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Dukes (2014) and Konno, Shimizu, and Takei (2017) studied the periodicity for 2-state

quantum walks whose coin operator is the Hadamard matrix on cycle graph CN with

N vertices. The present paper treats the periodicity for 3-state quantum walks on CN .
Our results follow from a new method based on the cyclotomic field. This method gives

a necessary condition for the coin operator for quantum walks to be periodic. Moreover,

we reveal the period TN of typical two kinds of quantum walks, the Grover and Fourier
walks. We prove that both walks do not have any finite period except for N = 3, in

which case T3 = 6 (Grover), = 12 (Fourier).
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1 Introduction

The discrete time quantum walk is defined as a quantum counterpart of the classical random

walk [1, 2]. It is known that some theories of quantum walks are useful for developing new

quantum algorithms. In other applications, for instance, quantum walks have been studied

from viewpoints of topological insulator and quantum information science. Some reviews

and books for the quantum walk are [15, 16, 17, 18]. In the present paper, we treat 3-

state quantum walks on the cycle graph CN with N vertices and focus on the property of

periodicity. The periodicity of the quantum walk is widely studied with some applications

[3, 4, 5]. For example, one of our motivations of the study on the periodicity of quantum

walks is to characterise graphs [9, 11]. For some typical graphs, e.g., complete graphs, the

generalized Bethe trees, and cycles, the periodicity is clarified [6, 7, 8]. Moreover, [10, 11] treat

several famous graph classes (distance regular graph, Hamming graph, and Johnson graph).

We should remark that the 3-state quantum walk on cycles is regarded as the quantum walk

on cycles with self-loops.

From now on, we present the definition of 3-state quantum walks on CN introduced by

Sadowski et al.[12]. This model is given by adding a periodic boundary condition to 3-state

quantum walks on Z, which is a typical walk causing localization [13, 14], where Z means
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the set of integers. We consider a quantum walk on the Hilbert space H = V (CN ) ⊗ C3,

where V (CN ) = {0, 1, · · · , N − 1} is the vertex set of CN (N ≥ 2). Remark that we naturally

identify V (CN ) as Z/NZ, and use this identification throughout this paper without notice.

The quantum walker has three kinds of chirality states, ←, •, and →, which means the

direction of the motion of the walker. If the walker has ← (resp. →) chirality, it moves one

step to the left (resp. right), and if it has the • chirality, it stays at the original position.

Here, we correspond each state to the vectors as follows:

| ←〉 =

1
0
0

 , |•〉 =

0
1
0

 , | →〉 =

0
0
1

 .
Weight matrices P,R, and Q represent the walker hops to adjacent vertices or stays at the

same vertex. They are defined by a division of the coin operator C ∈ U(3), respectively:

P = | ←〉〈← |C, R = |•〉〈•|C, Q = | →〉〈→ |C,

where U(n) means the set of n × n unitary matrices. We note that above definitions of

P,R, and Q are that of the moving shift type. The moving shift, which does not change the

direction of the walker, is used for some fixed graphs, e.g., n-dimensional lattice, tree graphs.

On the other hand, the flip-flop shift, which reverses the direction of the walker, is used for

general graphs. The proof of our results in this paper are written only for the moving shift

type. Note that we obtain similar results for the flip-flop shift version and assign it in Section

3 with its definition.

For the initial state Ψ0 ∈ H, the time evolution is Ψt = U tNΨ0 with the time evolution

operator UN defined as follows:

UN =



R P O · · · O Q

Q R P
. . . O O

O Q R
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

O O
. . .

. . . R P
P O · · · · · · Q R


∈ U(3N) (N 6= 2). (1.1)

For N = 2, we define

U2 =

[
R P +Q

P +Q R

]
∈ U(6).

