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We study the approximation of the median of an absolutely continuous distribution with

respect to the Lebesgue measure given by a probability density function f . We assume
that f has r continuous derivatives, with derivative of order r being Hölder continuous

with the exponent ρ. We study the quantum query complexity of this problem. We show
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We also extend the results to the problem of computing the vector of quantiles of an

absolutely continuous distribution.
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1 Introduction

The quantum complexity of discrete problems has been extensively studied. Speed-ups of

quantum algorithms over deterministic and randomized algorithms have been shown for many

problems. One of the first papers showing major speed-up of quantum computers was the

paper of Shor [1], dealing with the problem of factorization. Another was by Grover [2] deal-

ing with database search. Also the problem of computing other discrete statistics, such as

discrete summation, computation of the mean, median and quantiles was investigated, see

e.g. [3],[4],[5],[6],[7].

The interesting task is the investigation of the quantum complexity of continuous analogs of

these problems. The first paper dealing with the quantum complexity of a continuous prob-

lem was the work of Novak [8], where the integration of a function from the Hölder class is

considered. Integration in Lebesgue and Sobolev classes of functions was also investigated,

see [9],[10]. The problem of function approximation on a quantum computer was studied

by Heinrich [11],[12]. The problem of maximization of a function from the Hölder class was

investigated in [13] and the problem of finding the root of a function was studied in [14]. Also

path integration [15] and differential equations [16] on a quantum computer were investigated,

and speed-ups were established.

In this paper, we consider the problem of approximating the median of an absolutely con-

tinuous distribution with respect to the Lebesgue measure. This problem is a continuous

equivalent of the problem of finding the median of the discrete sequence which is investigated
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in [7]. We assume that the distribution is given by a density function which belongs to a clas-

sical Hölder class of r times continuously differentiable functions with r-th derivatives being

Hölder functions with exponent ρ. We present almost matching upper and lower complexity

bounds in the quantum setting, and for the comparison, in the classical deterministic and

the randomized setting. We show that the quantum query ε-complexity of this problem is up

to a logarithmic factor of order ε−1/(r+ρ+1). The ε-complexity in the deterministic setting is

shown to be of order ε−1/(r+ρ) and in the randomized setting of order ε−1/(r+ρ+1/2). Thus,

quantum computation yields a speed-up relative to deterministic and randomized algorithms

over the entire range of class parameters.

We also extend the problem to the problem of computing the vector of quantiles of a contin-

uous distribution and show matching upper and lower complexity bounds for this problem.

In Section 2 the problem of computing the median is formulated and necessary definitions are

presented. The complexity bounds for this problem are presented in Section 4. In Section 3

we recall results on the approximation of the discrete mean and integration, and on the solu-

tion of initial-value problems. These will be used to prove our complexity bounds. Section 5

deals with the complexity of computing a vector of quantiles.

2 Problem formulation and basic definitions

Let f : [0, 1] → R be a real-valued, nonnegative function which integrates to 1. We are

interested in approximating the median ξ of the distribution with density function f and with

precision ε > 0 in the sense of absolute or residual error criterion. Recall that ξ is defined

as a real number from [0, 1] that solves the equation
ξ∫
0

f(t)dt = 1/2. We wish to design an

algorithm that computes a point ξ̂ which will be “close” to the exact value of ξ with respect to a

certain error models. In the absolute error criterion model the aim is to find the approximation

ξ̂, such that |ξ − ξ̂| ≤ ε, and for the residual criterion, such that

∣∣∣∣∣ ξ̂∫0 f(t)dt− 1/2

∣∣∣∣∣ ≤ ε.
We will use the Hölder class of functions given by

F r,ρ =
{
f : [0, 1]→ R | f ∈ Cr([0, 1]), |f (i)(x)| ≤ D, i = 0, 1, . . . , r,

|f (r)(x)− f (r)(y)| ≤ H|x− y|ρ for x, y ∈ [0, 1]
}
,

where Cr([0, 1]) is a class of r times continuously differentiable functions on [0, 1], r ≥ 0,

0 < ρ ≤ 1 and D,H are positive constants. Since f is a probability density function, we need

additional assumptions. Let us define the class of probability density functions

F r,ρ1 =

f ∈ F r,ρ | f(x) ≥ 0 for x ∈ [0, 1],

1∫
0

f(t)dt = 1

 .

To study the absolute error criterion we need the additional assumption that the function f

is separated form zero. Thus, for γ > 0 consider the following subclass F r,ρ1,γ of F r,ρ1

F r,ρ1,γ = {f ∈ F r,ρ1 | f(x) ≥ γ for x ∈ [0, 1]} .
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Our aim is to analyze the problem of approximating the median of an absolutely continuous

distribution with respect to the Lebesgue measure in the quantum model of computation,

and to compare the results to those in the classical deterministic and randomized settings.

