
Quantum Information and Computation, Vol. 19, No. 1&2 (2019) 0014–0022
c© Rinton Press

TELEPORTATION VIA THE ENTANGLED DERIVATIVE

OF COHERENT STATE

ANAS OTHMAN

Department of Physics, Faculty of Science, Taibah University

P.O. Box 344, Al Madinah Al Munawwarah, Saudi Arabia

aothman@taibahu.edu.sa

Received July 4, 2018

Revised December 25, 2018

Recently, David Yevick and I published an article [Othman, A. & Yevick, D. Int J Theor
Phys 57, 2293 (2018)] about constructing a superposition of two nearly identical coherent

states (near coherent state). We showed that this state becomes a superposition of a

derivative state and a coherent state. Here, we use the definition of the derivative state
to create the entangled derivative of coherent state (EDCS). We show that this state

can be used to teleport qubits encoded in the near coherent states. The decoherence of
EDCS is also studied. In addition, we propose an experimental scheme to produce the

EDCS and to perform teleportation.
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1 Introduction

Entanglement is one of the most essential resources in quantum information. Its main idea is

that the different parts of a system, which could be particles, share an inseparable quantum

state. Entanglement has been experimentally observed in different physical implementations

such as optical [1] and ionic [2] systems. In addition, it is one of the main components of

many applications such as dense coding [3], device-independent quantum cryptography [4],

and teleportation [5].

Quantum teleportation was first proposed in 1993 [5] and has been applied in quantum

cryptography and quantum communication. Many physical realizations using photons, atoms,

electrons, and superconducting circuits have verified its concept [6, 7, 8, 9]. The main idea

of quantum teleportation is to utilize the shared entanglement state and the classical channel

between the sender (Bob) and the receiver (Alice) to send some quantum states.

Different shared entangled wavefunctions or EPR states have been used to teleport a

variety of light states. For example, the two-mode squeezed state, which can have an arbitrary

amount of ebits (entanglement measurement), can be used to teleport an arbitrary single light

mode [10, 11]. In addition, the polarization-entangled state is employed to teleport polarized

qubits [12, 13]. The conventional Bell states are also utilized to teleport qubits based on many

physical implementations.
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Another known optical class of EPR states, based on coherent states, is the entangled

coherent state (ECS). It was proposed in 1992 [14], and was considered to teleport the

Schrödinger cat state (SCS) [15]. The ECS has the following form:

|α;α〉± = N±(|α〉1|α〉2 ± | − α〉1| − α〉2), (1)

where |α〉i is the coherent state of mode i, α is the coherent parameter, and

N± is 1/
√

2(1± e−4|α|2). Although this state depends on the parameter α, it has exactly

one ebit for all values of α. This feature and other similar features of the ECS makes it one of

the best options to teleport qubits. Many entanglement and teleportation properties of ECS

are discussed in detail in [15, 16, 17, 18]. Moreover, it has been extended and designated to

many practical applications (for an excellent review, see [19]).

Recently, David Yevick and I studied the properties of the near coherent state [20]. It is

a superposition of two nearly identical coherent states. A special case of this superposition

yields the derivative of a coherent state with respect to its absolute parameter, in short, a

derivative state, which is denoted as |d(α)〉 = d|α〉/d|α|. We found that, in general, the near

coherent state and the derivative state share many similarities between the coherent states

and the SCS. Namely, they have statistical properties that are similar to coherent states, and

they are mostly nonclassical, similar to SCS. In the same paper, an effective experimental

method was also suggested to prepare these states.

Based on the importance of ECS and on the similarities between the derivative state and

the coherent state, we are motivated to propose the entangled derivative of coherent state

(EDCS), which has the following form:

|Ψ±α 〉 =
1√
2

[|d(α)〉1|α〉2 ± i|α〉1|d(α)〉2] . (2)

This state is identical to some types of ECS. For example, the ECS can be covered if the

replacement |d(α)〉 → | − α〉 is made. Moreover, this state has a continuous parameter, α,

similar to ECSs. In contrast, it contains a nonclassical component, which is the derivative

state. On the other hand, an arbitrary near coherent state can be easily teleported using this

EPR state, as we will see. Accordingly, this paper discusses the EDCS, its different properties,

and its application to the teleportation of a near coherent state.

This paper is organized as follows. In the next section, a brief review of some key results of

the near coherent states are provided. In Sec.(III), we will study the EDCS, its preparation,

and its decoherence. In Sec. (IV), the teleportation scheme based on EDCS is presented.

