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As an important quantum resource, quantum coherence play key role in quantum infor-
mation processing. It is often concerned with manipulation of families of quantum states

rather than individual states in isolation. Given two pairs of coherent states (ρ1, ρ2) and

(σ1, σ2), we are aimed to study how can we determine if there exists a strictly incoherent
operation Φ such that Φ(ρi) = σi, i = 1, 2. This is also a classic question in quantum

hypothesis testing. In this note, structural characterization of coherent preorder under

strongly incoherent operations is provided. Basing on the characterization, we propose
an approach to realize coherence distillation from rank-two mixed coherent states to

q-level maximally coherent states. In addition, one scheme of coherence manipulation

between rank-two mixed states is also presented.
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1 Introduction

Quantum coherence is an essential physical resource which can be used to implement vari-

ous tasks such as quantum computing [1], cryptography [2], information processing [3, 4, 5],

thermodynamics [6], metrology [7], and quantum biology [8]. Various efforts have been made

to build the resource theory of coherence [9]-[12]. The resource theory of coherence consists

of two fundamental elements: free states and free operations. Free states are quantum states

which can be prepared at no additional costs, while free operations catch those physical trans-

formations which can be carried out without consumption of resources. Having confirmed the

two main features, people initiate investigation of the corresponding theory, such as coher-

ence manipulation and coherence quantification. One of the main advantages that a resource

theory offers is the lucid quantitative and operational description as well as the manipulation

of the relevant resources at one’s disposal.

Let us begin by recalling the basic formalism of the resource theory of quantum coherence.
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Free states are identified as incoherent states

ρ =

d∑
i=1

λi|i〉〈i|,

i.e., states which are diagonal in a fixed basis {|i〉}di=1 for a d-dimensional system H. The set

of incoherent states will be labelled by I. The choice of this basis depends on the particular

problem under study, and in many relevant scenarios such a basis is naturally singled out by

the unavoidable decoherence [13].

Free operations are identified as incoherent operations (ICO) which are specified by a finite

set of d× d matrices {Kj} satisfying KjρK
†
j /Tr(KjρK

†
j ) ∈ I for all ρ ∈ I,

Φ(ρ) =
∑
j

KjρK
†
j .

An incoherent operation can be interpreted as a measurement which can not create coherence

even if one applies postselection on the measurement outcomes [12], we call such Kraus opera-

tors {Kj} incoherent. Recall that, if both Kraus operators Kj and K†j are incoherent, we call

the operation strictly incoherent (SIO) [14, 15, 16, 17]. Different definitions of free operations

stemming from meaningful physical considerations have been studied, such as maximally inco-

herent operations (MIO) [9], physically incoherent operations (PIO) [18], dephasing covariant

incoherent operations (DIO) [18, 19], genuinely incoherent operations (GIO) [20]. In spite of

the fact that the resource theory of coherence has found use in a variety of practical settings

[8], there are no physically compelling free operations singled out, mirroring the fundamental

role of local operations and classical communication in the resource theory of entanglement

[21].

The class of strictly incoherent operations (SIO) appeared to be a promising candidate for

a natural class of operations satisfying desirable resource-theoretic criteria while at the same

time being motivated on physical grounds and experimentally implementable, causing it to

find widespread use in the resource theory of coherence [14]-[23].

The coherence manipulation is fundamental in the resource theory of quantum coherence.

It is aimed to study whether free operations introduce an order on the set of quantum states,

i.e., whether, given two coherent states ρ and σ, either ρ can be transformed into σ or vice

versa [8, 12, 14, 15, 17, 22], [24]-[28]. However, quantum coherence theory is often concerned

with the manipulation of families of quantum states rather than individual states in isolation

[29]. For instance, one needs to manipulate coherent states ρ1 and σ1 while freeze the other

two coherent states ρ2 and σ2 in frozen quantum coherence [30]. The goal of the paper is how

can we determine if there exists a SIO Φ such that Φ(ρi) = σi, i = 1, 2 for two pairs of coherent

states (ρ1, ρ2) and (σ1, σ2). A relevant question in quantum hypothesis testing is how can we

determine if there exists a quantum operation Φ such that Φ(ρi) = σi, i = 1, 2. It also called

preorder of (ρ1, ρ2) and (σ1, σ2). This question was answered already in 1953 by Blackwell

for the classical case [31], and in 1980 by Alberti and Uhlmann for the qubit case [32]. More