Let us shortly describe these models. To compute the approximate solution ξ̂ in all settings

we need some information about the probability density functions f ∈ F , where F stands

for F r,ρ1 or F r,ρ1,γ . In the deterministic setting, we allow only the classical information given

by the values of f in some points in [0, 1], which may be chosen adaptively. The function

values are obtained by oracle calls. In the randomized setting, the information is gathered

by computing the values of f in randomly chosen points in [0, 1]. The number of points in

which the information is computed may also be a random number. Thus, the information is

a family of operators {Nω}ω∈Ω on some probabilistic space (Ω,Σ,P).

In the quantum setting, the information is obtained by applying a quantum query operator,

which is a unitary operator that depends on f and provides the function values. For a detailed

explanation of the quantum model of computation the reader is refereed to [9, 17].

The final approximation ξ̂ is obtained by applying an algorithm φ. In the deterministic

setting φ is a mapping that transforms the information N(f) into a point in [0, 1], that is

ξ̂ = φ(N(f)). In the randomized setting an algorithm is a family of mappings φ = {φω}ω∈Ω.

Thus, ξ̂ = ξ̂ω = φω(Nω(f)) is assumed to be a random variable. In the quantum setting the

algorithm is defined as a sequence of unitary operators including quantum queries applied

to an initial state. The final quantum state is measured. The measurement outcome is

transformed by a classical algorithm that produces the approximation ξ̂ ∈ [0, 1]. Due to the

randomness of the result of the measurement, the approximation ξ̂ = ξ̂ω is a random number.

We consider in this paper two error criteria: the absolute and the residual. First, we define the

local error of the algorithm φω. In the deterministic setting the superscript “ω” is redundant

and may be omitted.

The local absolute error of an algorithm φω is defined as

eωabs(f, φ
ω) =

∣∣∣ξ̂ω − ξ∣∣∣ .
The local residual error is given by

eωres(f, φ
ω) =

∣∣∣∣∣∣∣
ξ̂ω∫
0

f(t)dt− 1/2

∣∣∣∣∣∣∣ .
We assume that eωabs(f, φ

ω) and eωres(f, φ
ω) are random variables.

Let us now define the global error in the class F , where F stands for F r,ρ1 or F r,ρ1,γ depending

on whether we consider the relative or the absolute error, respectively. We are interested in

the worst behaviour of the error for any function in the class F . Let crit ∈ {abs, res}. The

global error in the deterministic setting is defined by

edet
crit(F, φ) = sup

f∈F
ecrit(f, φ).

The global error in the randomized setting is defined in a standard way (similarly as in
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[14, 16, 18, 19]) as

erand
crit (F, φ) = sup

f∈F

∫
Ω

(eωcrit(f, φ
ω))2 dP(ω)

1/2

. (1)

Note that the L1 norm may be used instead of the L2 norm here. This will not change the

obtained results. Only the constants may differ.

In the quantum setting the global error is defined probabilistically as

equant
crit (F, φ) = sup

f∈F
inf{α : P( eωcrit(f, φ

ω) > α ) ≤ 1/4}.

Hence, the success probability of φ is at least 3/4. It may be increased by taking the median

of a number of repetitions of the algorithm φ (see [9]). To get success at least 1− δ one must

make O(log(1/δ)) repetitions of the algorithm.

The cost of the algorithm φ is the number of its queries (i.e., oracle calls). Thus, in the deter-

ministic setting it is defined as the number of computed function values. In the randomized

setting by the expected number of function values. In the quantum setting we use the query

cost, which is defined as number of applications of the quantum query operator. We denote

the cost of an algorithm φ in the class F by cost(F, φ) with suitable superscripts: “det”,

“rand” or “quant” according to the setting.

For ε > 0, the ε-complexity in the class F is defined as a minimal cost of an algorithm that

approximates the median of a distribution with a density function from the class F with

precision at most ε,

comp#
ε,crit(F ) = inf

φ
{ cost#(F, φ) : e#

crit(F, φ) ≤ ε },

where # ∈ {det, rand, quant}.

3 Useful results

In this section we recall results that will help us to prove the complexity bounds on the

problem of approximating the median and the quantiles of a continuous distribution. In

particular we present complexity bounds for the problem of computing the discrete mean, the

integration problem and the problem of solving the initial-value problems. The results for

the mean will be used to derive complexity lower bounds for the problem of computing the

median, the integration results for the upper bounds of this problem, and the initial-value

results will be used for the problem of computing the vector of quantiles.

