
Quantum Information and Computation, Vol. 20, No. 13&14 (2020) 1109–1123
c© Rinton Press

FASTER AMPLITUDE ESTIMATION

KOUHEI NAKAJI

Department of Applied Physics and Physico-Informatics & Quantum Computing Center
Keio University, Hiyoshi 3-14-1, Kohoku, Yokohama, 223-8522, Japan

Email: kohei.nakaji@keio.jp

Received April 11, 2020

Revised September 7, 2020

In this paper, we introduce an efficient algorithm for the quantum amplitude estima-

tion task which is tailored for near-term quantum computers. The quantum amplitude
estimation is an important problem which has various applications in fields such as quan-

tum chemistry, machine learning, and finance. Because the well-known algorithm for the

quantum amplitude estimation using the phase estimation does not work in near-term
quantum computers, alternative approaches have been proposed in recent literature.

Some of them provide a proof of the upper bound which almost achieves the Heisenberg

scaling. However, the constant factor is large and thus the bound is loose. Our con-
tribution in this paper is to provide the algorithm such that the upper bound of query

complexity almost achieves the Heisenberg scaling and the constant factor is small.

Keywords: quantum algorithm, quantum amplitude estimation, near-term quantum

computers

Communicated by: R Cleve & J Eisert

1 Introduction

The application of near-term quantum computers has been attracting significant interest

recently. In the near-term quantum computers, the depth of the circuit and the number of

qubits are constrained for reducing the noise. Under the constraints, most of the quantum

algorithms which realize quantum speed-up in the ideal quantum computers are not available

in the near-term quantum computers. The development of algorithms tailored for near-term

quantum computers is demanded.

In this paper, we focus on the problem of quantum amplitude estimation in near-term

quantum computers. Quantum amplitude estimation is the problem of estimating the value

of sin θ in the following equation: A|0〉n|0〉 = sin θ|Ψ̃1〉n|1〉 + cos θ|Ψ̃0〉n|0〉. It is well known

that the amplitude estimation can be applied to quantum chemistry, finance and machine

learning [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In these applications, the cost of execution A is high,

thus how to reduce the number of calling A while estimating θ with required accuracy, is the

heart of the problem.

The efficient quantum amplitude estimation algorithm which uses the phase estimation

has been well documented in previous literature[11, 12]. The algorithm achieves Heisenberg

scaling, that is, if we demand that the estimation error of sin2 θ is within ε with the probability

larger than 1/2, then the query complexity (required number of the call of the operator A)

1109

1110 Faster amplitude estimation

is O(1/ε). However, the phase estimation requires a lot of noisy gates of two qubits and

therefore is not suitable for near-term quantum computers. Thus, it is fair to inquire if there

are any quantum amplitude estimation algorithms which work with less resources and still

achieve Heisenberg scaling.

Recently, quantum amplitude estimation algorithms without phase estimation have been

suggested in some literature [13, 14, 15, 16]. Suzuki et al [13] suggests an algorithm which

uses maximum likelihood estimation. It shows that the algorithm achieves Heisenberg scaling

numerically but there is no rigorous proofs. Wie [14] also studies the problem in the context

of quantum counting. Still, it is not rigorously proved that the algorithm achieves Heisenberg

scaling. Aaronson et al[15] suggests an algorithm which achieves Heisenberg scaling and give

rigorous proof. However, the constant factor proportional to 1
ε ln

(
1
δ

)
is large where δ is the

probability that the error is less than ε. Grinko et al [16] also suggests an algorithm which

achieves Heisenberg scaling, but the constant factor is still large in the worst case even though

it is shown numerically that the constant is smaller in most of the cases.

In this paper, we propose a quantum amplitude estimation algorithm without phase esti-

mation which acheives the Heisenberg scaling and the constant factor proportional to 1
ε ln

(
1
δ

)
is smaller than previous literature[15, 16]. The structure of the paper is as follows. In

Section 2, we discuss our proposed algorithm. The validity of the algorithm is verified by

numerical experiments in Section 3. In Section 4, we conclude with a discussion on future

works. The complexity upper bound is proved in the Appendix.

2 Algorithm

In this section, we show our proposed algorithm. Before going into the detail, let us summarize

the algorithm briefly.

Similar to the previous literature, we use the quantum amplitude amplification technique[11].

Given the amplitude sin θ that we want to estimate, the quantum amplitude amplification

enables us to estimate the values of cos(2(2m+ 1)θ) for each non-negative integer m directly

by measurements, and the resulting estimation errors of cos(2(2m + 1)θ) are of the order

O(
√
s) with high probability when s measurements are executed for each m.

Our algorithm estimates the values of cos(2(2m + 1)θ) for each m = 2j−1(j = 1 . . . `)

iteratively. As in Kitaev’s iterative phase estimation [17] (see also [18]), if 2(2j+1)θ| mod 2π(j =

1 . . . `) are estimated and those estimation errors are within ∼ π/2, then the value of θ can

be iteratively estimated with error O(1/2`), meaning that the Heisenberg scaling is achieved.