recently, it was solved for pure states [33] and finally, it was fully solved [34]-[38]. In [39], it

was shown that the preorder can be classified in terms of the conditional min-entropy. Gour

extended the definition of conditional min-entropy from bipartite quantum states to bipartite

quantum operations which can be used to describe preorder of quantum operations [40].
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We will study the preorder question of pure states in coherence setting. For two pairs of

pure coherent states (|φ〉, |ψ〉) and (|α〉, |β〉), we are aimed to characterize when there exists

a SIO Φ such that Φ(|φ〉〈φ|) = |α〉〈α|,Φ(|ψ〉〈ψ|) = |β〉〈β|. Basing on the characterization,

we present the coherence distillation scheme from rank-two mixed coherent states to q-level

maximally coherent states under the strategy [41]. This is a considerable progress in the study

of coherence distillation of general mixed states [8, 27, 42, 43]. Furthermore, we also propose

an approach to realize coherence manipulation between rank-two mixed states. It is known

that coherence manipulation between mixed states is a hard open question [15, 22, 26, 27].

2 Preliminary

Before stating our results, we need do some preparatory work. Firstly, we recall the concept

of coherent rank of pure state. The coherence rank of a pure state |φ〉, denoted by r(φ), which

is the number of basis elements for which φi 6= 0 [44]. In analogy to the Schmidt rank in

entanglement theory [21], the coherent rank provides useful information about the coherence

content of a state and constrains the possible transformations among resource states. For

instance, coherence rank can not increase under ICO and SIO [14, 15, 24]. Secondly, for pure

state |φ〉 =
∑d
i=1 φi|i〉, the map which completely dephases in the incoherent basis will be

denoted by ∆, and its action is given by

|φ〉 7→ ∆(|φ〉) = (|φ1|2, |φ2|2, · · · , |φd|2)t.

Finally, we collect some useful facts [45]:

(i) For two real d-dimensional vectors x = (x1, x2, · · · , xd)t and y = (y1, y2, · · · , yd)t, x
is majorized by y, written x ≺ y, if for each k in the range 1, · · · , d,

∑k
i x
↓
i ≤

∑k
i y
↓
i with

equality holding when k = d, and where the x↓i indicates that elements are to be taken in

descending order. The majorization relation is a partial order on pure states.

(ii) The majorization is well visualized by using the Lorenz curve. For vectors x, y, x ≺ y
if and only if x = Dy for some doubly stochastic matrix. Recall that a d×d matrix D = (dij)

is called doubly stochastic if dij ≥ 0 and
∑d
i=1 dij =

∑d
j=1 dij = 1.

(iii) Let π be a permutation of {1, 2, · · · , d}. A d × d matrix Pπ is the permutation

matrix corresponding to π if it is obtained by permuting the rows of the d×d identity matrix

according to π. A permutation matrix has exactly one entry 1 in each row and each column

and 0 elsewhere. It is known that Permutation matrices are unitary.

(iv) For every doubly stochastic matrix D, it can be written as a convex combination of

permutation matrices, that is, there exist permutation matrices Pπn and probability coeffi-

cients λn such that D =
∑
n λnPπn .

3 Coherent preorder

We will characterize coherent preorder of (|φ〉, |ψ〉) and (|α〉, |β〉) in this section. Specially, if

|φ〉 = |α〉, i.e., |φ〉 is frozen under some SIO [30, 46, 47], since majorization [15, 24] rules the

partial order of single-shot pure states, then a natural conjecture is that coherent preorder

in this case can be described by d-majorization which is raised in various contexts including

mathematical statistics (comparison of statistical experiments)[31, 48, 49], networks in market

[50], chemical thermodynamics [51, 52], mathematical and physical interests [32, 53, 54].
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Recall that for two pairs of probability distributions (∆(|φ〉),∆(|ψ〉)) and (∆(|φ〉),∆(|β〉)),
(∆(|φ〉),∆(|β〉)) d-majorizes (∆(|φ〉),∆(|ψ〉)) if and only if there exists a column-stochastic

matrix D with D∆(|φ〉) = ∆(|φ〉) and D∆(|β〉) = ∆(|ψ〉) [54].

The following theorem reveals the structure of coherent order in terms of relations of doubly

stochastic matrices and superposed coefficients of pure states. This shows the structure of

coherent order in general case is more sophisticated than d-majorization.