We start with the problem of computing the mean of a sequence. We will use this result to

prove the lower bounds. Let g : {0, 1, . . . , N − 1} → [0, 1] be a discrete function. We are

interested in approximation of the mean of the sequence (g(0), g(1), . . . , g(N − 1)), that is

the number
1

N

N−1∑
i=0

g(i) with precision ε > 0. Consider the deterministic, randomized and

quantum settings. The definition of the error, the cost and the complexity are similar to

those of Section 2. Denote the ε-complexity of this problem by compε(N) with a suitable

superscript indicating the setting. From the known complexity bounds for this problem (see

[20, 21, 22] for classical results and [6, 7, 22] for quantum) we have that
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• in the deterministic setting

compdet
ε (N) = Θ(N(1− 2ε)); (2)

• in the randomized setting

comprand
ε (N) = Θ(min{N, ε−2}); (3)

• in the quantum setting

compquant
ε (N) = Θ(min{N, ε−1}). (4)

We will also need the upper bounds on the complexity of approximating the integral, that

we will use to show the upper bounds. Let g : [0, 1] → R be a function from the Hölder

class F r,ρ. Our aim is to approximate
∫ 1

0
g(x)dx with a given precision ε in the sense of the

absolute error, i.e. the local error of the algorithm φ is defined as |
∫ 1

0
g(x)dx − φ(g)| and

the global errors in the class F r,ρ are defined as in Section 2. Denote the complexity of this

problem by compε(Int, F
r,ρ) (with suitable superscript). It is known (see [20, 22] for classical

results and [8, 22] for the quantum), that the complexity of this problem is bounded by

• in the deterministic setting

compdet
ε (Int, F r,ρ) = O(ε−1/(r+ρ)); (5)

• in the randomized setting

comprand
ε (Int, F r,ρ) = O(ε−1/(r+ρ+1/2)); (6)

• in the quantum setting

compquant
ε (Int, F r,ρ) = O(ε−1/(r+ρ+1)). (7)

In the randomized setting, besides of the average error, we will also need to know the distribu-

tion of the error. Let φopt be the optimal randomized algorithm. Using the upper complexity

bounds and Markov’s inequality we get

P

(∣∣∣∣∫ 1

0

g(x)dx− φopt(g)

∣∣∣∣ > 2ε

)
≤

E
(

(
∫ 1

0
g(x)dx− φopt(g))2

)
(2ε)2

≤ ε2

4ε2
=

1

4

with cost bounded by Cε−1/(r+ρ+1/2) for some positive constant C. Using the standard

technique for boosting the success probability by repeating the algorithm and taking the

median of the results we get that there exist an algorithm φ and a positive constant C̃ such

that for any g ∈ F r,ρ, ε > 0 and δ ∈ (0, 1/2) we have

P

(∣∣∣∣∫ 1

0

g(x)dx− φ(g)

∣∣∣∣ > ε

)
≤ δ
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with cost

costrand(φ) ≤ C̃ε−1/(r+ρ+1/2) log(1/δ). (8)

The proof of this statement is very similar to [9, Lemma 3].

We also need some results on the approximate solution of initial-value problems of the form{
z′(x) = g(z(x)), x ∈ [a, b]
z(a) = η

, (9)

where a < b, g : Rd → Rd, z : [a, b] → Rd. The input of an algorithm is a function g which

belongs to the Hölder class

Gr,ρd = {f : Rd → Rd| f ∈ Cr(Rd),

∣∣∣∣ ∂|α|

∂xα1
i . . . ∂xαdd

f(x)

∣∣∣∣ ≤ D, |α| = 0, 1, . . . r,∥∥∥∥ ∂|α|

∂xα1
i . . . ∂xαdd

f(x)− ∂|α|

∂xα1
i . . . ∂xαdd

f(y)

∥∥∥∥ ≤ H‖x− y‖ρ, |α| = r, x, y ∈ Rd},

where r ≥ 0, ρ ∈ (0, 1], α = (α1, . . . , αd), |α| = α1 + . . . αd, D and H are positive constants,

and ‖·‖ = ‖·‖∞. The output of an algorithm is a bounded function approximating z. Denote

the ε-complexity of this problem by compε(IV P,G
r,ρ
d ). There are known complexity bounds

of this problem (see [23] for the deterministic setting, [18, 19] for the randomized setting and

[16] for the quantum setting):

• in the deterministic setting

compdet
ε (IV P,Gr,ρd ) = O(ε−1/(r+ρ)); (10)

• in the randomized setting

comprand
ε (IV P,Gr,ρd ) = O(ε−1/(r+ρ+1/2)); (11)

• in the quantum setting

compquant
ε (IV P,Gr,ρd ) = O(ε−1/(r+ρ+1−γ)), (12)

for arbitrary γ ∈ (0, 1) (constant in big-O notation in the quantum setting may depend on

γ).