However, the value of 2(2j + 1)θ| mod 2π is generally not determinable only by the estimate

of cos(2(2j + 1)θ) because there is ambiguity whether 2(2j + 1)θ| mod 2π ∈ [0, π] or 2(2j +

1)θ| mod 2π ∈ [π, 2π]. Our algorithm solves this ambiguity by taking two-stages method. The

algorithm is in the first stage when 2(2j + 1)θ < π. In this stage, 2(2j + 1)θ| mod 2π can be

obtained from the estimate of cos(2(2j + 1)θ) without ambiguity by using the inverse cosine

function. When the estimate of 2(2j0 + 1)θ ∼ π/2 at the iteration j = j0, the algorithm

moves to the second stage. In the second stage, 2(2j + 1)θ might be larger than π, hence

2(2j + 1)θ| mod 2π cannot be determined only by the measurements of cos(2(2j + 1)θ) because

of the above mentioned ambiguity. However, by combining the measurements of cos(2(2j +

2j0 + 1)θ) with those of cos(2(2j + 1)θ), the value of sin(2(2j + 1)θ) can be estimated by using

the trigonometric addition formula, and accordingly 2(2j + 1)θ| mod 2π can be determined

K. Nakaji 1111

without the ambiguity. As a result, the algorithm can estimate the value of θ with the error

less than O(1/2`).

The algorithm in the reference [16] suggests a different approach for solving the ambiguity.

However their method requires precise measurements of cosine in the worst case and therefore

the complexity upper bound becomes loose. On the other hand, our proposed algorithm works

with relatively rough estimates of cosine even in the worst case. Thus, as we will see in Section

2.3 and Appendix 1, the complexity upper bound of our algorithm is tighter than existing

method.

In the following discussion in this section, we first define the problem in Section 2.1. Next

we look into the detail of the algorithm and finally we show the complexity upper bound of

our algorithm.

2.1 Preliminary

The quantum amplitude estimation is the problem of estimating the value of a in the following

equation:

|Ψ〉 ≡ A|0〉n|0〉 = a|Ψ̃1〉n|1〉+
√

1− a2|Ψ̃0〉n|0〉, (1)

where a ∈ [0, 1]. In applications, it often takes cost to execute A, thus reducing the number

of calling A while estimating a with required accuracy is the heart of the problem.

As we see later, our proposed algorithm works correctly if the amplitude is less than or

equals to 1/4. However, imposing the condition on a is not necessary because the amplitude

can be attenuated by adding an extra ancilla qubit as follows:

|Ψ′〉 ≡ X|0〉n|00〉 =
a

4
|Ψ̃1〉n|11〉+

√
15a

4
|Ψ̃1〉|10〉+

√
1− a2

4
|Ψ̃0〉|01〉+

√
15(1− a2)

4
|Ψ̃0〉|00〉.

= sin θ|Ψ̃1〉n|11〉+ cos θ|⊥〉, (2)

where X = A⊗R and R operates as follows:

R|0〉 =
1

4
|1〉+

√
15

4
|0〉. (3)

In the last line of (2), we define sin θ ≡ a/4 and | ⊥〉 as a state orthogonal to |Ψ̃1〉n|11〉. As

expected, the amplitude is attenuated as sin θ ∈ [0, 1/4] and therefore

0 ≤ θ < 0.252. (4)

Thus, instead of estimating the value of a directly, we estimate the value of θ and convert it

to a. The condition (4) is utilized as the initial bound in our proposed algorithm.

Similar to the original amplitude amplification[11], we define an operator Q as

Q ≡ X(In+2 − 2|0〉n+2〈0|n+2)X†(In+2 − 2In ⊗ |11〉〈11|), (5)

where In is the identity operator in n dimension. It is worth mentioning that

Qm|Ψ′〉 = sin(2m+ 1)θ|Ψ̃1〉n|11〉+ cos(2m+ 1)θ| ⊥〉. (6)

1112 Faster amplitude estimation

We get the estimates of cos(2(2m+1)θ) by measuring the state (6) for multiplem; the following

defined cm readily computable from the measurement result, is an estimate of cos(2(2m+1)θ):

cm ≡ 1− 2
N11

Nshot
, (7)

where N11 is the number of the results of the measurements in which the last two qubits in (6)

are both one and Nshot is the total number of measurements of the state (6). The estimation

error of cm can be evaluated by using the Chernoff bound for the Bernoulli distribution as

discussed in [17], i.e., given the confidence interval of cm as [cmin
m , cmax

m], the bounds of the

interval are computed as

cmax
m = min

[
1, cm +

√
ln

(
2

δc

)
12

Nshot

]
, cmin

m = max

[
−1, cm −

√
ln

(
2

δc

)
12

Nshot

]
. (8)

where δc is the probability that the true value of cm (i.e. cos(2(2m+1)θ)) is out of the interval.