Theorem 1. Assume r(φ) = r(α), (|φ〉, |ψ〉) SIO−−−→ (|α〉, |β〉) if and only if there are doubly

stochastic matrices D1, D2 and c ∈ [0, 1] satisfying the following conditions:

(i) D1∆(|α〉) = ∆(|φ〉), D2∆(|β〉) = ∆(|ψ〉),
(ii) D2 = c2D1 + (1− c2)T , for some doubly stochastic matrix T . And there are permutations

π1, π2 such that

Pπ1
D1Pπ2

=


D11 D12 0 0 0
D21 D22 0 0 0

0 0 D33 D34 0
0 0 D43 D44 0
0 0 0 0 D55

, Pπ1
TPπ2

=


0 0 T13 T14 0
0 T22 0 0 0
0 0 T33 T34 0
T41 0 T43 T44 0
0 0 0 0 T55


according to the space decomposition H = ⊕5

i=1Hi,

H1 = span{|i〉 | φi 6= 0, ψi 6= 0}
H2 = span{|i〉 | φi 6= 0, ψi = 0}
H3 = span{|i〉 | φi = 0, ψi 6= 0, βi 6= 0}
H4 = span{|i〉 | φi = 0, ψi 6= 0, βi = 0}
H5 = span{|i〉 | φi = 0, ψi = 0, βi = 0}

(iii)
β
π
−1
n (i)

ψi
= t

α
π
−1
n (i)

φi
, φi 6= 0, ψi 6= 0, here |t| ≤ 1 and

(
D11 D12

D21 D22

)
=
∑
n λnPπn .

Remark 1. If the energy of states are defined and both ∆(|φ〉) and ∆(|α〉) are the Gibbs

distribution, i.e., ∆(|φ〉) = ∆(|α〉) = pGibbs, then condition (i) is thermo-majorization between

(∆(|φ〉),∆(|ψ〉)) and (∆(|φ〉),∆(|β〉)) (from the proof of Theorem 1). Thermo-majorization

and other related problems in majorization have been intensively studied as a possible exten-

sion of thermodynamics to small systems [55]-[66], which now becomes a major research field

in quantum information theory known as quantum thermodynamics. Condition (ii) reveals

the relationship of doubly stochastic matrices which are induced by coherence manipulation

of single-shot pure states. It reflects essential difference between coherence order of two pairs

of pure states and partial order of single-shot pure states.

For sufficiency of Theorem 1, if (∆(|φ〉),∆(|ψ〉)) and (∆(|α〉),∆(|β〉)) share a common

doubly stochastic matrice, then the condition r(φ) = r(α) is redundant as the following

theorem shows.

Theorem 2. If there is a doubly stochastic matrix D such that D∆(|α〉) = ∆(|φ〉),

D∆(|β〉) = ∆(|ψ〉) and
β
π
−1
n (i)

ψi
= t

α
π
−1
n (i)

φi
, D =

∑
n λnPπn . then (|φ〉, |ψ〉) SIO−−−→ (|α〉, |β〉).
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Fig. 1. For a rank-two mixed state ρ = p1|φ〉〈φ|+ p2|ψ〉〈ψ|, we perform a SIO Φ1 sending |φ〉, |ψ〉
to |α〉, |β〉. σ = p1|α〉〈α| + p2|β〉〈β| = λ1|d〉〈d| + λ2|φ̃〉〈φ̃|, here |φ̃〉 =

∑d−1
i=1 φ̃i|i〉. Then one can

apply the strategy in [41] to |φ̃〉 and obtain any of all q-level (q = 2, 3, . . . , d) maximally coherent

states Ψq , or an incoherent state (q = 1).

4 Coherence distillation

In the section, we apply Theorem 1 to coherence distillation. One of the central problems

in the resource theory of coherence is the coherence distillation [8, 12, 14, 17, 42], [67]-[73]

which is the process that extracts pure coherent states from general states via free operations.

Especially, in [41], G. Torun etc. have performed a strictly incoherent operation (SIO) on a

pure state and obtain any of all q-level (q = 2, 3, . . . , d) maximally coherent states |Ψq〉 =∑q
i=1

1√
q |i〉, or an incoherent state (q = 1). Indeed, for a pure state |Ψ〉, the authors in

[41] have constructed an explicit SIO which transforms |Ψ〉 into
∑
q pq|Ψq〉〈Ψq| for some

probability coefficients pq.