Let

Ψt = t
[
Ψt(0), Ψt(1), · · · , Ψt(N − 2), Ψt(N − 1)

]
∈ H,

where t means the transpose operation. Then, (1.1) equals to

Ψt+1(x) = PΨt(x+ 1) +RΨt(x) +QΨt(x− 1) (x ∈ V (CN )). (1.2)
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We introduce the Fourier transform of the quantum state as Ψ̂t(k) =
∑N−1
x=0 e

− 2πk
N iΨt(x) ∈

C3 (k = 0, 1, . . . , N − 1). Then, Û(k) = diag(e
2πk
N i, 1, e−

2πk
N i)C ∈ U(3) gives the time

evolution for the quantum state on the Fourier space, i.e., Ψ̂t(k) =
(
Û(k)

)t
Ψ̂0(k) (k =

0, 1, . . . , N − 1). It is well known that Spec(UN ) =
⋃N−1
k=0 Spec(Û(k)), where Spec(·) denotes

the set of eigenvalues. This equality follows from (1.2) and the unitarity of the Fourier

transform. We put

N = {n ∈ N : (UN )
n

= I3N},

where N is the set of natural numbers and In is the n×n identity matrix. If N 6= ∅, the period

of the quantum walk TN = minN . If N = ∅, then TN = ∞ and we say the quantum walk

is not periodic. The following lemma is a useful method to distinguish whether a quantum

walk is periodic or not.

Lemma 1.1 For T ∈ N , the following (1) to (3) are equivalent.

(1) UTN = I3N .

(2) ∀λ ∈ Spec(UN ), λT = 1.

(3) ∀λ(k) ∈ Spec(Û(k)), λ(k)T = 1 (k = 0, 1, . . . , N − 1).

We here introduce Z[ζN ] = A ∩ Q[ζN ], where Z[ζN ] is the ring of integers of the n-th

cyclotomic field, A is the set of algebraic integers, and Q[ζN ] is the n-th cyclotomic field. By

definitions of A and Q[ζN ], we obtain the following lemma.

Lemma 1.2 For T ∈ N , if UTN = I3N , then the following relation holds.

λ1(k) + λ2(k) + λ3(k) ∈ A ∩Q[ζT ] = Z[ζT ] (k = 0, 1, . . . , N − 1),

where λ1(k), λ2(k), λ3(k) ∈ Spec(Û(k)) and ζn is a primitive n-th root of unity, i.e., ζn =

e
2π
n i.

2 Results

In this section, we present some results of the periodicity. We assign Section 2.1 as a necessary

condition for the quantum walk, which has no assumptions on the coin, to be periodic. Section

2.2 clarifies the period of typical two kinds of walks, the Grover and Fourier walks.

2.1 Necessary condition for the coin operator

Theorem 2.1 If c11 6∈ 1
NZ[ζlcm(N,T )] or c22 6∈ 1

NZ[ζT ] or c33 6∈ 1
NZ[ζlcm(N,T )] is satisfied,

then UTN 6= I3N for any T ∈ N , where the coin operator C = (cij)i,j=1,2,3 and lcm(·, ·) is the

least common multiple.

Proof: Assume that UTN = I3N . From Lemma ??, we see that

λ1(k) + λ2(k) + λ3(k) ∈ Z[ζT ]. (2.3)

By definition of Û(k), we have

tr(Û(k)) = e
2πk
N ic11 + c22 + e−

2πk
N ic33. (2.4)
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Combining (2.3) with (2.4) gives

e
2πk
N ic11 + c22 + e−

2πk
N ic33 ∈ Z[ζT ]. (2.5)

It follows from (2.5) and e±
2πk
N iZ[ζT ] ⊂ Z[ζlcm(N,T )] that

N−1∑
k=0

(
e

2πk
N ic11 + c22 + e−

2πk
N ic33

)
= Nc22 ∈ Z[ζT ],

N−1∑
k=0

e−
2πk
N i
(
e

2πk
N ic11 + c22 + e−

2πk
N ic33

)
= Nc11 ∈ Z[ζlcm(N,T )],

N−1∑
k=0

e
2πk
N i
(
e

2πk
N ic11 + c22 + e−

2πk
N ic33

)
= Nc33 ∈ Z[ζlcm(N,T )].