For later purpose, we define three functions: COS(m,Nshot), CHERNOFF(cm, Nshot, δc)

and atan(s, c). The function COS(m,Nshot) returns cm as a result of Nshot times measure-

ments of the state (6). The function CHERNOFF(cm, Nshot, δc) returns the confidence

interval [cmin
m , cmax

m] of cm computed from the parameters: cm, Nshot and δc. The function

atan(s, c) is an extended arctangent function defined in the realm c, s ∈ [−1, 1] as

atan(s, c) =

arctan(s/c) (c > 0)

π/2 (c = 0, s > 0)

0 (c = 0, s = 0)

−π/2 (c = 0, s < 0)

π + arctan(s/c) (c < 0, s ≥ 0)

−π + arctan(s/c) (c < 0, s < 0).

(9)

Finally, we define Norac as the number of calls of Q required for estimating θ. Our objective

in this paper is providing an algorithm to estimate θ with required accuracy while reducing

the number of Norac.

2.2 Proposed Algorithm

In this subsection, we show our proposed algorithm. Our procedure is shown in Algorithm

1a. Given [θjmin, θ
j
max] as the confidence interval of θ in j-th iteration, the algorithm updates

the values of θjmax and θjmin so that θjmax − θ
j
min becomes smaller in each iteration. The total

iteration count ` is a parameter given by users of the algorithm and it is chosen so that the

final result satisfies the required accuracy. As we see later, given acceptable error of the

amplitude ε, ε ∼ 1/2`. Therefore, it is suffice to take ` as ` ∼ log2(1/ε).

Even though θ is not always inside the confidence interval: [θjmin, θ
j
max], the probability is

bounded and exponentially decreases as N1st
shot and N2nd

shot increases. Thus, for simplicity, we

discuss only the case when θ ∈ [θjmin, θ
j
max] holds for all js in this subsection. As we show

later, the probability that θ ∈ [θjmin, θ
j
max] holds for all j is larger than 1− 2`δc.

aThe source code of the algorithm is shown in https://github.com/quantum-algorithm/faster-amplitude-
estimation

K. Nakaji 1113

Algorithm 1 Faster Amplitude Estimation (δc and ` as the parameters)

1: #θjmin and θjmax: the confidence interval of θ in j-th iteration.
2: Set θ0min to 0 and θ0max to 0.252.

3: Set N1st
shot = 1944 ln

(
2
δc

)
and N2nd

shot = 972 ln
(

2
δc

)
.

4: Set FIRST STAGE to true.
5: Set j0 to `.
6: for j = 1 to ` do
7: if FIRST STAGE then
8: Set c2j−1 to COS(2j−1, N1st

shot).
9: Set cmin

2j−1 , cmax
2j−1 to CHERNOFF(c2j−1 , N1st

shot, δc).

10: Set θjmax = arccos(cmin
2j−1)/(2j+1 + 2) and θjmin = arccos(cmax

2j−1)/(2j+1 + 2).
11: if 2j+1θjmax ≥ 3π

8 and j < ` then
12: Set j0 to j.
13: Set ν = 2j0(θj0max + θj0min) # the estimate of 2j0+1θ
14: Set FIRST STAGE to false.
15: end if
16: else
17: Set c2j−1 to COS(2j−1, N2nd

shot).
18: Set s2j−1 to (c2j−1 cos ν −COS(2j−1 + 2j0−1, N2nd

shot))/ sin ν.
19: Set ρj = atan

(
s2j−1 , c2j−1

)
.

20: Set nj to [1
2π

(
(2j+1 + 2)θj−1max − ρj + π/3

)
] where [x] is the largest integer which does

not exceed x.
21: Set θjmin = (2πnj + ρj − π/3)/(2j+1 + 2) and θjmax = (2πnj + ρj + π/3)/(2j+1 + 2).
22: end if
23: end for
return (θ`min + θ`max)/2, estimate of θ where the probability that θ ∈ [θjmin, θ

j
max] is larger

than 1− (2`− j0)δc.

In the following, we show how our algorithm works. As we see in Algorithm 1, there are

two stages and the estimation methods are different in each stage. At the beginning of the

iteration (j = 1), the algorithm is in the first stage and later the algorithm may change into

the second stage if a condition is satisfied. We show the detail in the following.

First Stage

The algorithm is in the first stage when j = 1 or when j > 1 and all 2k+1θkmax(k = 1 . . . j− 1)

satisfy 2k+1θkmax <
3π
8 . In this stage, θjmin, θ

j
max is gotten by inverting cmin

2j−1 and cmax
2j−1 as

θjmax =
arccos(cmin

2j−1)

2j+1 + 2
, θjmin =

arccos(cmax
2j−1)

2j+1 + 2
(10)

because (2j+1 + 2)θ < π is guaranteed as the following argument; if j = 1, the bound (4)

leads to (21+1 + 2)θ < 1.52 < π, and if j > 1 and 2k+1θkmax <
3π
8 for (k = 1 . . . j − 1) then

(2j+1 + 2)θ < 2(2jθj−1max) + 2θ < 3/4π + 0.504 < π. (11)

The algorithm changes into the second stage if 2j+1θjmax ≥ 3π/8. The two values are memo-

rized for the purpose of our utilizing them in the second stage. One is j0 defined as the last

1114 Faster amplitude estimation

value of j in the first stage. Another is ν defined as

ν = 2j0+1 × θj0max + θj0min

2
. (12)

Note that above defined ν is an estimate of 2j0+1θ and the confidence interval is obtainable

from the Chernoff bound.