Although many interesting results in coherence distillation have been obtained, there are

still some open fundamental questions remaining to be solved. The coherence distillation

of general mixed states has been left as an open question. Now, basing on Theorem 1, we

propose the distillation procedure from rank-two mixed coherent states to q-level maximally

coherent states as the following steps (See Fig.1).

Theorem 3. For a 2d−dimentional state ρ = p1|φ〉〈φ|+ p2|ψ〉〈ψ| with

√
p1|φ〉 =



√
λ1 sin γφ1√
λ1 sin γφ2

...√
λ1 sin γφd−1√
λ2 cos γ

0
...
0


,
√
p2|ψ〉 =



c
√
λ1 cos γφ1

c
√
λ1 cos γφ2

...
c
√
λ1 cos γφd−1

−c
√
λ2 sin γ√

1− c2
√
λ1 cos γψ1√

1− c2
√
λ1 cos γψ2

...√
1− c2

√
λ1 cos γψd−1

−
√

1− c2
√
λ2 sin γ


,

here γ ∈ (0, π4 ),
∑d−1
i=1 |φi|2 =

∑d−1
i=1 |ψi|2 = 1, φiψi 6= 0, λ1 + λ2 = 1, 0 < c < 1, there is

a SIO Φ such that Φ(ρ) =
∑d−1
q=1 pq|Ψq〉〈Ψq| for some probability coefficients pq. That is, we

perform the distillation procedure from ρ to q-level maximally coherent states.
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5 Coherence manipulation

The study of coherence manipulation is moving ahead since the question is proposed [12]. A.

Streltsov etc. [22] have obtained that, for qubit states ρ, σ with Bloch vector r = (rx, ry, rz)
T

and s = (sx, sy, sz)
T , ρ can be converted into σ by ICO if and only if

s2
x + s2

y ≤ r2
x + r2

y, s2
z ≤ 1− 1− r2

z

r2
x + r2

y

(s2
x + s2

y).

In [24, Theorem 1], we have answered the question in terms of majorization for pure states :

For any unit vectors |φ〉 =
∑d
i=1 φi|i〉, |ψ〉 =

∑d
i=1 ψi|i〉,

|ψ〉 ICO−−−→ |φ〉 iff ∆(|ψ〉) = (|ψ1|2, · · · , |ψd|2)t ≺ ∆(|φ〉) = (|φ1|2, · · · , |φd|2)t.

Recently, Liu etc. [27] give a necessary and sufficient condition for a mixed state ρ to be

transformed into a pure coherent state |φ〉 via SIO:

ρ
SIO−−−→ |φ〉 iff ∆(|ψ〉α) ≺ ∆(|φ〉),

here |ψ〉α = PαρPα
tr(PαρPα) , {Pα} is an orthogonal and complete set of incoherent projectors. In

[28], the authors derive the lower bounds on the error of converting any full-rank coherent

state to any pure coherent state with certain probability by any free operation. Given any

full-rank coherent state ρ and any pure target coherent state |φ〉,

p{ρ→ |φ〉, ε} ⇒ ε

p
≥
λmin(ρ)(1− f|φ〉)

1 +R(ρ)
,

where λmin(ρ) is the smallest eigenvalue of ρ, f|φ〉 = maxσ∈I tr(σ|φ〉〈φ|) is the maximum

overlap between |φ〉 and incoherent states I,

R(ρ) = min{s | ∃s ≥ 0, state σ satisfying
ρ+ sσ

1 + s
∈ I}

is the generalized robustness of state ρ. We build the no-go theorem of coherence manipulation

in [26], i.e., finite number of measure conditions are insufficient to characterize coherence

manipulation between general mixed states. Therefore coherence manipulation between mixed

states is complicated since it involves infinite number of conditions.

Basing on Theorem 1, we propose an approach to realize coherence manipulation between

some rank-two mixed states. Our strategy is if (|φ〉, |ψ〉) and (|α〉, |β〉) share a SIO Φ, then

p|φ〉〈φ|+ (1− p)|ψ〉〈ψ|〉 Φ−→ p|α〉〈α|+ (1− p)|β〉〈β|,

p ∈ [0, 1].