Thus, if UTN = I3N , then c11 ∈ 1
NZ[ζlcm(N,T )], c22 ∈ 1

NZ[ζT ], and c33 ∈ 1
NZ[ζlcm(N,T )]. The

desired conclusion is given.

2.2 Periodicity for the typical quantum walks

2.2.1 The Grover walk

The Grover walk is determined by the coin operator as the Grover matrix, i.e.,

C = G(3) =
1

3

−1 2 2
2 −1 2
2 2 −1

 .
Here, G(n) = (gi,j)i,j=1,2,...,n is the Grover matrix with size n, which is defined by

gi,j =

{
2
n − 1 (i = j)
2
n (i 6= j)

.

Then, the characteristic polynomial of Û(k) is

det
(
λ(k)I3 − Û(k)

)
= (λ(k)− 1)

(
λ(k)2 +

4 + e
2πk
N i + e−

2πk
N i

3
λ(k) + 1

)
. (2.6)

The above equation gives Spec(Û(k)) = {λ1(k), λ2(k), λ3(k)} with λ2(k) = λ1(k) and λ3(k) =

1.

Theorem 2.2 For any N ≥ 2, the period of the Grover walk is as follows.

TN =

{
6 (N = 3)

∞ (N 6= 3)
.

Proof: Firstly, we prove N = 3 case. From (2.6), we get the eigenvalues of Û(k) as follows.

λ1(k) = λ2(k) =

{
−1 (k = 0)

e
2πk
3 i (k = 1, 2)

.
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Hence, Lemma 1.1 gives T3 = lcm(2, 3) = 6. Next, we prove N 6= 3 case. Assume that

UTN = I3N . By Lemma 1.2, we see that

λ1(k) + λ2(k) + λ3(k) ∈ A ∩Q[ζT ].

Since λ3(k) = 1, we have

λ1(k) + λ2(k) ∈ A ∩Q[ζT ]. (2.7)

On the other hand, definition of Q[ζN ] and (2.6) imply

λ1(k) + λ2(k) = −4 + e
2πk
N i + e−

2πk
N i

3
∈ Q[ζN ]. (2.8)

Combining Z[ζN ] = A ∩Q[ζN ] with (2.7) and (2.8) gives

λ1(k) + λ2(k) ∈ Z[ζN ].

Especially, we now focus on k = 1 case:

λ1(1) + λ2(1) = −4 + e
2π
N i + e−

2π
N i

3
∈ Z[ζN ].

Here, we should remark that

3e
2π
N i

(
−4 + e

2π
N i + e−

2π
N i

3

)
∈ 3Z[ζN ]. (2.9)

On the other hand, we have

3e
2π
N i

(
−4 + e

2π
N i + e−

2π
N i

3

)
= −1− 4e

2π
N i − e 4π

N i. (2.10)

Combining (2.9) with (2.10) implies

−1− 4e
2π
N i − e 4π

N i = −ζ0N − 4ζ1N − ζ2N ∈ 3Z[ζN ]. (2.11)

In general, x ∈ Z[ζn] is uniquely expressed by a linear combination of ζ0n to ζ
φ(n)−1
n , i.e.,

x =

φ(n)−1∑
j=0

zjζ
j
n,

where {zj} is a sequence of integer numbers and φ(n) is Euler’s totient function. If φ(N) > 2,

then a contradiction occurs in the assumption UTN = I3N , because the coefficients of ζ0N , ζ
1
N

and ζ2N in (2.11) do not belong to 3Z. In the rest of the proof, we consider N with φ(N) ≤ 2

and N 6= 3, i.e., N = 2, 4, and 6 cases. For three cases, it follows from (2.11) and the following

easily obtained results (i) to (iii) that a contradiction occurs in the assumption UTN = I3N .