4 Complexity bounds for median approximation

4.1 Upper bounds

First we will present a theorem that states the upper complexity bounds on the approximation

of the median of an absolutely continuous distribution in the deterministic, randomized and

quantum setting for both: the absolute and the residual error criterion.
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Theorem 1 There exist positive constants Cquant
abs , Cdet

abs and Crand
abs which depend on r, ρ, D

and γ, and Cquant
res , Cdet

res and Crand
res which depend on r, ρ and D, such that for any ε > 0 the

ε-complexity of the approximation of the median satisfies

compquant
ε,abs (F r,ρ1,γ ) ≤ Cquant

abs

(
1

ε

)1/(r+ρ+1)

log
1

ε
log log

1

ε
,

compdet
ε,abs(F

r,ρ
1,γ ) ≤ Cdet

abs

(
1

ε

)1/(r+ρ)

log
1

ε
,

comprand
ε,abs(F

r,ρ
1,γ ) ≤ Crand

abs

(
1

ε

)1/(r+ρ+1/2)

log2 1

ε
,

compquant
ε,res (F r,ρ1 ) ≤ Cquant

res

(
1

ε

)1/(r+ρ+1)

log
1

ε
log log

1

ε
,

compdet
ε,res(F

r,ρ
1 ) ≤ Cdet

res

(
1

ε

)1/(r+ρ)

log
1

ε
,

comprand
ε,res(F

r,ρ
1 ) ≤ Crand

res

(
1

ε

)1/(r+ρ+1/2)

log2 1

ε
.

Proof: To prove this theorem we construct general algorithms φdet, φrand and φquant. These

algorithms combine the bisection method for solving the nonlinear equation G(x) = 0 for

G(x) =
x∫
0

f(t)dt−1/2 and the numerical integration. For the positive parameter ε and xi, i =

1, 2, . . . being the successive bisection points let Gi be the approximation of G(xi) computed

by optimal deterministic, randomized or quantum integration algorithm with precision ε with

probability at least 1−δrand/quant in the randomized and quantum setting, respectively, where

δrand = ε2/dlog ε−1e and δquant = 1/(4dlog ε−1e). That is

|Gi −G(xi)| ≤ ε with probability at least 1− δrand/quant. (13)

The successive interval is chosen based on these approximate values Gi. Note that the inte-

gration problem in Section 3 is defined on interval [0, 1]. Here, to compute G(xi), we need

to compute the integral on [0, xi] for xi ∈ [0, 1]. However, we may pass to the interval [0, 1]

by substitution of variable and integrate the function f(xit) instead of f(t). Such defined

function still belongs to F r,ρ and bounds on the cost and the error of the algorithm will not

change.

The bisection algorithm works in the following steps:

1. Set α = 0, β = 1 and i = 1.

2. Set xi = α+β
2 . Compute Gi by the optimal integration algorithm in the respective

setting.

If |Gi| ≤ ε or i = imax := dlog ε−1e then finish and return ξ̂ = xi.
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3. If Gi > 0 then set α := α and β := xi.

If Gi < 0 then set α := xi and β := β.

Set i := i+ 1. Go to step 2.

Note that the bisection procedure finishes when for some i0, |Gi0 | ≤ ε or i0 = imax = dlog ε−1e.
The algorithm returns the value ξ̂ = xi0 . In all previous steps i = 1, 2, . . . , i0 − 1 we have

|Gi| > ε. So, due to (13) if Gi ≥ 0 then G(xi) = Gi + G(xi) − Gi ≥ Gi − ε ≥ 0 (with

probability at least 1 − δrand/quant in the randomized and quantum settings). Similarly, if

Gi < 0, then with the same probability we have G(xi) < 0. So, with probability at least

(1− δrand/quant)imax the last bisection interval contains the median. If the algorithm finishes

when i0 = imax, then with probability at least (1− δrand/quant)imax we have |ξ− ξ̂| ≤ ε. With

the same probability, if the algorithm finishes when |Gi0 | ≤ ε, then

|G(xi0)| ≤ |G(xi0)−Gi0 |+ |Gi0 | ≤ 2ε.

So, we have

|G(ξ̂)−G(ξ)| ≤ 2ε or |ξ − ξ̂| ≤ ε with probability at least (1− δrand/quant)imax . (14)

We now state the error bounds. Consider first the residual error. Due to (14), |G(ξ̂)−G(ξ)| ≤
2ε or |G(ξ̂)−G(ξ)| ≤ supx∈[0,1] |G′(x)| |ξ̂ − ξ| ≤ D|ξ̂ − ξ| ≤ Dε. Thus,

eres(f, φ
det/rand/quant) ≤ max{2, D}ε.