Theorem 4. For r × r doubly stochastic matrices D11 and D21 and pure states |φ̃〉,
|ψ̃〉,|α̃〉,|β̃〉,|τ̃〉 with coherent rank r satisfying the following conditions

D11∆(α̃) = ∆(φ̃),

D11∆(β̃) = ∆(ψ̃),
β
π
−1
n (i)

ψi
= t

α
π
−1
n (i)

φi
, here |t| ≤ 1, D11 =

∑
n λnPπn

D21∆(β̃) = ∆(τ̃),
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we have (
p1|φ̃〉〈φ̃|+ p2|ψ̃〉〈ψ̃| p2|ψ̃〉〈τ̃ |

p2|τ̃〉〈φ̃| p2|τ̃〉〈τ̃ |

)
SIO−−→

(
p1|α̃〉〈α̃|+ p2|β̃〉〈β̃| 0

0 0

)
.

Indeed in Theorem 4, H2 = H3 = H5 = 0, and dimH1 = dimH4 = r = d
2 . Let

D1 =

(
D11 0

0 I

)
, D2 =

(
c2D11 (1− c2)I

(1− c2)D21 c2I

)
, here I is the r × r identity matrix.

By Theorem 1, one can obtain Theorem 4 directly.

6 Conclusions

For two pairs of coherent states (ρ1, ρ2) and (σ1, σ2), we study coherent order of two pairs of

coherent states under SIOs. The structural characterization of coherent order between pure

states is provided. On this basis, coherence distillation scheme from rank-two mixed coherent

stares to q-level maximally coherent states are offered. Furthermore, coherence manipulation

between rank-two mixed states can also be realized.
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Appendix A Proof of main results.

Proof of Theorem 1. Let r = r(φ) = r(α). Note that (|φ〉, |ψ〉) SIO−−→ (|α〉, |β〉) ⇔
(U |φ〉, U |ψ〉) SIO−−→ (V |α〉, V |β〉) for permutation matrices U, V . Without loss of generality,

we assume

|φ〉 =



φ1

φ2

...
φr
0
...
0


, |α〉 =



α1

α2

...
αr
0
...
0


, |ψ〉 =



ψ1

ψ2

...
ψs1
0
...
0

ψr+1

...
ψr+s2

0
...
0



, |β〉 =



β1

β2

...
βt1
0
...
0

βr+1

...
βr+t2

0
...
0



.

“⇒”: Assume that there exists some strictly incoherent operation Φ such that (|φ〉, |ψ〉) Φ−→
(|α〉, |β〉). Suppose the considered SIO Φ has Kraus operators Kn. It is evident that Kn|φ〉 =

γn|α〉,Kn|ψ〉 = δn|β〉 for some scalars γn, δn. Let

δi,π(j) =

{
1, π(j) = i
0, π(j) 6= i

, π is a permutation.

By the definition of SIO, one can write Kn = P †πndiag(k
(n)
1 , k

(n)
2 , . . . , k

(n)
d ), Pπn = (δi,πn(j)).

It follows that

k
(n)
πn(i)φπn(i) = γnαi,

k
(n)
πn(i)ψπn(i) = δnβi.

Furthermore s1 = t1 and s2 ≥ t2. Note that there are |µ(n)〉 =
∑r+s2
i=1 µi|i〉, |ν(n)〉 =∑r+t2

i=1 νi|i〉 with µiνi 6= 0 and Kn|µ(n)〉 = τn|ν(n)〉. Therefore we have K
(n)
51 = K

(n)
52 =

K
(n)
53 = K

(n)
54 = 0 for Kn = (K

(n)
ij ) according to the space decomposition H = ⊕5

i=1Hi. In

addition, from φi = ψi = 0, i = r+ s2 + 1, · · · d, we can take K
(n)
15 = K

(n)
25 = K

(n)
35 = K

(n)
45 = 0.

Case I. r(φ) = r(α) = d.
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Since every column and every arrow of Kn is with at most 1 nonzero entry, we can obtain

that αi 6= 0. k
(n)
i 6= 0 for each n, i. And so γn 6= 0, δn 6= 0. By a simple computation, one can

see
ψπn(i)

φπn(i)
=
δn
γn

βi
αi
,

Πi

ψπn(i)

φπn(i)
= (

δn
γn

)dΠi
βi
αi

( δnγn )d is independently on n. Note that
∑
n |γn|2 =

∑
n |δn|2 = 1, we have |δn| = |γn|.