In case that 2j+1θjmax is less than 3π/8 for all j(< `), the algorithm finishes without going

to the second stage and the final result is (θ`max + θ`min)/2. The value of j0 is set to `. In

the case, the error of the final result is at most ∆θ ≡ (θ`max − θ`min)/2 = (arccos(cmin
2`−1) −

arccos(cmax
2`−1))/(2`+2 + 4). Thus, the error of the amplitude is bounded as

ε = 4 (sin(θ + ∆θ)− sin θ) < 4∆θ <
arccos(cmin

2`−1)− arccos(cmax
2`−1)

2`
. (13)

The probability that θ is inside the confidence interval is (1−δc)` > 1− `δc(= 1− (2`− j0)δc).

Second Stage

In the second stage, (2j+1 + 2)θ may be larger than π. Thus, the value of (2j+1 + 2)θ can

not be estimated by inverting c2j−1 . However, it is still possible to estimate the value of

(2j+1 + 2)θ by utilizing the results of measurements in other angle: (2j+1 + 2j0+1 + 2)θ,

in addition to the bounds of θ gotten in the previous iteration. Here, firstly we show how

to estimate (2j+1 + 2)θ|mod2π, next we show how to estimate (2j+1 + 2)θ without mod(2π)

ambiguity.

(i)The estimate of (2j+1 + 2)θ|mod2π

To estimate (2j+1 + 2)θ|mod2π, not only the estimate of cos((2j+1 + 2)θ) (i.e., c2j−1) but also

the estimate of sin((2j+1 + 2)θ) are necessary. The estimate of sin((2j+1 + 2)θ) is not directly

obtainable from measurements but can be computed by the following procedure. From the

trigonometric addition formula:

cos((2j+1 + 2j0+1 + 2)θ) = cos((2j+1 + 2)θ) cos(2j0+1θ)− sin((2j+1 + 2)θ) sin(2j0+1θ), (14)

if sin(2j0+1θ) is not zero,

sin((2j+1 + 2)θ) =
cos((2j+1 + 2)θ) cos(2j0+1θ)− cos((2j+1 + 2j0+1 + 2)θ)

sin(2j0+1θ)
. (15)

Replacing cos((2j+1 + 2)θ as c2j−1 , 2j0+1θ as ν and cos((2j+1 + 2j0+1 + 2)θ as c
2j−1+2j0+1 in

the right hand side of the above formula, we can define s2j−1 as

s2j−1 =
c2j−1 cos ν − c

2j−1+2j0−1

sin ν
, (16)

then s2j−1 becomes the estimate of sin((2j+1 + 2)θ). The estimation error of s2j−1 reflects

the estimation errors of c2j−1 , c
2j−1+2j0−1 and ν, which is discussed in Appendix 1. It is

straightforward to get the estimate of (2j+1 + 2)θ|mod2π from s2j−1 and c2j−1 ; if we define ρj
∈ [−π, π] as

ρj = atan (s2j−1 , c2j−1) , (17)

K. Nakaji 1115

Fig. 1. The overview of the definition of ∆ρj .

then ρj is an estimate of (2j+1 + 2)θ|mod2π.

The confidence interval of ρj can be derived from those of c2j−1 , c
2j−1+2j0−1 and ν as in the

case of s2j−1 . Note that there are two types of the confidence interval. One is the connected

confidence interval, meaning that there is no discontinuities in the confidence interval, e.g.,

[−π/3, π/4]. Another is disconnected confidence interval, meaning that the confidence interval

is separated to an interval containing −π and an interval containing π, e.g., [−π,−2π/3] and

[3π/4, π], which is realized when the confidence interval of c2j−1 contains −1 and that of

s2j−1 contains 0b. In the connected confidence interval case, given interval as [a, b], we define

∆ρj = max(ρj − a, b− ρj). On the other hand, in the disconnected confidence interval case,

given intervals as [−π, c] and [d, π], we define ∆ρj as

∆ρj =

{
max(2π + ρj − d, c− ρj) (if ρj ∈ [−π, c])
max(ρj − d, 2π + c− ρj) (if ρj ∈ [d, π])

. (18)

The overview of the definition of ∆ρj is shown in Figure 1. The above defined ∆ρj can be

interpreted as the estimation error of ρj in a sense that

2πnj + ρj −∆ρj ≤ (2j+1 + 2)θ ≤ 2πnj + ρj + ∆ρj (19)

bIf both the confidence intervals of c
2j−1 and s

2j−1 contain 0, the confidence interval of ρj has discontinuity

in ρj = π/2,−π/2. However, as long as N1st
shot and N2nd

shot takes the upper bound value derived in Appendix 1,
the estimation errors are bounded so that either the confidence interval of c

2j−1 or that of s
2j−1 does not

contain 0 because (c
2j−1)2 + (s

2j−1)2 ' 1 holds. Thus, we do not discuss the type of discontinuity in the
following.