This holds with probability at least (1 − δrand/quant)imax ≥ 1 − imax δ
rand/quant. Recall,

that imax = dlog ε−1e, δrand = ε2/dlog ε−1e and δquant = 1/(4dlog ε−1e). Thus, in the ran-

domized setting 1 − imax δrand = 1 − dlog ε−1e ε2/dlog ε−1e = 1 − ε2 and 1 − imax δquant =

1− dlog ε−1e/(4dlog ε−1e) = 3/4 in the quantum settings.

Hence we have

equant
res (F r,ρ1 , φquant) ≤ max{2, D}ε (15)

and

edet
res (F r,ρ1 , φdet) ≤ max{2, D}ε. (16)

To get the residual error bound in the randomized setting, note that always eωres(f, φ
rand) ≤

1/2. So we have in the randomized setting

(
erand
res (F r,ρ1 , φ)

)2
= sup
f∈F r,ρ1

∫
Ω

(eωres(f, φ
rand))2dP(ω)

= sup
f∈F r,ρ1

( ∫
eωres(f,φ

rand)≤max{2,D}ε

(eωres(f, φ
rand))2dP(ω)+

∫
eωres(f,φ

rand)>max{2,D}ε

(eωres(f, φ
rand))2dP(ω)

)
≤ (max{2, D})2

ε2 + 1/4ε2.

Thus,

erand
res (F r,ρ1 , φ) ≤

√
(max{2, D})2 + 1/4 ε. (17)
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Let us pass to the absolute error. Recall that we have an additional assumption, that f(x) ≥ γ
for all x ∈ [0, 1]. Note that G(ξ̂) − G(ξ) = f(c)(ξ̂ − ξ) for some c ∈ [0, 1]. Hence, we have

|ξ̂ − ξ| ≤ |G(ξ̂) − G(ξ)|/γ. So, due to (14), |ξ̂ − ξ| ≤ max{1, 2/γ}ε with probability at least

1 − imax δrand/quant in the randomized and quantum settings. Hence, as in the case of the

residual criterion, we have

equant
abs (F r,ρ1,γ , φ

quant) ≤ max{1, 2/γ}ε, (18)

edet
abs(F

r,ρ
1,γ , φ

det) ≤ max{1, 2/γ}ε (19)

and

erand
abs (F r,ρ1,γ , φ

rand) ≤
√

(max{1, 2/γ})2 + 1 ε. (20)

Let us state the cost bounds. In the quantum setting, cost of one bisection step is the cost

of computing one integral in G(xi). Recall that δquant = 1/(4dlog ε−1e). Due to (7) this

cost is for both criteria bounded by (the cost bound here is multiplied by a factor of order

log(1/δquant) to get the success probability at least 1− δquant)

O

((
1

ε

)1/(r+ρ+1)

log(1/δquant)

)
= O

((
1

ε

)1/(r+ρ+1)

log(4dlog ε−1e)

)

= O

((
1

ε

)1/(r+ρ+1)

log log ε−1

)
.

The maximum number of bisection steps is at most imax = dlog ε−1e. So, the total cost is

costquant(F r,ρ1 , φ) � costquant(F r,ρ1,γ , φ) = O

((
1

ε

)1/(r+ρ+1)

log ε−1 log log ε−1

)
. (21)

In the deterministic setting, due to (5), the cost of one bisection step (cost of computing the

approximation Gi of G(xi)) for both criteria is of order O
(

(1/ε)
1/(r+ρ)

)
. The number of

steps is at most imax = dlog ε−1e. Thus, the total cost is bounded by

costdet(F r,ρ1 , φdet) � costdet(F r,ρ1,γ , φ
det) = O

((
1

ε

)1/(r+ρ)

log ε−1

)
. (22)

In the randomized setting, due to (8), since δrand = ε2/dlog ε−1e, the cost of one bisection

step is

O

((
1

ε

)1/(r+ρ+1/2)

log(1/δrand)

)
= O

((
1

ε

)1/(r+ρ+1/2)

log
log ε−1

ε2

)

= O

((
1

ε

)1/(r+ρ+1/2)

(log log ε−1 + log ε−2)

)
= O

((
1

ε

)1/(r+ρ+1/2)

log ε−1

)
.

So, the total cost in the randomized setting is

costrand(F r,ρ1 , φrand) � costrand(F r,ρ1,γ , φ
rand) = O

((
1

ε

)1/(r+ρ+1/2)

log2 ε−1

)
. (23)



Maciej Goćwin 961

The bounds (15–20) show that in all cases the accuracy is O(ε). Thus (21–23) prove the

theorem statement.