Define dij =
∑
n,π−1

n (i)=j |δn|2, 1 ≤ i, j ≤ d, then the matrix D = (dij) is a doubly stochastic

matrix. By a direct computation, D∆(|α〉) = ∆(|φ〉) and D∆(|β〉) = ∆(|ψ〉). Moreover,

D =
∑
n |δn|2Pπn . In this case, D1 = D2 = D and c = 1.

Case II. r(φ) = r(α) = r < d.

For the n with γn 6= 0, by the property of SIO, Kn =

(
Mn 0
0 Nn

)
according to the

space decomposition (H1 ⊕H2)⊕ (H3 ⊕H4 ⊕H5). In addition,

Kn =


K

(n)
11 K

(n)
12 0 0 0

K
(n)
21 K

(n)
22 0 0 0

0 0 K
(n)
33 K

(n)
34 0

0 0 K
(n)
43 K

(n)
44 0

0 0 0 0 K
(n)
55


according to the space decomposition H1 ⊕H2 ⊕H3 ⊕H4 ⊕H5. From

Kn = P †πndiag(k
(n)
1 , k

(n)
2 , . . . , k

(n)
d ),

we have
π−1
n : {1, . . . , s1} → {1, . . . , s1}

{1, . . . , r} → {1, . . . , r}
{r + 1, . . . , r + s2} → {r + 1, . . . , r + s2}
{r + s2 + 1, . . . , d} → {r + s2 + 1, . . . , d}.

(A.1)

Moreover, for i = 1, . . . , s1, k
(n)
πn(i) 6= 0. So

ψπn(i)

φπn(i)
=
δn
γn

βi
αi
,

Πi

ψπn(i)

φπn(i)
= (

δn
γn

)s1Πi
βi
αi
,

( δnγn )s1 is independently on n. Thus |δn| = c|γn|. Note that∑
n |δn|2 =

∑
γn 6=0 |δn|2 +

∑
γn=0 |δn|2

=
∑
γn 6=0 c

2|γn|2 +
∑
γn=0 |δn|2

= 1.

This implies that
∑
γn 6=0 c

2|γn|2 = c2
∑
n |γn|2 = c2 ≤ 1. So 0 < c ≤ 1, as desired.
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For the n with γn = 0, δn 6= 0 (otherwise, we may assume r + s2 = d and so Kn = 0).

Let Kn = (K
(n)
ij ) according to the space decomposition H = ⊕5

i=1Hi. From γn = 0, we

have K
(n)
ij = 0, i, j = 1, 2. It is easy to see that K

(n)
23 = K

(n)
24 = K

(n)
25 = 0. Combining

with ψi 6= 0(i = r + 1, . . . , r + s2) and βi = 0 (i = r + t2 + 1, . . . , r + s2), it follows that

K
(n)
43 = K

(n)
44 = 0. That is

Kn =


0 0 K

(n)
13 K

(n)
14 0

0 0 0 0 0

0 0 K
(n)
33 K

(n)
34 0

0 0 0 0 0

0 0 0 0 K
(n)
55

 .

On the other hand, Kn = P †πndiag(k
(n)
1 , k

(n)
2 , . . . , k

(n)
d ). Thus we can choose πn such that

π−1
n : {1, . . . , s1} → {r + 1, . . . , r + s2}

{s1 + 1, . . . , r} → {s1 + 1, . . . , r}
{r + 1, . . . , r + t2} → {r + 1, . . . , r + s2}
{r + s2 + 1, . . . , d} → {r + s2 + 1, . . . , d}

(A.2)

Define d
(1)
ij =

∑
n,π−1

n (i)=j |γn|2, 1 ≤ i, j ≤ d. Because
∑
n |γn|2 = 1, D1 = (d

(1)
ij ) is doubly

stochastic. From Eq.(A.1), D1 has the form
D11 D12 0 0 0
D21 D22 0 0 0

0 0 D33 D34 0
0 0 D43 D44 0
0 0 0 0 D55

 .

Similarly, we can define the doubly stochastic matrix D2 = (d
(2)
ij ), 1 ≤ i, j ≤ d, by

d
(2)
ij =

∑
n,π−1

n (i)=j |δn|2
=

∑
n,π−1

n (i)=j,γn 6=0 |δn|2 +
∑
n,π−1

n (i)=j,γn=0 |δn|2

= c2d
(1)
ij + (1− c2)tij ,

tij = 1
1−c2

∑
n,π−1

n (i)=j,γn=0 |δn|2.