1116 Faster amplitude estimation

holds with an unknown integer nj as long as the true value of ρj (i.e. (2j+1 + 2)θ| mod 2π) is

inside the confidence interval.

(ii)The estimate of (2j+1 + 2)θ

Now let us show how (2j+1 + 2)θ is estimated from ρj . Using (19) and the inequality,

(2j+1 + 2)θj−1min ≤ (2j+1 + 2)θ ≤ (2j+1 + 2)θj−1max, (20)

it can be shown that

(2j+1 + 2)θj−1min − ρj −∆ρj ≤ 2πnj ≤ (2j+1 + 2)θj−1max − ρj + ∆ρj . (21)

Thus, if

(2j+1 + 2)(θj−1max − θ
j−1
min) + 2∆ρj < 2π (22)

then nj can be uniquely determined as

nj =
1

2π
[(2j+1 + 2)θj−1max − ρj + ∆ρj] (23)

where [x] is the largest integer that does not exceed x. By using (20) and (23), it can be

inductively shown that if all ρk(k = j0 + 1 . . . j − 1) are determined with the precision of

∆ρk ≤ π/3 then the condition (22) is satisfied.

Although (19) with nj in (23) gives the upper/lower bounds of (2j+1 + 2)θ, a complicated

procedure is necessary for evaluating ∆ρj in the algorithm. Thus, in our algorithm, instead

of estimating ∆ρj , we set the upper/lower bounds of θ at the j-th iteration as

θjmin =
2πnj + ρj − π/3

2j+1 + 2
, θjmax =

2πnj + ρj + π/3

2j+1 + 2
, (24)

and

nj =
1

2π
[(2j+1 + 2)θj−1max − ρj + π/3], (25)

which are correct as far as ∆ρj ≤ π/3. In Appendix 1, we show that for all j(> j0), ∆ρj ≤ π/3
holds and (19) is satisfied with the probability larger than 1− (2`− j0)δc when at least

N1st
shot = 1944 ln

(
2

δc

)
, N2nd

shot = 972 ln

(
2

δc

)
. (26)

In the `-th iteration, the final result is set to (θ`max + θ`min)/2. Then, the error of the final

result ∆θ is less than ∆θ = (θ`max − θ`min)/2 ≤ π/(3 · 2`+1). Thus, the error of the amplitude

is

ε = 4 (sin(θ + ∆θ)− sin θ) < 4∆θ <
π

3 · 2`−1
. (27)

We show the overview of our algorithm when ` = 5 and j0 = 3 in Figure 2.

K. Nakaji 1117

Fig. 2. The overview of our algorithm when ` = 5 and j0 = 3.

2.3 Complexity Upper Bound

As we show in Appendix, by using our proposed algorithm, the required query complexity

(Norac) with which the estimation error of a is less than ε with the probability less than δ is

bounded as

Norac <
4.1 · 103

ε
ln

(
4 log2(2π/3ε)

δ

)
. (28)

The worst case is realized when the algorithm moves to the second stage at the first iteration

(when j = 1). We see that the upper bound of Norac almost achieves Heisenberg scaling:

(Norac ∝ 1/ε) because the dependency of the factor ln(log2(π/ε)) on ε is small, e.g., even

when ε = 10−20, the factor is at most 6. The tightest upper bound in previous literature is

give by [16] as Norac <
1.15·106

ε ln
(
2
δ log3

(
3π
20ε

))
in our notation. We see that the constant

factor is O(102) times smaller in our algorithm.

Although detail discussion is made in Appendix, here we briefly show why the upper

bound is proportional to 1/ε. In order for ε to be bounded as (27), it is suffice that the

errors of all c2j−1s used in our algorithm are less than 1/9
√

2, which is realized if Nshot ∼
O(1000 log (1/δ)) measurements for each j. The number of oracle call in each j is about 2j−1

for each measurement. Thus, Norac ∼ Nshot

∑j=`
j=1 2j−1 = Nshot2

` ∝ Nshot/ε as we expected.

1118 Faster amplitude estimation

Fig. 3. Estimation error ε vs Norac for a = 0.1(left top), a = 0.2(right top), a = 0.3(left bottom)

and a = 0.4(right bottom). The green dots are plotted so that the estimation errors in 1000 trials

are equals to or smaller than the plotted value. The green dots are fitted with log10Norac =
− log10(ε) + b and shown as blue lines. The value of j0 is also shown for each data point.

3 Numerical Experiment

In this section, we verify the validity of the algorithm introduced in Section 2 by numerical

experiments. We choose a = 0.1, 0.2, 0.3, and 0.4 as the amplitudes estimated. δc is taken

as 0.01. We compute Norac and the estimation error ε with changing the total number of

algorithm steps `. In each parameter set (a, `), we execute 1000 trials of the algorithm.

The computation results are shown in Fig. 3. For each Norac, we plot the estimation

errors(green dots) so that 95% of the estimation errors in 1000 trials are equals to or smaller

than the plotted value. In the same figure, we also show j0. For data points where the

algorithm does not go to the second stage, we write “First Stage Only” instead of writing the

value of j0. The data points are fitted with log10(Norac) = − log10(ε) + b (blue lines) where

the fitting parameter b is determined by the least-squares.