2 Near coherent states

The near coherent state is a superposition of two almost identical coherent states [20]

|α,∆θ〉 = lim
|∆α|→0

Cα
(
|α+ |∆α|ei∆θ〉 − |α〉

)
, (3)

where |∆α| is the source of the near coherent state, ∆θ is its phase, and Cα is the normalization

factor. Note that this definition is unique, which means that if the middle phase between the

two superposed coherent states is different than eiπ = −1, the resultant state will be a single
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coherent state. We have shown that the near coherent state yields

|α,∆θ〉 =
eiδθ ∂|α〉∂|α| + i|α| sin(δθ)|α〉√

1 + |α|2 sin(δθ)2
, (4)

where δθ = ∆θ− θ, and θ is the phase of the coherent parameter α = |α|eiθ. In this formula,

the superposition of the two coherent states (the near coherent state) in eq.(3) becomes a

superposition of a derivative state ∂|α〉/∂|α| and a coherent state. The derivative state can

be expressed as

|d(α)〉 =
∂|α〉
∂|α|

=
e−

1
2 |α|

2

|α|

∞∑
n=0

nαn√
n!
|n〉 − |α||α〉. (5)

Note that when ∆θ = θ, δθ = 0, the near coherent state becomes solely |d(α)〉. The derivative

state is normalized and orthogonal to the coherent state, 〈α|d(α)〉 = 0. Another important

feature of the derivative state is that when α→ 0, it becomes |d(0)〉 = |1〉, which means that

it always has at least one photon. This feature can be understood by noting that it can be

rewritten as

|d(α)〉 = eiθD(α)|1〉, (6)

where D(α) is the displacement operator. Therefore, the derivative state is the displaced one-

photon state with an overall irrelevant phase. The displaced Fock states are studied under

different contexts [21, 22, 23], but not in the context of derivative states.

An experimental scheme to generate the near coherent state is described in [20]. In that

procedure, two coherent states |α〉 and |β〉, a cross Kerr medium, beamsplitters, and detectors

were used. The resultant state after the measurement of a certain detector is the near coherent

state |γ,∆θeff 〉, where for arbitrary values of α and β, γ becomes

|γ| = 1√
2

√
|α|2 + |β|2 + 2|α||β| cos(θ − s), (7)

and

δθeff = θ +
3π

2
− tan−1

(
|α| sin(θ) + |β| sin(s)

|α| cos(θ) + |β| cos(s)

)
, (8)

where s is the phase of β, γ = 1√
2
(β + α), and ∆θeff = θ + 3π/2. An arbitrary near

coherent state can be generated in this way. For example, to produce derivative states,

we let θ = −3π/2; then, s has to be equal to tan−1

(
|α|/|β|√

1−|α|2/|β|2

)
. Consequently, the

amplitude of the resultant derivative state is |γ| =
√

3|α|2+|β|2
2 , and its phase is arg(γ) =

tan−1

(
2|α|

|β|
√

1−|α|2/|β|2

)
. Note that in this particular selection of parameters, the derivative

state will be produced for all |α|/|β| ≤ 1.

By using this procedure, we have shown that the required interaction time between the

coherent states of the experiment and the Kerr medium could be very brief χt → 0. And it

is known that for certain interferometry experiments, similar to ours, which involve the Kerr

medium, a brief interaction time is required [24, 25]. This suggests that the production of

near coherent states can be effectively demonstrated with high fidelity, which makes them

practical to apply in different areas.



A. Othman 17

The average number of photons in the near coherent state is

〈n〉 = |α|2 +M, M =
1 + 2|α|2 sin(δθ)2

1 + |α|2 sin(δθ)2
. (9)

Note that M is bounded 1 ≤M ≤ 2 for all values of α, δθ. The near coherent state has some

nonclassical properties such as squeezing, anti-bunching, and negative Wigner function. All

these features are discussed in the same article. The last feature that needs to be mentioned

here is the inner product between the coherent states and the derivative states, which is given

as

〈α|d(β)〉 = e−
1
2 |α|

2− 1
2 |β|

2+βα∗
[
βα∗
|β|
− |β|

]
. (10)

This relation confirms that if α = β, then 〈α|d(α)〉 = 0.

3 Entangled Derivative of Coherent State (EDCS)

We define the entangled derivative of coherent state (EDCS) as follows:

|Ψ±α 〉 =
1√
2

[|d(α)〉1|α〉2 ± i|α〉1|d(α)〉2] . (11)

The above states are normalized and orthogonal to each other. They are orthogonal to

each other because the derivative state and the coherent state are orthogonal to each other

〈d(α)|α〉 = 0. This feature makes the EDCS a maximally entangled state. The alternative

form of the EDCS can be written as

|ψ±α 〉 =
1√
2

[|d(α)〉1|d(α)〉2 ± |α〉1|α〉2] . (12)

In general, this form and other similar forms of EDCSs can all be used for teleportation. Here,

we focus on the formula of eq.(11) because it is easy to generate experimentally as we will

see.