4.2 Lower bounds

The following theorem presents the lower bounds on the complexity of approximating the

median in the deterministic, randomized and quantum settings.

Theorem 2 There exist positive constants cquant
abs , cdet

abs, c
rand
abs , cquant

res , cdet
res , crand

res and ε0, such

that for any ε ∈ (0, ε0)

compquant
ε,res (F r,ρ1 ) ≥ cquant

res

(
1

ε

)1/(r+ρ+1)

,

compdet
ε,res(F

r,ρ
1 ) ≥ cdet

res

(
1

ε

)1/(r+ρ)

,

comprand
ε,res(F

r,ρ
1 ) ≥ crand

res

(
1

ε

)1/(r+ρ+1/2)

,

compquant
ε,abs (F r,ρ1,γ ) ≥ cquant

abs

(
1

ε

)1/(r+ρ+1)

,

compdet
ε,abs(F

r,ρ
1,γ ) ≥ cdet

abs

(
1

ε

)1/(r+ρ)

,

comprand
ε,abs(F

r,ρ
1,γ ) ≥ crand

abs

(
1

ε

)1/(r+ρ+1/2)

.

Proof: We will prove the theorem above by reducing the problem of approximating the mean

of the discrete sequence to the problem of approximating the median of the distribution. Let

ε1 > 0 be a parameter to be specified later on. The class F r,ρ contains n = Θ
(
ε
−1/(r+ρ)
1

)
functions hi, i = 1, 2, . . . , n, with disjoint supports in the interval [0, 1/4] and gi, i = 1, 2, . . . , n

with disjoint supports in the interval [3/4, 1] such that

1∫
0

hi(x)dx =

1∫
0

gi(x)dx = ε
1+1/(r+ρ)
1 , max

x∈[0,1]
hi(x) = max

x∈[0,1]
gi(x) = c ε1, i = 1, 2, . . . n

for some constant c (see [20], p. 35). The support of hi (i = 1, 2, . . . , n) is the interval
(
i−1
4n ,

i
4n

)
and the support of gi is

(
3
4 + i−1

4n ,
3
4 + i

4n

)
. Thus all functions hi for i = 1, 2, . . . , n are equal

to 0 outside the interval [0, 1/4] and all functions gi are equal to 0 outside the interval [3/4, 1].

Let x1, x2, . . . , xn be a sequence of real numbers in [0, 1]. Then the function fε1(x) = 1 +
n∑
i=1

xihi(x)−
n∑
i=1

xigi(x) belongs to the class F r,ρ1,γ ⊂ F
r,ρ
1 .

Note that for sufficiently small ε1 we have 2/3 ≤ fε1(x) ≤ 2 for all x ∈ [0, 1]. Let ξ be the
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median of fε1 . Since 1/2 =
∫ ξ

0
fε1(x)dx = ξ fε1(η) for some η ∈ [0, 1], we have ξ = 1/(2fε1(η))

and 1/4 ≤ ξ ≤ 3/4. This yields that on the interval [0, ξ] all functions gi are equal to 0. Thus,

1/2 =

ξ∫
0

fε1(x)dx =

ξ∫
0

(
1 +

n∑
i=1

xihi(x)

)
dx =

1/4∫
0

(
1 +

n∑
i=1

xihi(x)

)
dx+

ξ∫
1/4

1dx

= 1/4 + ε
1+1/(r+ρ)
1

n∑
i=1

xi + ξ − 1/4.

Thus
n∑
i=1

xi =
1/2− ξ
ε

1+1/(r+ρ)
1

.

Suppose that algorithm φ (deterministic, randomized or quantum) computes the median of

the distribution with a density function f with error at most ε and cost Q, for any function

f ∈ F r,ρ1,γ , and in particular for f = fε1 . Denote the result of the algorithm φ for function fε1
by ξ̂. Note that ∣∣∣∣∣ 1n

n∑
i=1

xi −
1/2− ξ̂

nε
1+1/(r+ρ)
1

∣∣∣∣∣ =
|ξ̂ − ξ|

nε
1+1/(r+ρ)
1

.

For the residual error using fε1(x) ≥ 2/3 we have∣∣∣∣∣
∫ ξ̂

0

fε1(x)dx−
∫ ξ

0

fε1(x)dx

∣∣∣∣∣ = |fε1(η)| |ξ̂ − ξ| ≥ 2

3
|ξ̂ − ξ|,

for some η ∈ [0, 1]. Hence, algorithm φ also computes the mean
1

n

n∑
i=1

xi with error at most

Cε

nε
1+1/(r+ρ)
1

= Θ

(
ε

ε1

)
, where C = 1 for the absolute criterion and C = 3/2 when the residual

criterion is used.

We now use lower complexity bounds for the problem of computing the mean of n real num-

bers from [0, 1] presented in Section 3.

