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We characterize the amount of entanglement that is sufficient to play any XOR game

near-optimally. We show that for any XOR game G and ε > 0 there is an ε-optimal
strategy for G using dε−1e ebits of entanglement, irrespective of the number of questions

in the game. By considering the family of XOR games CHSH(n) introduced by Slofstra
(Jour. Math. Phys. 2011), we show that this bound is nearly tight: for any ε > 0 there

is an n = Θ(ε−1/5) such that Ω(ε−1/5) ebits are required for any strategy achieving bias

that is at least a multiplicative factor (1− ε) from optimal in CHSH(n).
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1 Introduction

Perhaps the most striking demonstration of the departure of quantum systems from classical

behavior is given by the Bell test. Recent experiments [1, 2, 3] establish “all-loopholes-closed”

validations of the simplest such test, the CHSH inequality [4]. Although they do not reach

the maximum quantum bound of 2
√

2, the observed violation and statistical confidence are

high enough to provide a solid proof of quantumness of the underlying physical system.

Research in quantum cryptography and self-testing in recent years has established that a

large violation of the CHSH inequality goes much further than a generic certificate of non-

classical behavior: it can serve as a guarantee that the underlying quantum system is locally

isometric to one that is in a Bell pair |φ+〉 = 1√
2
(|00〉+|11〉). This can be interpreted as a form

of “self-test” for the Bell pair, which certifies its presence solely via observable correlations.
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618 Entanglement of approximate quantum strategies in XOR games

Can more complex entangled states similarly be verified by the violation of a suitable

Bell inequality? Due to its importance for experiments as well as quantum cryptography,

the question has been extensively studied. The most relevant state of the art for us is the

following: for any dimension d there exists a Bell inequality whose maximum violation by a

quantum system can only be achieved if the system is locally isometric to a d-dimensional

maximally entangled state [5]. With the exception of the results from [6] and [7] (to which we

return in more detail below), however, all known self-tests for d-dimensional entangled states

require either a number of inputs [8, 9, 10, 11] or outputs [5, 12] that scales at least linearly

with d, i.e. the test has size exponential in the number of ebits tested.

The situation is even less satisfying as soon as one attempts to certify an even slightly

noisy system, where by noisy system we mean one that will only lead to a violation that

approaches the quantum optimum up to a multiplicative factor (1 − ε) for some ε > 0. The

performance of known tests scales poorly with the “robustness parameter” ε, which with the

recent exception of [10] is required to be inverse exponential in the number of ebits tested

before any consequence can be drawn.

We study the question in the context of the simplest kind of Bell inequalities, two-party

binary output correlation inequalities. These are bipartite Bell inequalities where each site

can be measured using any number of two-outcome local observables, but only expectation

values of the correlators of the outcomes obtained at each site are taken into account. Such

inequalities can be equivalently formulated using the language of two-player XOR games,

that we adopt from now on. An XOR game is a two-player one-round game G in which the

players’ answers are restricted to be a single bit each, and the verifier’s acceptance criterion

only depends on the parity of these bits. Any binary output correlation inequality can be

mapped into an XOR game and vice-versa. The bias β∗ of the XOR game, defined as twice

the maximum deviation from 1/2 of the players’ success probability, is the quantity that plays

the role of the quantum bound for the Bell inequality.

Results. Our main result is that XOR games can provide very efficient tests for high-

dimensional entanglement, while at the same time being noise-robust — to some extent. In

the positive direction we show that for any ε > 0, there exists an XOR game with Θ(ε−1/5)

inputs for Alice and Θ(ε−2/5) inputs for Bob such that any strategy that comes within a

multiplicative (1− ε) of the optimal quantum bias requires the use of a state that is close to

a tensor product of Ω(ε−1/5) EPR pairs. Thus both the number of settings and the certified

number of ebits are inverse polynomial in ε. (The number of outcomes, of course, is only two.)

In the negative direction we show that, up to the exponent −1/5, no XOR game can lead to

a better scaling: for any XOR game and any ε > 0 there exists a strategy coming within a

multiplicative factor (1 − ε) of the optimal bias that uses O(ε−1) EPR pairs (irrespective of

the number of inputs in the game).

For our positive result we consider a family of XOR games introduced by Slofstra [6].