As we can write the coherent state as |α〉 = D(α)|0〉 and the derivative state as in eq.(6),

we can write

|Ψ±α 〉 =
D(α)1D(α)2√

2
[|1〉1|0〉2 + i|0〉1|1〉2] , (13)

where we have removed the irrelevant overall phase eiθ. In this formula, the EDCSs is almost

identical to the Bell state, if the displacement operators are removed. Therefore, if we apply

the inverse displacement operator, we will obtain the known Bell state

D(α)−1
1 D(α)−1

2 |Ψ±α 〉 =
1√
2

[|1〉1|0〉2 ± i|0〉1|1〉2] . (14)

This mathematical similarity suggests that the EDCS features are between the ECS and the

Bell states. This is the case at least when detecting the number of photons in the teleportation

scheme, as we will see. However, it is worth stressing that although the EDCS from this

formula appears as simple as a displaced Bell state, we should not forget that the EDCS

originally comes from the near coherent state and yields to displace the Bell state and not

the opposite. In addition, it appears that the contribution of the displacement operator is

not trivial.
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From eq.(14), the discrimination of the two modes (1, 2) can be performed by first applying

the inverse of the displacement operator and then detecting where the photon is. If the photon

appears in mode (1), we can be certain that the other mode is a vacuum, and vice versa.

The average number of photons in the EDCS is

〈n〉 = 2|α|2 + 1. (15)

It becomes 1 when α = 0, and therefore it has, as the derivative state, at least one photon. The

average number of photons can grow unlimitedly as the ECS. The amount of entanglement

in the EDCS, as the ECS, is exactly 1 ebit. We can see this by noting that the trace of the

reduced density matrix equals 1.

Next, in order to prepare the EDCS, we assume that there is a source of derivative coherent

states whose values are d(|
√

2α)〉. Such a source can be prepared using our method, which

was briefly described earlier. Then, we assume that this state is incident to a beam splitter,

so

|d(
√

2α)〉1|0〉2 →
1√
2

[|iα〉1|d(α)〉2 + i|d(iα)〉1|α〉2] . (16)

After letting mode (1) pass through a phase shifter of phase equal to Θ = 3π/2, the state

becomes

→ 1√
2

[|α〉1|d(α)〉2 + i|d(α)〉1|α〉2] . (17)

This state is the EDCS of eq.(11). It can be seen that this method is accessible since it

requires only the essential optical tools.
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Fig. 1. Fidelity of eq.(23) against the coherent parameter |α| for different values of η. The values
are η = 0.9, 0.7, 0.5, 0.3, 0.1, from the top to bottom, where the uppermost curve is for η = 0.9.

Let us now study the decoherence of the EDCS. Here, we use a simple but effective model

to introduce the decoherence. We assume that the decoherence is modelled by a beamsplitter

whose coefficient is η. The coherent state will decohere as

|α〉i|0〉E → |S1〉i|S2〉E , (18)

where S1 =
√
ηα, S2 =

√
1− ηα, E refers to the environment causing the decoherence, and η

is the decoherence parameter. The derivative state will be decohered as

|d(α)〉i|0〉E →
√
η|d(S1)〉i|iS2〉E + i

√
1− η|S1〉i|d(iS2)〉E . (19)
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After tracing over the environment modes, the density matrix of |Ψ±α 〉 becomes

ρ = η
2 |A〉〈A|+ (1− η)|B〉〈B|+ η

2 |C〉〈C|
± 1

2

√
η(1− η)(k|A〉〈B|+ k∗|B〉〈A|)

± iηl
2 (|A〉〈C| − |C〉〈A|)∓ 1

2

√
η(1− η)×

(k∗|B〉〈C|+ k|C〉〈B|),

(20)

where |A〉 = |S1〉1|d(S1)〉2, |B〉 = |S1〉1|S1〉2, |C〉 = |d(S1)〉1|S1〉2, k = t1t
∗
2, and l = |t1|2. The

coefficients t1 and t2 are given by

t1 = 〈S2|iS2〉 = e−|α|
2(1−η)(1−i), (21)

t2 = 〈S2|d(iS2)〉 = −|α|
√

1− η(1− i)e−|α|
2(1−η)(1−i), (22)

where the inner multiplication of the derivative state with the coherent state for arbitrary

amplitudes is taken from eq.(10). In addition, the states |A〉, |B〉, and |C〉 are all orthogonal

to each other. The maximum EDCS of a given value of η can be written as |Ψ±S1
〉 = 1√

2
(|C〉±

i|A〉). The projection of this state with the decoherence density matrix of eq.(20) is given by

〈Ψ±S1
|ρ|Ψ±S1

〉 =
η

2
(1 + l) =

η

2

(
1 + e−2|α|2(1−η)

)
. (23)

This defines the fidelity between the dissipated state and the EDCS. In fig.(1), we have plotted

eq.(23) for different values of η.