Consider first the quantum setting. Recall that n = Θ
(
ε
−1/(r+ρ)
1

)
. We take ε1 = ε(r+ρ)/(r+ρ+1).

From (4) the cost Q of the algorithm φ satisfies

Q = Ω (min {n, ε1/ε}) = Ω
(
ε−1/(r+ρ+1)

)
.

Let us pass to the deterministic setting. We have that n ≥ Gε−1/(r+ρ)
1 for some G > 0. Take

ε1 = 4Cε/G. From (2) we have that the cost of algorithm φ is bounded by

Q = Ω

(
n

(
1− 2Cε

nε
1+1/(r+ρ)
1

))
= Ω

(
n− 2Cε

ε
1+1/(r+ρ)
1

)

= Ω

(
Gε
−1/(r+ρ)
1 − 1

2
Gε1ε

−1−1/(r+ρ)
1

)
= Ω

(
ε−1/(r+ρ)

)
.
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In the randomized setting, we take ε1 = ε(r+ρ)/(r+ρ+1/2). From (3) we have

Q = Ω
(

min
{
n, (ε1/ε)

2
})

= Ω
(
ε−

2
2(r+ρ)+1

)
= Ω

(
ε−

1
r+ρ+1/2

)
.

The cost of any algorithm for computing the median must be at leastQ. This yields the desired

lower bounds on the complexity in the deterministic, randomized and quantum settings.

Note that, since the lower and the upper complexity bounds match up to a logarithmic factor,

the algorithms presented in Section 4.1 are almost optimal.

5 Complexity bounds for computing of quantiles

5.1 Problem formulation

In this section we consider the problem of approximation of the vector of quantiles of an

absolute continuous distribution. Let f be a density function. Suppose that for k ∈ N we are

given a vector α = (α1, α2, . . . , αk) ∈ [0, 1]k. Our aim is to approximate the vector of quantiles

ξ = (ξ1, ξ2, . . . , ξk), such that
∫ ξ1

0
f(x)dx = α1,

∫ ξ2
0
f(x)dx = α2, . . . ,

∫ ξk
0
f(x)dx = αk. We

assume here that function f is separated from zero and belongs to the Hölder class F r,ρ1,γ

defined in Section 2. We use the absolute error criterion, thus the local error of algorithm φ

approximating the vector of quantiles ξ for the density function f is defined by:

e(f, φ) = max
i=1,...,k

|ξ̂i − ξi|, (24)

where ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂k) is the approximation returned by the algorithm φ. The global error

in the class F r,ρ1,γ , the cost and the complexity are defined similarly as in Section 2.

5.2 Complexity bounds

The following theorem presents the complexity bounds for the problem of approximation of

the vector of the quantiles.

Theorem 3 There exist positive constants Cquant, Cdet, Crand, cquant, cdet, crand and ε0

which depend on r, ρ, D and γ, such that for any k ∈ N, α ∈ [0, 1]k and ε ∈ (0, ε0) the

ε-complexity of quantiles approximation problem satisfies

cquant

(
1

ε

)1/(r+ρ+1)

≤ compquant
ε,abs (F r,ρ1,γ ) ≤ Cquant

(
1

ε

)1/(r+ρ+1−δ)

,

cdet

(
1

ε

)1/(r+ρ)

≤ compdet
ε,abs(F

r,ρ
1,γ ) ≤ Cdet

(
1

ε

)1/(r+ρ)

,

crand

(
1

ε

)1/(r+ρ+1/2)

≤ comprand
ε,abs(F

r,ρ
1,γ ) ≤ Crand

(
1

ε

)1/(r+ρ+1/2)

for an arbitrary δ ∈ (0, 1) (Cquant may depend on δ).
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Proof: Let f ∈ F r,ρ1,γ . Define the function F : [0, 1] → [0, 1] by F (x) =
∫ x

0
f(t)dt. Let

G = F−1 be the inverse of F . Then, ξ = (ξ1, ξ2, . . . , ξk) = (G(α1), G(α2), . . . , G(αk)). Note

that G is the solution of the initial-value problem

G′(x) =
1

f(G(x))
, x ∈ [0, 1], G(0) = 0. (25)

Since f ∈ F r,ρ1,γ , the function 1/f(x) is also Hölder continuous with the same parameters r

and ρ, but with different constant D̃ dependent on D, r and γ. Let l be the approximation

of G returned by the optimal algorithm solving initial-value problems in the Hölder class

(deterministic, randomized or quantum). Then, the approximation of ξ is defined by

ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂k) = (l(α1), l(α2), . . . , l(αk)).