Definition 1 For an integer n ≥ 2, the gamecCHSH(n) has n possible questions for Alice,

indexed by integers i ∈ {1, . . . , n}, and n(n − 1) possible questions for Bob, indexed by pairs

(i, j) ∈ {1, . . . , n}2 such that i 6= j. The game can be described as follows: the referee selects

a pair (i, j) ∈ {1, . . . , n}2 such that i < j and (x, y) ∈ {0, 1}2 uniformly at random. If x = 0

cThis game should not be confused with the CHSHq game introduced in [13].
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the referee sends i to Alice, and if x = 1 the referee sends her j. If y = 0 the referee sends

(i, j) to Bob, and if y = 1 the referee sends him (j, i). The players have to provide answers

a, b ∈ {0, 1} such that a⊕ b = x ∧ y.
Note that CHSH(2) is the usual CHSH game, for which the optimal bias is β∗(CHSH) =√

2/2. Slofstra showed that β∗(CHSH(n)) =
√

2/2 for all n ≥ 2, and that strategies achieving

the optimum bias in CHSH(n) require a Hilbert space of dimension 2bn/2c. Our theorem

implies a smooth degradation of this bound for ε > 0.

Theorem 1 Let ε > 0, let n = Θ(ε−1/5) be an integer and (Ai, Bij , |ψ〉) a strategy in

CHSH(n) achieving bias at least (1 − ε)β∗(CHSH(n)). Then |ψ〉 has entanglement entropy

Ω(ε−1/5).

Switching the parameters around, Theorem 1 implies in particular that for any integer

n ≥ 2 and ε = O(n−5), any ε-optimal strategy in CHSH(n) requires entanglement of dimen-

sion 2Ω(n). The proof of Theorem 1 in fact yields a stronger ”rigidity” result for the game

CHSH(n), showing that for any strategy achieving bias at least (1 − ε) times the optimum

in CHSH(n) and any r ≤ bn/3c there are local isometries that map the strategy to one that

is within distance O(r5/2
√
ε) of a tensor product of r ideal strategies for the game CHSH(2).

The proof of Theorem 1 is given in Section 4. The proof proceeds in two steps. First we

observe that CHSH(n) contains
(
n
2

)
copies of the CHSH game embedded inside it, one for

each pair {i, j} ⊆ {1, . . . , n}. By applying well-known rigidity results for the CHSH game

we obtain approximate anti-commutation relations between each pair of Alice’s observables.

Second, we show that any such n pairwise approximately anti-commuting observables can be

used to construct m = bn/3c pairs (Xk, Zk) of anti-commuting observables such that any

two observables belonging to distinct pairs approximately commute. Finally, in the third and

last step we apply a theorem due to [14] to show that the observables constructed in the

second step are (up to a local isometry) close to commuting pairs of Pauli observables. The

lower bound on entanglement entropy follows from an application of strong subadditivity and

Fannes’ inequality.

Our negative result complements the lower bound from Theorem 1. We prove the following:

Theorem 2 Let ε > 0 and let G be an XOR game. Then there exists an ε-optimal strategy

for G using a maximally entangled state in 2dε
−1e dimensions.

The same result, with a slightly weaker upper bound d = 2O(ε−2), is attributed to Regev

in [15]. The improvement from ε−2 to ε−1 requires a slightly more careful analysis of the

performance of the randomly projected vectors in the semidefinite program associated to the

XOR game. Although its implication for XOR games has not previously been spelled out,

the improved bound is not new, and can be obtained in a number of different ways. For

instance it follows from the analysis of Krivine rounding schemes in [16, Theorem 1.1], and

was also obtained using Riesz’s rounding technique in [17, Theorem 4]. We provide a different

analysis based on a rounding technique which was used in [18] to analyze the non-commutative

Grothendieck inequality and originates in Hirschman’s proof [19] of the Hadamard three-line

theorem in complex analysis. Details are given in Section 3.

Applications. Our result can be interpreted as a robust, efficient self-test for the tensor

product of n EPR pairs: given any integer n, setting ε = O(n−5) any strategy in CHSH(3n)

that achieves a bias at least (1−ε) times the optimal must be using a state that is close to an
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n-qubit maximally entangled state. The game CHSH(3n) only has O(n2) inputs per player,

and it thus provides a very efficient test, with the number of inputs scaling only quadratically

with the number of ebits tested.