(i) N = 2 case : − ζ02 − 4ζ12 − ζ22 = 2ζ02 6∈ 3Z[ζ2]

(ii) N = 4 case : − ζ04 − 4ζ14 − ζ24 = −4ζ14 6∈ 3Z[ζ4]

(iii) N = 6 case : − ζ06 − 4ζ16 − ζ26 = −5ζ16 6∈ 3Z[ζ6]

Therefore, the desired conclusion is given.
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2.2.2 The Fourier walk

The Fourier walk is defined by the coin operator as the Fourier matrix, i.e.,

C = F (3) =
1√
3

1 1 1

1 e
2π
3 i e

4π
3 i

1 e
4π
3 i e

2π
3 i

 .
Here, F (n) = (e

2(u−1)(v−1)π
n i/

√
n )u,v=1,2,...,n is the Fourier matrix with size n. Then, the

characteristic polynomial of Û(k) is

det
(
λ(k)I3 − Û(k)

)
= λ(k)3 −

√
3

3

(
e

2πk
N i + e(

−2πk
N + 2π

3 )i + e
2π
N i
)
λ(k)2

− 1

3

(
1 + e

2πk
N i + e(

−2πk
N + 2π

3 )i − e 2π
3 i − e(

2πk
N + 2π

3 )i − e(
−2πk
N + 4π

3 )i
)
λ(k) + i.

(2.12)

As in the case of the Grover walk, the following result on the periodicity for the Fourier walk

can be obtained by (2.12).

Theorem 2.3 For any N ≥ 2, the period of the Fourier walk is as follows.

TN =

{
12 (N = 3)

∞ (N 6= 3)
.

Proof: Firstly, we check N = 3 case. Then, (2.12) implies that

(λ1(k), λ2(k), λ3(k)) =

{
(e

2π
4 i, 1,−1) (k = 0, 1)

(e
2π
3 i, e

5π
3 i, e

7π
6 i) (k = 2)

.

Hence, Lemma 1.1 gives T3 = lcm(4, 6) = 12. Next, we want to show that TN =∞ if N 6= 3.

As for N 6= 2 or 3n (n ∈ N) cases, TN = ∞ can be derived from the result proved by Saito

[11] in our setting:

Theorem 2.4 [11] For N 6= 3n (N > 2) with n ∈ N , the Fourier walk on CN is not periodic.

Therefore, we will prove only for N = 2 and 9 cases, since Spec(U9) ⊂ Spec(U3n) (n > 2) and

Lemma 1.1. As in the proof of Theorem 2.2, we focus on the following λ1(1) + λ2(1) + λ3(1)

given by (2.12).

λ1(1) + λ2(1) + λ3(1) =
1

3

(
1 + e

2π
N i + e(−

2π
N + 2π

3 )i − e 2π
3 i − e(

2π
N + 2π

3 )i − e(
−2π
N + 4π

3 )i
)
.

(2.13)

Assume that UTN = I3N . Then, Lemma 1.2 implies

λ1(1) + λ2(1) + λ3(1) ∈ A ∩Q[ζT ]. (2.14)

By definition of Q[ζN ] and (2.13), we obtain

λ1(1) + λ2(1) + λ3(1) ∈ Q[ζlcm(3,N)]. (2.15)
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Thus, Combining (2.14) with (2.15) gives

1

3

(
1 + e

2π
N i + e(−

2π
N + 2π

3 )i − e 2π
3 i − e(

2π
N + 2π

3 )i − e(
−2π
N + 4π

3 )i
)
∈ Z[ζlcm(3,N)].

Then, we have

1 + e
2π
N i + e(−

2π
N + 2π

3 )i − e 2π
3 i − e(

2π
N + 2π

3 )i − e(
−2π
N + 4π

3 )i

= ζ0N + ζ1N + ζ13ζ
−1
N − ζ

1
3 − ζ13ζ1N − ζ23ζ−1N ∈ 3Z[ζlcm(3,N)]. (2.16)

From (2.16) and the following results (i) and (ii), a contradiction occurs in the assumption

UTN = I3N .