Equation (23) indicates that the fidelity will eventually reach η/2 when |α| → ∞, as shown

in fig.(1). The width of F when it equals 3η/4 (the width of the half-height in this case) is

≈ 0.589√
1−η . In general, the half-height of the decoherence fidelity of the ECS [15] is similar

to our range, although ours is larger when η is close to unity. Therefore, the EDCS is less

decohered than the ECS when the environment is close to ideal (η → 1). Another difference

between our fidelity and ECS fidelity is that the ECS fidelity drops to 1/2 at |α| → ∞, while

ours always tries to reach η/2. In the next section, we will discuss how to use the EDCS for

teleportation.

4 Teleportation scheme

Here, we propose a teleportation scheme using EDCS. This scheme may not be the best, but

it is adequate to illustrate the concept. Here, we wish to teleport a qubit encoded in a near

coherent state. Accordingly, suppose that Alice wants to teleport to Bob, the following state:

|f1, f2〉 = f1|d(α)〉+ f2|α〉, |f1|2 + |f2|2 = 1, (24)

where f1 and f2 are the amplitudes of the derivative and coherent states, respectively. This

kind of qubits can be prepared using the definition of the near coherent states in eq.(4). The

EDCS state is prepared as explained in the previous section, that is, by splitting the derivative

state and then applying the phase shifter as shown in fig. (2). The state in Alice’s possession

is
|in〉 = |f1,f2〉c√

2
D(α)aD(α)b[|0〉a|1〉b + i|0〉b|1〉a],

= |f1,f2〉c√
2

D(α)aD(α)b[a
†
b + ia†a]|0〉a|0〉b,

= D(α)aD(α)bD(α)c√
2

[a†b + ia†a][f1a
†
c + f2]|0〉a|0〉b|0〉c

(25)
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Fig. 2. Teleportation scheme using EDCS.

Then, Alice mixes her EDCS with the near coherent qubit using the beam splitter; there-

fore, the outcome state is

|in〉 → D(α)bD(αeiπ/4)aD(αeiπ/4)c√
2

[a†b + i√
2
(a†a + ia†c)]×

= [ f1√
2
(a†c + ia†a) + f2]|0〉a|0〉b|0〉c

(26)

Then, after performing the inverse of the displacement operator D−1(αeiπ/4) on mode a and

c, we obtain

→ f2|d(α)〉b√
2
|00〉+ f1|d(α)〉b

2 (|01〉+ i|10〉) +

i f2|α〉b2 (|10〉+ i|01〉)− f1|α〉b
2 (|20〉+ |02〉),

(27)

where we abbreviate |x〉a|y〉c → |xy〉. After rearranging the terms, we get

→ f2|d(α)〉b√
2
|00〉+ 1

2 (f1|d(α)〉b − f2|α〉b)|01〉 +

+ i
2 (f1|d(α)〉b + f2|α〉b)|10〉 − f1|α〉b

2 (|20〉+ |02〉).
(28)

Now, if the detectors measure the state |10〉, the teleported state to Bob is |f1, f2〉, whereas

if the detectors measure |01〉, the teleported state is |f1,−f2〉. However, if the detectors

register |00〉 or |20〉, |20〉, the teleported state is the coherent state |α〉 or the derivative

state |d(α)〉, respectively. Therefore, as in most teleportation methods, a classical channel is

required between Alice and Bob. Alice should send Bob the detectors measurements, so that

Bob knows what to perform in his state.

The success measurements in our teleportation protocol, as the ECS and Bell states, are

an odd number of photons. This makes our state a special case of what is proven to be true in

many teleportation protocols [26]. Although from this side, our state seems to be similar to

ECS, there is a big difference between them. Namely, in our state, the required odd number
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for all α is a photon, while that in ECS is unlimited. This fact gives a potential advantage

to our state, in which the required measurements as the Bell states is a photon. At the same

time, the average number of photons of the carrier state EDCS grows unlimitedly as the ECS.

The probability of the success measurements that leads to the teleportation of the qubit

is 1/2, which is the probability of the detectors to measure the states |01〉 or |10〉. There are

many ways to increase this probability, but they will not be studied in this article.

5 Conclusion

In conclusion, we proposed an EPR state based on the derivative state, which is EDCS. We

showed that this state carries exactly one ebit of entanglement and provided a scheme to

prepare it experimentally. Based on this state, we suggested a teleportation configuration to

teleport the near coherent state.

This work provides a new method to apply the teleportation. There are many similarities

between our state and the ECS. This suggests that the near coherent state teleportation might

be as efficient as ECS, which is used to teleport Schrödinger cat states and other states. More

theoretical and experimental studies are needed to validate this work.
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