The work of Reichardt et al. [20] demonstrates that self-testing results for the tensor

product of many EPR pairs can form the basis for much more complex tasks, such as the

classical delegation of an arbitrary quantum circuit to two isolated provers. It would be

interesting to investigate whether the analysis of the CHSH(n) game that we give here could

be leveraged to improve the efficiency of their protocol. Our self-testing result gives access

to n mutually anti-commuting pairs of observables on Alice’s system, which can be combined

to create arbitrary Pauli operators. Paulis of high weight will require taking the product of

many observables, yielding a corresponding loss in error. However, one can easily imagine

modifying the CHSH(n) game by introducing inputs associated with specific Pauli operators

one is interested in.

In [21] the game CHSH(n) is used to test effective anti-commutators, from which a form

of device-independent uncertainty relation can be derived. The stronger guarantees that come

out of our analysis may have further applications to device-independent cryptography.

Related works. The study of optimal strategies in XOR games was initiated by Tsirelson,

who shows [22, 23] that for any XOR game with n and m inputs per party there is an optimal

strategy that uses a maximally entangled state of dimension at most 2br/2c, where r is the

largest integer that satisfies
(
r+1

2

)
≤ n+m− 1 and r ≤ min(m,n). Slofstra [6] gives a slight

variant of the CHSH(n) game with m = n(n − 1)/2, that requires b(n − 1)/2c ebits to play

optimally and thus shows that Tsirelson’s bound is asymptotically tight. [24, Section 3.3]

gives a family of games that exactly match Tsirelson’s bound.

In terms of nearly-optimal strategies in XOR games, the best prior lower bound on the

dimension of the Hilbert space scales as 1/ε; precisely d1/(2ε)e [25]. In [6] a slightly weaker

lower bound of Ω(ε−1/12) is shown based on the theory of approximate representations of

C∗-algebras, for the same family of games CHSH(n) as considered here.

In [7] an analogous result to Theorem 1 is proved, except that the result applies to a game

that is not an XOR game. As already mentioned, the proof of Theorem 1 relies on the main

technical component of [7]. The advantage of our result is that the game is slightly simpler

and, as shown by Theorem 2, is nearly-tight for XOR games.

[26] analyzes nearly-optimal strategies for the CHSH(n) game from a representation theory

point of view. That paper shows that an adaptation of the group-averaging construction gives

an approximately intertwining operator between the canonical optimal strategy for CHSH(n)

and any given nearly-optimal strategy.

We mention in passing that there seem to be at least three different ways to formalize

the intuition that nearly optimal strategies must be close to optimal ones: showing that the

defining relations for a certain algebra are approximately satisfied as in [6], constructing local

isometries as in [27] and as we also do here, and constructing an approximately intertwining

operator as in [26]. An interesting open problem is to establish relations between these three

approaches.
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2 Preliminaries

2.1 Notation

For a finite set S we write Ei∈S for |S|−1
∑
i∈S . All Hilbert spaces in this paper are finite-

dimensional; we use a calligraphic letter such as H,HA,HB to denote a finite-dimensional

Hilbert space. Given A ∈ L(H),dthe absolute value |A| is defined as the unique positive

square root of A†A. For A ∈ L(H) we write A−1 or (when there is no ambiguity) 1
A for the

Moore-Penrose pseudo-inverse of A.

An observable is a Hermitian operator A ∈ L(H) that squares to identity. We will call an

observable balanced if its 1-eigenspace and its (-1)-eigenspace have the same dimension. Note

that the statement “A is a balanced observable” is equivalent to the statement “there exists

an observable B that anti-commutes with A”.

For two vectors |ϕ〉, |ψ〉 ∈ H and δ > 0, we write |ϕ〉 ≈δ |ψ〉 to mean ‖|ϕ〉 − |ψ〉‖ = O(δ),

where the implicit constant is universal.

We use {A,B} = AB + BA and [A,B] = AB − BA to denote the anti-commutator and

commutator. We will often consider all four commutators between two pairsX,Z andX ′, Z ′ of

anti-commuting observables. In order to avoid having to write [X,X ′], [X,Z ′], [Z,X ′], [Z,Z ′]

all the time, we adopt the following notational convention: we write “[P,Q′], where each of

P,Q stands for either X or Z”. Thus, for example, “‖[P,Q′]|ψ〉‖ < ε, where each of P,Q

stands for either X or Z”, means

‖[X,X ′]|ψ〉‖ < ε , and ‖[X,Z ′]|ψ〉‖ < ε , and ‖[Z,X ′]|ψ〉‖ < ε , and ‖[Z,Z ′]|ψ〉‖ < ε .