(i) N = 2 case : 1 + e
2π
2 i + e(−

2π
2 + 2π

3 )i − e 2π
3 i − e(

2π
2 + 2π

3 )i − e(
−2π
2 + 4π

3 )i

= ζ06 − 2ζ16 6∈ 3Z[ζlcm(3,2)] = 3Z[ζ6]

(ii) N = 9 case : 1 + e
2π
9 i + e(−

2π
9 + 2π

3 )i − e 2π
3 i − e(

2π
9 + 2π

3 )i − e(
−2π
9 + 4π

3 )i

= ζ09 + ζ19 + ζ29 − ζ39 − ζ49 − ζ59 6∈ 3Z[ζlcm(3,9)] = 3Z[ζ9]

Hence, desired conclusion is given.

3 Summary and discussion

In the present paper, we got some results about the periodicity of 3-state quantum walks

on cycles by using a method of cyclotomic field. Especially, we completely determined the

periodicity of two kinds of typical quantum walks, the Grover and Fourier walks, in Theorems

2.2 and 2.3, respectively. We should remark that there are two kinds of typical shifts for

quantum walks, i.e., moving and flip-flop shifts. The shift of the walk considered here is

moving shift. On the other hand, the corresponding flip-flop type is defined by

P = | ←〉〈→ |C, R = |•〉〈•|C, Q = | →〉〈← |C.

In this type, it is easily derived from a similar method that

TN (Grover) =

{
4 (N = 3)

∞ (N 6= 3)
, TN (Fourier) =

{
12 (N = 3)

∞ (N 6= 3)
.

References

1. Aharonov, Y., Davidovich, L., Zagury, N., Quantum random walks, Phys. Rev. A, 48, 1687–1690
(1993).

2. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J., One-dimensional quantum walks,
In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp.37–49 (2001).

3. Higuchi, Y., Konno, N., Sato, I., Segawa, E., Periodicity of the discrete-time quantum walk on a
finite graph, Interdiscip. Inf. Sci., 23, 75–86 (2017).

4. Jayakody, M. N., Nanayakkara, A., Full state revivals in higher dimensional quantum walks,
arXiv:1806.07032 (2018).

5. Dukes, P. R., Quantum state revivals in quantum walks on cycles, Results in Physics, 4, 189–197
(2014).



1088 Periodicity for the 3-state quantum walk on cycles

6. Konno, N., Shimizu, Y., Takei, M., Periodicity for the Hadamard walk on cycles, Interdiscip. Inf.
Sci., 23, 1–8 (2017).

7. Arai, T., Ho, C. L., Ide, Y., Konno, N., Periodicity for space-inhomogeneous quantum walks on
the cycle, Yokohama Math. J., 62, 39–50 (2016).

8. Kubota, S., Segawa, S., Taniguchi, T., Yoshie, Y., Periodicity of Grover walks on generalized Bethe
trees, Linear Algebra Its Appl., 554, 371–391 (2018).

9. Yoshie, Y., A characterization of the graphs to induce periodic Grover walk, Yokohama Math. J.,
63, 9–23 (2017).

10. Yoshie, Y., Periodicity of Grover walks on distance-regular graphs, arXiv:1805.07681 (2018).
11. Saito, K., Periodicity for the Fourier quantum walk on regular graphs, Quantum Inf. Comput.,

19, 23–34 (2018).
12. Sadowski, P., Miszczak, J. A., Ostaszewski, M., Lively quantum walks on cycles, J. Phys. A., 49,

375302 (2016).
13. Inui, N., Konno, N., Segawa, E., One-dimensional three-state quantum walk, Phys. Rev. E., 72,

056112 (2005).
14. Machida, T., Limit theorems of a 3-state quantum walk and its application for discrete uniform

measures, Quantum Inf. Comput., 15, 406–418 (2015).
15. Venegas-Andraca, S. E., Quantum Walks for Computer Scientists, Morgan and Claypool (2008).
16. Venegas-Andraca, S. E., Quantum walks: a comprehensive review, Quantum Inf. Process., 11,

1015–1106 (2012).
17. Manouchehri, K., Wang, J., Physical Implementation of Quantum Walks, Springer, Berlin (2014).
18. Porugal, R., Quantum Walks and Search Algorithms, Springer, Berlin (2013).