Here is the list of notable points:

• As expected, the Heisenberg scaling Norac ≤ C × 1/ε is almost achieved.

• In “First Stage Only” cases, ε tends to be below the blue line, i.e., required Norac is

small for fixed 1/ε compared with the case when the algorithm goes to the second stage.

Because in “First Stage Only” cases, the cause of the error is limited; only cos(2j+1+2)θ

is needed to estimate 2j+1θ.

K. Nakaji 1119

• As a increases, j0 decreases as long as the algorithm goes to the second stage. Because,

as a increases, 2j+1θmax ≥ 3/8π is satisfied with smaller j.

4 Conclusion

The quantum amplitude estimation is an important problem that can be applied in various

applications. Recently, the way of solving the problem without the phase estimation has been

studied. Some of them suggest algorithms which achieve Heisenberg scaling (Norac ≤ C×1/ε)

and they give rigorous proof. However the constant factor C in each algorithm is large. Our

contribution in this paper is providing an algorithm which almost achieves Heisenberg scaling

and the constant factor is smaller than previous methods. We also give proof of the upper

bound.

In a practical usage of the algorithm, some improvements might be possible. Although

we determine the values of N1st
shot and N2nd

shot at the beginning of the algorithm for simplicity,

we can reduce those values by iteratively determining them. For example, in the second

stage, N2nd
shot can be smaller than that in (23) as long as nj in (21) is uniquely determined.

Investigating those possible improvements are left for future works.

The effect of noise should also be examined. Although our algorithm can reduce the depth

of the circuit compared to the quantum phase estimation algorithm, the required depth is

still O(1/ε) and the effect of noise is not neglectable. Thus, studying how to tailor noise in

our algorithm would be important for discussing the practicability of our algorithm, which is

also left for future works.

Acknowledgement

We acknowledge Naoki Yamamoto for insightful discussions and constructive comments. We

also thank the two anonymous reviewers whose comments/suggestions helped improve and

clarify this manuscript.

References

1. E. Knill, G. Ortiz, and R.D. Somma. Optimal Quantum Measurements of Expectation Values of
Observables, 2006; arXiv:quant-ph/0607019. DOI: 10.1103/PhysRevA.75.012328.

2. I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-Guzik. Polynomial-time quantum
algorithm for the simulation of chemical dynamics, 2008, Proc. Natl. Acad. Sci. 105, 18681(2008);
arXiv:0801.2986. DOI: 10.1073/pnas.0808245105.

3. P. Rebentrost, B. Gupt, and T. R. Bromley. Quantum computational finance: Monte Carlo pric-
ing of financial derivatives, 2018, Phys. Rev. A 98, 022321 (2018); arXiv:1805.00109. DOI:
10.1103/PhysRevA.98.022321.

4. A. Montanaro. Quantum speedup of Monte Carlo methods, 2015, Proc. Roy. Soc. Ser. A, vol. 471
no. 2181, 20150301, 2015; arXiv:1504.06987. DOI: 10.1098/rspa.2015.0301.

5. S. Woerner and D. J. Egger. Quantum Risk Analysis, 2018, npj Quantum Inf 5, 15 (2019);
arXiv:1806.06893. DOI: 10.1038/s41534-019-0130-6.

6. K. Miyamoto and K. Shiohara. Reduction of Qubits in Quantum Algorithm for Monte Carlo
Simulation by Pseudo-random Number Generator, 2019; arXiv:1911.12469.

7. N. Wiebe, A. Kapoor, and K. Svore. Quantum Algorithms for Nearest-Neighbor Methods for
Supervised and Unsupervised Learning, 2014, Quantum Information & Computation 15(3 & 4):
0318-0358 (2015); arXiv:1401.2142.

8. N. Wiebe, A. Kapoor, and K. M. Svore. Quantum Deep Learning, 2014; Quantum Information
& Computation 16, 541–587 (2016) arXiv:1412.3489.

1120 Faster amplitude estimation

9. N. Wiebe, A. Kapoor, and K. M. Svore. Quantum Perceptron Models, 2016; Advances in Neural
Information Processing Systems 29 3999-4007 (2016) arXiv:1602.04799.

10. I. Kerenidis, J. Landman, A. Luongo, and A. Prakash. q-means: A quantum algorithm for
unsupervised machine learning (2018); Advances in Neural Information Processing Systems 32
4136-4146 (2019) arXiv:1812.03584.

11. G. Brassard, P. Hoyer, M. Mosca, and A. Tapp. Quantum Amplitude Amplification and Estima-
tion, 2000, Quantum Computation and Quantum Information, Samuel J. Lomonaco, Jr. (editor),
AMS Contemporary Mathematics, 305:53-74, 2002; arXiv:quant-ph/0005055.

12. A. Y. Kitaev. Quantum measurements and the Abelian Stabilizer Problem, 1995; Electronic
Colloquium on Computational Complexity 3 (1996) arXiv:quant-ph/9511026.

13. Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera, and N. Yamamoto. Amplitude Esti-
mation without Phase Estimation, 2019; arXiv:1904.10246.