2.2 XOR games

For integers n and m, an n × m XOR game G is specified by a real n × m matrix, that

we often also call G, such that
∑
i,j |Gi,j | = 1. A strategy for the players in G is given by

finite-dimensional Hilbert spaces HA and HB, a collection of n observables Ai ∈ L(HA) for

the first player, m observables Bj ∈ L(HB) for the second player, and a state |ψ〉 ∈ HA ⊗HB

(in any finite dimension). The bias of the strategy is defined as

β∗(G;Ai, Bj , |ψ〉) :=
∑
i,j

Gi,j〈ψ|Ai ⊗Bj |ψ〉.

The bias of a game is the maximum bias achievable over any finite-dimensional strategy:

β∗(G) := sup
d,Ai,Bj ,|ψ〉

∣∣∣∑
i,j

Gi,j〈ψ|Ai ⊗Bj |ψ〉
∣∣∣,

where the supremum is taken over all integers d, observables Ai, Bj in Cd and states |ψ〉 ∈ Cd⊗
Cd. Given ε > 0 we say that a strategy (Ai, Bj , |ψ〉) in G is ε-optimal if β∗(G;Ai, Bj , |ψ〉) ≥
(1− ε)β∗(G).

Tsirelson [22] proved the following fact that will be relevant for our analysis: for any

collection xi, yj ∈ Rd of real unit vectors there exists observables Ai, Bj ∈ L(CD) for D ≤
2bd/2c and |ψ〉 = D−1/2

∑D
i=1 |i〉|i〉 such that 〈ψ|Ai⊗Bj |ψ〉 = xi ·yj for every i, j. (Tsirelson’s

d L(H) is the space of bounded linear operators on H
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construction is based on the use of a representation of the Clifford algebra.) This observation

allows to prove that the following semidefinite relaxation of the bias is tight:

β∗(G) = SDP(G) = sup
∑
i,j

Gi,j xi · yj (1)

xi, yj ∈ Rm+n

‖xi‖ = ‖yj‖ = 1.

We refer to [15] for a proof of this fact.

For the game CHSH = CHSH(2) very good results are known characterizing the structure

of ε-optimal strategies. We use the following lemma from [27] (see also [28, Lemma 4.2]).

Lemma 1 (CHSH rigidity) Let δ > 0 and ({A0, A1}, {B0, B1}, |ψ〉) a δ-optimal strategy

in CHSH. Then there exists local isometries U, V and a state |ψ′〉 such that, letting |φ+〉 =

(1/
√

2)(|00〉+ |11〉) and X,Z the single-qubit Pauli operators,

‖U ⊗ V |ψ〉 − |φ+〉|ψ′〉‖ = O(
√
δ), (2)

max
{
‖
(
A0 − U†(X ⊗ Id)U

)
⊗ Id |ψ〉‖, ‖

(
A1 − U†(Z ⊗ Id)U

)
⊗ Id |ψ〉‖

}
= O(

√
δ), (3)

and letting Ã0 := B0+B1

|B0+B1| and Ã1 := B0−B1

|B0−B1| ,

max
{∥∥(A0 ⊗ Id− Id⊗Ã0

)
|ψ〉
∥∥, ∥∥(A1 ⊗ Id− Id⊗Ã1

)
|ψ〉
∥∥} = O(

√
δ), (4)

max
{∥∥ Id⊗

(
Ã0 − V †(X ⊗ Id)V

)
|ψ〉
∥∥, ∥∥ Id⊗

(
Ã1 − V †(Z ⊗ Id)V

)
|ψ〉
∥∥} = O(

√
δ). (5)

2.3 Overlapping qubits

The notion of “overlapping qubits” is introduced in [29]. Intuitively, a pair of overlapping

qubits i and j is specified by two pairs of anti-commuting observables {Xi, Zi} and {Xj , Zj}
such that [Pi, Qj ] ≈ 0 where each of P,Q stands for either X or Z. The following theorem

from [14] bounds the distance of partially overlapping qubits from exact qubits.

