

The same rotation will transform graph δG0, see Fig. 2(c), with Hamiltonian

ĤδG0
= E1|1〉〈1|+ E2|2〉〈2|+ E3|3〉〈3|+ E1′ |1′〉〈1′|, (127)
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(a) (b) (c) (d)

(f)(e)

Fig. 3: Transformations LT δG ↔ δG′ and LT δG0 ↔ δG′′ connecting a linear chain segment with
two single-segment branches and a linear chain segment with a square loop.

by modifying

|2〉〈2| = |a|
2|x〉〈x|+ |a′|2|x′〉〈x′|+ aa′|x〉〈x′|+ a′∗a∗|x′〉〈x|

Ω2
x

, (128)

|1′〉〈1′| = |a
′|2|x〉〈x|+ |a|2|x′〉〈x′| − a′a|x〉〈x′| − a∗a′∗|x′〉〈x|

Ω2
x

. (129)

As the result, we obtain

ĤδG′′ = E1|1〉〈1|+ E3|3〉〈3|+
E2|a|2 + E1′ |a′|2

Ω2
x

|x〉〈x| (130)

+
E2|a′|2 + E1′ |a|2

Ω2
x

|x′〉〈x′|+ E2 − E1′

Ω2
x

(aa′|x〉〈x′|+ h.c.),

as shown in Fig. 2(d).

A.2 square four-segment loop

Here we derive the transformation connecting δG that is a four-segment loop on a chain

(two connected branches), see Figs. 3(b) and (c), with graph δG′ that is a chain with two

single segment branches next to each other see Figs. 3(a) and (d). We start with the inverse

transformation, i.e., δG′ → δG. The initial Hamiltonian is

ĤδG′ = a|1〉〈2|+ a′|1〉〈1′|+ b|2〉〈3|+ b′|2〉〈2′|+ c|3〉〈4|+ h.c. (131)
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The transformation (123) can be applied to states |2〉 and |1′〉 as before. Now, however, state

|2〉 is also connected to |2′〉 and due to Eq. (125) we obtain

ĤδG → Ωx|1〉〈x|+
ab

Ωx
|x〉〈3|+ b∗a′

Ωx
|3〉〈x′|+ ab′

Ωx
|x〉〈2′|+ b′a′∗

Ωx
|x′〉〈2′|+c|3〉〈4|+h.c. (132)

The corresponding graph, shown in Fig. 3(b), is a four-segment loop attached to a linear

chain. The transformation δG→ δG′ can be found by solving system

C = c
A = Ωx
A′ = ab′

Ωx

B = ab
Ωx

B′ = a′b∗

Ωx

C ′ = a′b′∗

Ωx

, (133)

as follows from Figs. 3(b) and (c). The loop graph [see Fig. 3(c)] has one extra complex

parameter as compared to graph with two branches in Figs. 3(a) and (d). Therefore trans-

formation from a loop graph to a graph with two branches [see Figs. 3(c) and (d)] can only

occur if the number of free parameters is reduced. The necessary condition can be derived by

comparing equations in system (133). This yields

B′

B∗
=

C ′

A′∗
. (134)

The rest of the solution is 

a = AB
Ωy

a′ = AB′

Ωy

b = Ωy =
√
|B|2 + |B′|2

b′ = A′

B Ωy
c = C

. (135)

The resulting two single-segment branches [see Fig. 3(d)] can be moved to one of the ends

of the linear chain, one after the other, by iteratively applying transformation derived in

Sec. A.1.

Under this transformation the diagonal δG0 graph with Hamiltonian

ĤδG0 = E1|1〉〈1|+ Ex|x〉〈x|+ E3|3〉〈3|+ E4|4〉〈4|+ Ex′ |x′〉〈x′|+ E2′ |2′〉〈2′|, (136)

shown in Fig. 3(e) is adjusted via

|x〉〈x| = |a|
2|2〉〈2|+ |a′|2|1′〉〈1′|+ a∗a′|2〉〈1′|+ a′∗a|1′〉〈2|

Ω2
x

, (137)

|x′〉〈x′| = |a
′|2|2〉〈2|+ |a|2|1′〉〈1′| − a′a∗|2〉〈1′| − aa′∗|1′〉〈2|

Ω2
x

, (138)
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(a) (b) (c) (d)

Fig. 4: The transformation between four-segment loop, graph δG, inserted via its diagonal and a
single-branch graph δG′.

producing graph δG′′ with Hamiltonian

ĤδG′′ = E1|1〉〈1|+ E3|3〉〈3|+ E4|4〉〈4|+ E2′ |2′〉〈2′| (139)

+
Ex|a|2 + Ex′ |a′|2

Ω2
x

|2〉〈2|+ Ex|a′|2 + Ex′ |a|2

Ω2
x

|1′〉〈1′|

+
Ex − Ex′

Ω2
x

(a′a∗|2〉〈1′|+ h.c.), (140)

shown in Fig. 3(f).

A.3 diagonal square loop

Here we transform a square loop attached to the rest of the graph via its diagonal. The

Hamiltonian of the four-segment square part, graph δG, shown in Fig. 4(a), is

ĤδG = a|0〉〈1|+ b|1〉〈2|+ c|3〉〈2|+ d|0〉〈3|+ h.c. (141)

The first and the fourth terms can be combined to define two new orthogonal states |x〉 and

|x′〉 {
|x〉 = a∗|1〉+d∗|3〉

Ωx

|x′〉 = d|1〉−a|3〉
Ωx

, (142)

Ωx =
√
|a|2 + |d|2. (143)

The remaining two terms, i.e. the second and the third, are transformed into the new basis

b|1〉〈2| → ab

Ωx
|x〉〈2|+ bd∗

Ωx
|x′〉〈2|, (144)

c|3〉〈2| → cd

Ωx
|x〉〈2| − a∗c

Ωx
|x′〉〈2|. (145)

As the result, we obtain

ĤδG′ = A|0〉〈x|+B|x〉〈2|+ C|2〉〈x′|+ h.c., (146)

with graph δG′ shown in Fig. 4(b), where
A = Ωx
B = ab+cd

Ωx

C = b∗d−ac∗
Ωx

. (147)
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Note that the number of parameters (graph edges) is reduced from four to three complex

numbers.