14. C. R. Wie. Simpler Quantum Counting, 2019, Quantum Information & Computation, Vol.19,
No.11&12, pp0967-0983, (2019); arXiv:1907.08119. DOI: 10.26421/QIC19.11-12.

15. S. Aaronson and P. Rall. Quantum Approximate Counting, Simplified, 2019; arXiv:1908.10846.
16. D. Grinko, J. Gacon, C. Zoufal, and S. Woerner. Iterative Quantum Amplitude Estimation, 2019;

arXiv:1912.05559.
17. A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi. 2002. Classical and Quantum Computation.

American Mathematical Society, Boston, MA, USA.
18. K. M. Svore, M. B. Hastings, and M. Freedman. Faster Phase Estimation, 2013, Quant. Inf.

Comp. Vol. 14, No. 3&4, pp. 306-328 (2013); arXiv:1304.0741.

Appendix A Proof of Complexity Upper Bound

In this appendix, we provide a proof of the complexity upper bound.

Theorem The following upper bound holds for Norac:

Norac <
4.1 · 103

ε
ln

(
4 log2(2π/3ε)

δ

)
. (A.1)

Proof. Our strategy to obtain the upper bound is calculating the required number of N1st
shot

and N2nd
shot for the algorithm to work correctly with the probability 1− δ. Both upper bounds

of N1st
shot and N2nd

shot can be derived from the condition that our algorithm works correctly in the

second stage because even though the condition from the first stage also bounds N1st
shot loosely,

the most strict upper bound of N1st
shot can be gotten from the condition that the estimation

error of ν is small enough. Thus, in the following, we only discuss the condition from the

second stage.

In the second stage, as we mention in Section 2.2, the algorithm works correctly as long

as ∆ρj ≤ π/3. Even though the conditions for atan
(
s2j−1 , c2j−1

)
derived from ∆ρj ≤ π/3

are different depending on whether the confidence interval of ρj is the connected confidence

interval or the disconnected confidence interval, the required precisions for s2j−1 and c2j−1 do

not change depending on the interval type. Therefore, in the following, we discuss only the

case of the connected confidence interval. Then, the condition ∆ρj ≤ π/3 can be converted

to

|atan (s2j−1 , c2j−1)− atan (s∗2j−1 , c∗2j−1)| ≤ π

3
(A.2)

where s∗2j−1 , c∗2j−1 are the true values of s2j−1 and c2j−1 respectively. Given ∆c2j−1 = |c2j−1 −
c∗2j−1 |, ∆s2j−1 = |s2j−1 − s∗2j−1 |, from (B.1) in Appendix B, the following inequality holds for

K. Nakaji 1121

the left hand side of (A.2):

|atan (s2j−1 , c2j−1)− atan (s∗2j−1 , c∗2j−1)| < max(2∆c2j−1 + 2∆s2j−1 , 3∆c2j−1) (A.3)

as long as ∆c2j−1 < 1/4 and ∆s2j−1 < 1/3. On the other hand, from (16), it holds that

∆s2j−1

=

∣∣∣∣−s∗2j−1(sin ν − sin(ν −∆ν)) + c∗2j−1(cos ν − cos(ν −∆ν)) + ∆c2j−1 cos ν + ∆c
2j−1+2j0−1

sin ν

∣∣∣∣
(A.4)

≤
√

2− 2 cos(∆ν) + |∆c2j−1 cos ν|+ |∆c
2j−1+2j0−1 |

sin ν
(A.5)

where ∆ν = ν − 2j0+1θ and 3π/8− |∆ν| ≤ ν ≤ 3π/4− |∆ν|. Thus, if at least the estimation

errors are bounded as

∆c2j−1 ≤
1

9
(A.6)

∆c2j−1+2j0−1 ≤
1

9
, (A.7)

|∆ν| < π

60
(A.8)

then it holds

∆s2j−1 <

√
2− 2 cos(π60) + 1

9 | cos(3π
4 −

π
60)|+ 1

9

sin(3π
4 −

π
60)

<
1

3
. (A.9)

As a result,

|atan (s2j−1 , c2j−1)− atan (s∗2j−1 , c∗2j−1)| < max(2 · 1

9
+ 2 · 1

3
, 3 · 1

9
) <

π

3
(A.10)

is satisfied. Thus, by using (8), if

N2nd
shot = 972 ln

(
2

δc

)
(A.11)

then both the conditions (A.6) and (A.7) is satisfied with the probability 1 − 2δc. On the

other hand, (A.8) is achieved if at least

∆c2j−1 <
1

9
√

2
, (A.12)

holds in the first stage because

∆ν =
1

2

(
arccos

(
cmin
2j0−1

)
− arccos

(
cmax
2j0−1

))
<

1

2

(
arccos

(
cos

(
3π

4

))
− arccos

(
cos

(
3π

4

)
+

1

9
√

2

))
<

π

60
. (A.13)

1122 Faster amplitude estimation

Thus, by using (8) again, it is shown that if

N1st
shot = 1944 ln

(
2

δc

)
. (A.14)

then (A.8) is satisfied with the probability 1−δc. In summary, as far as (A.11) and (A.14) are

satisfied, for all j(> j0), ∆ρj ≤ π/3 holds and (19) is satisfied as long as all the estimates of

cosines are inside the confidence interval; the probability is (1−δc)j0+2(`−j0) > 1− (2`−j0)δc.