The upper bounds on the complexity of the problem of approximating of the vector of quantiles

follow directly from the upper bounds on the problem of solving the initial-value problems

presented in Section 3.

The lower bounds follow from the lower bounds on the complexity of approximating of the

median presented in Section 4.2.

6 Remarks

Note that the upper bounds for the problem of approximating the vector of quantiles improve

slightly the bounds on the problem of approximating the median in the deterministic and

randomized setting for the absolute error criterion (by a logarithmic factor). This is the result

of different proof techniques. However, the algorithm for computing the median presented in

Section 4.1 is much simpler. These bounds match the lower complexity bounds. All the other

bounds are almost sharp.

The information cost of the algorithm for computing the vector of quantiles (and so the

complexity upper bounds for this problem) does not depend on the parameter k. Only the

combinatory cost grows with the length k of the vector of quantiles.

Note that in the definition of the error in the randomized setting any Lp norm for 1 ≤ p <∞
instead of L2 norm may be used and the result will not change significantly. The upper bounds

for the residual error follow from the local residual error and the derivation of equation (17).

The upper bounds for the absolute error follow similarly. The lower bounds for the error in

Lp norm can be derived similarly as in Section 4.2 using the complexity of computing the

mean subject to the choice of the norm.
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Appendix A

We use in this paper standard definitions of the error in the randomized and quantum settings
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– the probabilistic error in the quantum setting and the expected error in the randomized

setting. These definitions are not equivalent. The definition in the randomized setting seems

to be more demanding. However, for the problems considered in this paper one may simply

pass from one definition to the other. To justify the speed-up of a quantum computer it

is sufficient to show suitable lower complexity bounds in the randomized setting using the

bounded probability error (as in the quantum setting) or upper complexity bounds in the

quantum setting using the expected error. It is quite straightforward to prove that the

bounded probability error cannot significantly reduce the randomized complexity. Suppose

that we have the optimal randomized algorithm having error ε with probability p > 3/4.

Using the standard technique of boosting the success probability by repeating the algorithm

O(log(ε−1)) times and taking the median of the results (see [9, Lemma 3]) we get an algorithm

with error ε with probability 1 − ε2. Since the error is always deterministically bounded by

1 we can show similarly as (17) that the average error of this algorithm is bounded by O(ε).

Thus, the cost of the boosted randomized algorithm is bounded from below by the complexity

bounds from Theorem 2 and the cost of the original randomized algorithm may be reduced

only by a factor proportional to (log(ε−1))−1.

On the other hand, it is easy to show that when we define the error in the quantum setting

similarly as in the randomized setting the upper complexity bounds for the approximation of

the median will grow only by a logarithmic factor. It is sufficient to take the failure probability

parameter δquant = ε2/dlog ε−1e, similarly as in the randomized setting, in the definition of

the algorithm and repeat the reasoning leading to (17).

Note that for absolute error the assumption that the function is bounded away from zero is

necessary at least in some neighbourhood of the median. Without this assumption, in all

settings, the ε-complexity of approximating the median in infinite for sufficiently small ε.

Consider the the deterministic setting. Let fm,δ ∈ F r,ρ be the function with support in the

interval (m−δ/2,m+δ/2) and with the median equal to m. Let a =
∫ 1

0
fm,δ(t)dt. Let g ∈ F r,ρ

be the function, such that g(x) = 0 for all x ∈ [1/4, 3/4],
∫ 1/4

0
g(t)dt =

∫ 1

3/4
g(t)dt = 1/2−a/2.

Consider the deterministic algorithm φ that uses n function values. Let x1, x2, . . . xn be the

information points of algorithm φ for function g. For δ < 1/(8(n + 1)) there exist points

m1 ∈ [1/4, 3/8] such that fm1,δ(xi) = 0 for i = 0, 1, . . . , n, and m2 ∈ [5/8, 3/4] such that

fm2,δ(xi) = 0 for i = 0, 1, . . . , n. Define two functions h1 = g + fm1,δ and h2 = g + fm2,δ

belonging to F r,ρ1 . Both functions share the same information and are indistinguishable by

the algorithm φ. The medians of these functions are equal to m1 and m2, respectively. Since

m2 −m1 ≥ 1/4, the error of algorithm φ is at least 1/8. Thus, the problem cannot be solved

with precision less than 1/8.

We can prove in the similar way (see the proof of Thm 1 in [14]) that the complexity in the

randomized setting is infinite for sufficiently small ε. In the quantum setting the statement

follows from the fact that the quantum qubit ε-complexity (the minimal number of qubits

needed to solve the problem with precision ε) is bounded from below by the deterministic

2ε-complexity (see [24, Thm 8.1]). Thus, when the problem is unsolvable in the deterministic

setting, it remains unsolvable in the quantum setting.