Under this transformation the diagonal δG0 graph with Hamiltonian

ĤδG0 = E0|0〉〈0|+ E1|1〉〈1|+ E2|2〉〈2|+ E3|3〉〈3|, (148)

shown in Fig. 4(c) is transformed to

ĤδG′′ = E0|0〉〈0|+ E2|2〉〈2| (149)

+
E1|a|2 + E3|d|2

Ω2
x

|x〉〈x|+ E1|d|2 + E3|a|2

Ω2
x

|x′〉〈x′|

+
E1 − E3

Ω2
x

(ad|x〉〈x′|+ h.c.), (150)

as shown in Fig. 4(d).

A.4 Six-segment loop inserted via diagonal

Here I demonstrate how to transform a six-segment loop subgraph inserted via its (largest)

diagonal, see Fig. 5(b), into a four-segment square loop subgraph, see Fig. 5(d), discussed in

the previous subsection. In the specific case of b′ = 0, it also demonstrates how to reduce

a linear chain with a two-segment branch, Fig. 5(a). The Hamiltonian corresponding to the

subgraphs δG, shown in Fig. 5(a) and (b), is

ĤδG = a|0〉〈1|+ b|0〉〈2|+ c1|1〉〈1′|+ c2|2〉〈2′|+ a′|1′〉〈3|+ b′|2′〉〈3|+ h.c. (151)

As before, the first two terms can be reduced by rotating the states |1〉 and |2〉 to introduce

new orthogonal states {
|x〉 = a∗|1〉+b∗|2〉

Ωx

|x′〉 = b|1〉−a|2〉
Ωx

, (152)

Ωx =
√
|a|2 + |b|2. (153)

This procedure transforms δG into δG̃ described by Hamiltonian

ĤδG̃ = Ωx|0〉〈x|+ |x〉
ac1〈1′|+ bc2〈2′|

Ωx
+ |x′〉b

∗c1〈1′| − a∗c2〈2′|
Ωx

+a′|1′〉〈3|+ b′|2′〉〈3|+ h.c., (154)

shown in Fig. 5(c). Further binary rotation involving states |1′〉 and |2′〉{
|y〉 =

a∗c∗1 |1
′〉+b∗c∗2 |2

′〉
Ωy

|y′〉 = bc2|1′〉−ac1|2′〉
Ωx

, (155)

Ωy =
√
|ac1|2 + |bc2|2, (156)

simplifies the second term in Eq. (154), yielding

ĤδG′ = Ωx|0〉〈x|+
Ωy
Ωx
|x〉〈y|+ ab

|c1|2 − |c2|2

ΩxΩy
|y〉〈x′|

+
c1c2Ωx

Ωy
|x′〉〈y′|+ aa′c1 + bb′c2

Ωy
|y〉〈3|+ ba′∗c2 − ab′∗c∗1

Ωy
|3〉〈y′|+ h.c. (157)



258 Quantum walks as mathematical foundation for quantum gates

(b) (c) (d)(a)

(e) (f) (g)

Fig. 5: The transformation between a six-segment loop breaking a linear chain graph and a four-
segment edge-sharing loop, with a linear chain with a two-segment branch as a special case.

This produces graph δG′ shown in Fig. 5(d).

The corresponding graph δG0, described by Hamiltonian

ĤδG0 = E0|0〉〈0|+ E1|1〉〈1|+ E2|2〉〈2|+ E3|3〉〈3|+ E1′ |1′〉〈1′|+ E2′ |2′〉〈2′| (158)

and shown in Fig. 5(e), is first transformed to δG̃0 using Eq. (128) with replacements a′ → b

and |1′〉 → |2〉. The intermediate graph Hamiltonian is

ĤδG̃0
= E0|0〉〈0|+ E3|3〉〈3|+ E1′ |1′〉〈1′|+ E2′ |2′〉〈2′| (159)

+
E2|a|2 + E1|b|2

Ω2
x

|x〉〈x|+ E2|b|2 + E1|a|2

Ω2
x

|x′〉〈x′|+ E2 − E1

Ω2
x

(ab|x〉〈x′|+ h.c.),

as shown in Fig. 5(f). The second rotation, Eq. (155), transforms E1′ |1′〉〈1′| + E2′ |2′〉〈2′|.
Finally, we obtain the Hamiltonian describing graph δG′′

ĤδG′′ = E0|0〉〈0|+ E3|3〉〈3| (160)

+
E1′ |ac1|2 + E2′ |bc2|2

Ω2
y

|y〉〈y|+ E1′ |bc2|2 + E2′ |ac1|2

Ω2
y

|y′〉〈y′|

+
E1′ − E2′

Ω2
y

(abc1c2|y〉〈y′|+ h.c.)

+
E2|a|2 + E1|b|2

Ω2
x

|x〉〈x|+ E2|b|2 + E1|a|2

Ω2
x

|x′〉〈x′|+ E2 − E1

Ω2
x

(ab|x〉〈x′|+ h.c.),

shown in Fig. 5(g).