Finally, we evaluate the query complexity in the worst case. The worst case is that the

algorithm moves to the second stage at the first iteration(j = 1). In the case, the number of

oracle call is

Norac < N1st
shot +

∑̀
j=2

(2N2nd
shot × 2j−1) = 1944 ln

(
2

δc

)
+ 1944(2` − 2) ln

(
2

δc

)
. (A.15)

and the success probability of the algorithm is 1 − (2` − 1)δc. Thus, if we demand that the

success probability is more than 1− δ then δc < δ/2` and

Norac < 1944 · 2` ln

(
4`

δ

)
. (A.16)

By combining with (27)

Norac <
4.1 · 103

ε
ln

(
4 log2(2π/3ε)

δ

)
. (A.17)

Appendix B Theorem for atan function

Theorem When c, c∗, s ∈ [−1, 1], s∗ takes one of the value of ±
√

1− c∗2, ∆c = |c− c∗| and
∆s = |s− s∗|, the following inequality holds:

|atan(s, c)− atan(s∗, c∗)| < max(2∆c+ 2∆s, 3∆c) (B.1)

if ∆s < 1/2 and ∆c < 1/4 and if there is no discontinuity of atan(s, c) in the intervals:

s∗ −∆s ≤ s ≤ s∗ + ∆s and c∗ −∆c ≤ c ≤ c∗ + ∆c.

Proof. It is suffice to prove in following three cases: (i) cc∗ > 0 (ii) cc∗ < 0 and (iii) cc∗ = 0.

In case (i) cc∗ > 0, using trigonometric addition formulas for arctan, it holds that

|atan(s, c)− atan(s∗, c∗)| = |arctan(s, c)− arctan(s∗, c∗)|

=

∣∣∣∣arctan

(
s∗∆c− c∗∆s

1 + c∗∆c+ s∗∆s

)∣∣∣∣
≤
∣∣∣∣ |s∗|∆c+ |c∗|∆s
1− |c∗|∆c− |s∗|∆s

∣∣∣∣
< 2∆c+ 2∆s. (B.2)

To show the last inequality, we use 1− |c∗|∆c− |s∗|∆s > 1−
√

(1/3)2 + (1/4)2 > 1/2 .

K. Nakaji 1123

In case (ii) cc∗ < 0,

|atan(s, c)− atan(s∗, c∗)| = lim
η→0

(|arctan(s, c)− arctan(s, η)|

+ |arctan(s, η)− arctan(s∗,−η)|)
+ |arctan(s∗,−η)− arctan(s∗, c∗)|) (B.3)

where the sign of η is same as that of c. The first term in (B.3) can be bounded as

lim
η→0
|arctan(s, c)− arctan(s, η)| = lim

η→0

∣∣∣∣ ∂∂c arctan
(s
c

)
|c=c0(c− η)

∣∣∣∣
= lim
η→0

∣∣∣∣ −sc20 + s2
(c− η)

∣∣∣∣
≤
∣∣∣∣ s

c20 + s2
c

∣∣∣∣
≤
∣∣∣∣ 1

(c∗ − (c∗ − c0))2 + (s∗ − (s∗ − s))2
c

∣∣∣∣
≤

∣∣∣∣∣ 1(
3
5 −

1
4

)2
+
(
4
5 −

1
3

)2 c
∣∣∣∣∣

< 3|c| (B.4)

where c0 take the value between η and c, and we use the mean value theorem for showing the

first equality. Similary,

lim
η→0
|arctan(s∗,−η)− arctan(s∗, c∗)| < 3|c∗|. (B.5)

By substituting (B.4), (B.5) and limη→0 |arctan(s, η)− arctan(s∗,−η)| = 0 (that follows from

no-discontinuity condition) to the right-hand side of (B.3), it follows

|atan(s, c)− atan(s∗, c∗)| < 3(|c|+ |c∗|) = 3∆c. (B.6)

The last equality holds because the signs of c and c∗ are different.

In case (iii) cc∗ = 0, when c∗ = 0,

|atan(s, c)− atan(s∗, c∗)| = lim
η→0

(∣∣∣±π
2
− arctan(s∗, η)

∣∣∣+ |arctan(s∗, η)− arctan(s, η)|

+ |arctan(s, η)− arctan(s, c)|) (B.7)

where the sign ± is the same as the sign of s and the sign of η is same as that of c. The

values of the first line go to 0 and the value of the second line can be evaluated by the same

arguments as (B.4). Thus, it follows

|atan(s, c)− atan(s∗, c∗)| < 3(|c|) = 3∆c. (B.8)

By the same discussion, when c = 0

|atan(s, c)− atan(s∗, c∗)| < 3(|c∗|) = 3∆c. (B.9)

In all of the three cases, (B.1) is proved.