Theorem 3 (Theorem 2.1 in [14]) Let |ψ〉 be a state in HA ⊗ HB. Assume that for

each j ∈ {1, . . . , n} there are observables Xj , Zj ∈ L(HA) and X ′j , Z
′
j ∈ L(HB) such that

∀j, {Xj , Zj} = {X ′j , Z ′j} = 0

∀i 6= j,max
{∥∥[Pi, Qj ]⊗ Id |ψ〉‖,

∥∥ Id⊗[P ′i , Q
′
j ]|ψ〉

∥∥} ≤ η
∀j,
∥∥Pj ⊗ P ′j |ψ〉 − |ψ〉‖ ≤ η

where each of P,Q stands for either X or Z.

Let

|ψ′〉 = |ψ〉AB ⊗ |φ+〉⊗nA’A” ⊗ |φ
+〉⊗nB’B” ∈ HA ⊗ (C2)⊗nA’ ⊗ (C2)⊗nA” ⊗HB ⊗ (C2)⊗nB’ ⊗ (C2)⊗nB” ,

where |φ+〉 = 1√
2
(|00〉+ |11〉). Then there exist observables X̂i, Ẑi ∈ L(HA⊗(C2)⊗nA’ ⊗(C2)⊗nA” )



D. Ostrev and T. Vidick 623

and X̂ ′i, Ẑ
′
i ∈ L(HB ⊗ (C2)⊗nB’ ⊗ (C2)⊗nB” ) such that

∀j, {X̂j , Ẑj} = {X̂ ′j , Ẑ ′j} = 0

∀i 6= j, [P̂i, Q̂j ] = [P̂ ′i , Q̂
′
j ] = 0

∀j,max
{
‖
(
P̂j − Pj ⊗ IdA’A”

)
⊗ IdBB’B” |ψ′〉‖, ‖ IdAA’A”⊗

(
P̂ ′j − P ′j ⊗ IdB’B”

)
|ψ′〉‖

}
= O(nη)

∀j,
∥∥P̂j ⊗ P̂ ′j |ψ′〉 − |ψ′〉‖ = O(nη)

where each of P,Q stands for either X or Z.

Using that the (anti-)commutation relations between observables {X̂i, Ẑi} stated in the

theorem suffice to characterize these operators, up to conjugation, as the Pauli {σxi , σzi }
observables, the theorem has the following immediate corollary.

Corollary 1 (Corollary 2.2 in [14]) Under the assumptions of Theorem 3, there are uni-

taries UDD’D” : HD ⊗ (C2)⊗nD’ ⊗ (C2)⊗nD” → HD ⊗ (C2)⊗nD’ ⊗ (C2)⊗nD” (where D stands for either

A or B) and a state |extra〉 ∈ HA ⊗ (C2)⊗nA” ⊗HB ⊗ (C2)⊗nB” such that∥∥UAA’A” ⊗ UBB’B”|ψ′〉 − |φ+〉⊗nA’B’⊗|extra〉AA”BB”
∥∥

= O(n3/2η) ,∥∥(UDD’D”((Xj)D ⊗ IdD′D′′)U
†
DD’D” − (σxj )D’ ⊗ IdDD”)⊗ Idotherside |φ+〉⊗nA’B’⊗|extra〉AA”BB”

∥∥
= O(n3/2η) ,∥∥(UDD’D”((Zj)D ⊗ IdD′D′′)U

†
DD’D” − (σzj )D’ ⊗ IdDD”)⊗ Idotherside |φ+〉⊗nA’B’⊗|extra〉AA”BB”

∥∥
= O(n3/2η) .

Theorem 3 requires observables that exactly anti-commute. The following lemma shows

that approximately anti-commuting observables are never far from exactly anti-commuting

ones.

Lemma 2 Let X,Z be balanced obervables on a space HA of even dimension and let |ψ〉 ∈
HA ⊗ HB be such that ‖{X,Z} ⊗ Id |ψ〉‖ ≤ ε. Then there exists a balanced observable Z̃ on

HA such that

‖(Z − Z̃)⊗ Id |ψ〉‖ ≤
√

3/2 ε,

and

{X, Z̃} = 0.

Proof. Let R, S be the projections on the 1 and −1 eigenspace of X. Consider RZS;

from the singular value decomposition [30, Corollary 2.4], there exist an orthonormal basis

|u1〉 . . . |un〉 of Im(R), an orthonormal basis |v1〉, . . . |vn〉 of Im(S), and non-negative real

numbers c1, . . . cn such that

RZS =
∑
i

ci|ui〉〈vi| and SZR = (RZS)† =
∑
i

ci|vi〉〈ui|

We write the matrices for X and Z with respect to the basis |u1〉 . . . |un〉, |v1〉, . . . |vn〉 of

HA; they are

X =

(
Id 0
0 − Id

)
and Z =

(
A C
C B

)
,
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where the size of the blocks is n = dim(HA)/2, and where C = diag(c1, . . . , cn). With this

notation, we get

{X,Z}2 =

(
4A2 0

0 4B2

)
. (6)

Let

Z̃ =

(
0 Id
Id 0

)
.