T = (tij) =


0 0 T13 T14 0
0 T22 0 0 0
0 0 T33 T34 0
T41 0 T43 T44 0
0 0 0 0 T55


Now, one can check that D1, D2 are the desired.

“⇐”: Let D1 =
∑N1

n=1 λnPπn , T =
∑N2

n=N1+1 λnPπn . For n = 1, . . . , N1, one can see πn

satisfies conditions of (2). Define matrices K
(n)
11 = (k

(n)
ij ) (i, j = 1, . . . , r) by

k
(n)
ij =

√
λnδj,πn(i)

αi
φj
,
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and K
(n)
22 = (k

(n)
ij ) (i, j = r + 1, . . . , d)) by

k
(n)
ij =

{ √
λnδj,πn(i)

βi
ψj

i = r + 1, . . . , r + s2√
λnδj,πn(i) i = r + s2 + 1, . . . , d.

Let

Kn =

(
K

(n)
11 0

0 cK
(n)
22

)
, n = 1, 2, . . . , N1.

For n = N1 + 1, . . . , N2, πn satisfies conditions of (3). Let

k
(n)
ij =


√
λnδj,πn(i)

βi
ψj

i = 1, . . . , s1, r + 1, . . . , r + s2

0 i = s1 + 1, . . . , r√
λnδj,πn(i) i = r + s2 + 1, . . . , d,

Kn =
√

1− c2(k
(n)
ij ).

A direct computation shows that the SIO which is specified by Kn(n = 1, 2, . . . , N2) can fulfill

desired manipulation.

Proof of Theorem 2. Define Kraus operators Kn = (k
(n)
ij ) by

k
(n)
ij =


√
λnδj,πn(i)

αi
φj

φj 6= 0
√
λnδj,πn(i)

βi
ψj

φj = 0, ψj 6= 0√
λnδj,πn(i) φj = ψj = 0.

One can check that SIO Φ represented by {Kn} converts (|φ〉, |ψ〉) into (|α〉, |β〉).
Proof of Theorem 3. For any probability vector (|α1|2, . . . , |αd−1|2)t majorizing (|φ1|2, . . . , |φd−1|2)t

and (|ψ1|2, . . . , |ψd−1|2)t, we define

√
p1|α〉 =



√
λ1 sin γα1√
λ1 sin γα2

...√
λ1 sin γαd−1√
λ2 cos γ

0
...
0


,
√
p2|β >=



√
λ1 cos γα1√
λ1 cos γα2

...√
λ1 cos γαd−1

−
√
λ2 sin γ
0
...
0


.

Let D̃1, D̃2 be the doubly stochastic matrices with

D̃1

 |α1|2
...

|αd−1|2

 =

 |φ1|2
...

|φd−1|2

 and D̃2

 |α1|2
...

|αd−1|2

 =

 |ψ1|2
...

|ψd−1|2

 .

Now define

D1 =

 (
D̃1 0
0 1

)
0

0 Id

 and D2 =

 c2
(
D̃1 0
0 1

)
(1− c2)Id

(1− c2)

(
D̃2 0
0 1

)
c2Id

 .
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One can check that D1 and D2 satisfy the conditions in Theorem 1. So there exists a SIO

Φ1 sending |φ〉, |ψ〉 to |α〉, |β〉 separately. On the other hand, it is easy to see that σ =

p1|α〉〈α| + p2|β〉〈β| = λ1|d〉〈d| + λ2|φ̃〉〈φ̃| with |φ̃〉 =
∑d−1
i=1 αi|i〉. Without loss of generality,

one may assume {|αi|}d−1
i=1 is positive and decending. Applying the strategy from [41], we

define
pq = q(|αq|2 − |αq+1|2), q = 1, 2, . . . , d− 2,
pd−1 = d|αd−1|2,
Kq =

√
pq(

1√
q

∑q
i=1

|i〉〈i|
αi

+ |d〉〈d|) q = 1, 2, . . . , d− 1.

By construction, we have that

Kq|φ̃〉 =
√
pq|Ψq〉,

Kq|d〉 =
√
pq|d〉,∑

K†qKq = Id,
∑
pq = 1.

In addition, the SIO
∑
Kq · K†q denoted by Φ2 sends σ to λ1|d〉〈d| + λ2

∑d−1
q=1 pq|Ψq〉〈Ψq|.

Therefore the composition Φ2 ◦ Φ1 is the desired transformation.