Then {X, Z̃} = 0, and it remains to show that ‖(Z − Z̃)⊗ Id |ψ〉‖ ≤
√

3/2 ε.

Using Z2 = Id, we get C2 = Id−A2 and C2 = Id−B2. Using C2 ≤ Id and the fact that

C is diagonal with non-negative real entries, we get

(Id−C)2 ≤ 2(Id−C2) (7)

and from here we get

(Id−C)2 ≤ 2A2, (Id−C)2 ≤ 2B2. (8)

We can then bound

(Z − Z̃)2 ≤ 2

(
A 0
0 B

)2

+ 2

(
0 C − Id

C − Id 0

)2

≤ 1

2
{X,Z}2 + {X,Z}2,

where to bound the first term we used (6), and to bound the second we used (8) and (6). The

lemma follows by evaluating both sides of the operator inequality on ρA = TrB|ψ〉〈ψ|. �.

3 Upper bound: playing XOR games with low entanglement

We prove Theorem 2. Let G be an XOR game and (As, Bt, |ψ〉) an optimal strategy for the

players in G, where |ψ〉 ∈ CD ⊗ CD. Let

xs = 〈ψ|As ⊗ Id, yt = 〈ψ| Id⊗Bt,

and observe that xs, yt are complex D2-dimensional unit vectors such that
∑
s,tGs,txs · yt =

β∗(G) (where for complex row vectors x = (x1, . . . , xl) and y = (y1, . . . , yl) we denote x ·
y =

∑
i xiyi). Let d be an integer and {gkp}, for k ∈ {1, . . . , d} and p ∈ {1, . . . , D2}, be

independent and uniformly distributed in {1,−1, i,−i}. Define x′s, y
′
t ∈ Cd by

(x′s)k =
1√
d

∑
p

gkp(xs)p, (y′t)k =
1√
d

∑
p

gkp(yt)p,

for k = 1, . . . , d. The vectors x′s (resp. y′t) can be thought of as being obtained from the

xs (resp. yt) by “random projection”, with V = (gkp)1≤k≤d,1≤p≤D2 the “random projection

matrix” (up to scaling and on expectation, V V † ∝ Id), that places the vectors in a favorable

position for the analysis.

The goal of the analysis is to demonstrate that there exists a choice of coefficients that

yields a large objective value, in spite of the vectors being of possibly much lower dimension

than the initial set of vectors, coming from the quantum strategy. The main difficulty is
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in dealing with the normalization of the x′s and y′t. For this we again apply a randomized

rounding procedure, following a trick previously used in e.g. [18]. Let α be a real parameter

distributed according to the hyperbolic secant distribution, with pdf f(z) = 1
2 sech(π2 z), where

sech(z) = 2
ez+e−z is the hyperbolic secant function. The only property of this distribution

relevant for the analysis is that it satisfies that for any a > 0, Eα[aiα] = 2a− Eα[a2+iα] (see

e.g. [31, Sec. 23.11]. Using this relation we obtain

E
[∑
s,t

Gs,t
x′s
‖x′s‖

‖x′s‖iα ·
y′t
‖y′t‖
‖y′t‖iα

]
= 2

∑
s,t

Gs,txs · yt −E
[∑
s,t

Gs,tx
′
s‖x′t‖1+iα · y′t‖y′t‖1+iα

]
.

(9)

We bound the second term on the right-hand side. For this we interpret x′s‖x′s‖1+iα and

y′t‖y′t‖1−iα as a vector solution to the semidefinite program (1) associated to the XOR game

G, where the vectors live in the infinite-dimensional space of random d-dimensional vectors

over C with inner product 〈X,Y 〉 = E(X · Y ).eLet z ∈ CD2

be any vector among the xs, yt,

and let z′ be the associated random vector, x′s‖x′s‖1+iα or y′t‖y′t‖1−iα. We compute

‖z′‖2 =
1

d2
E
( d∑
k=1

∣∣∑
p

gkpzp

∣∣∣2)2

=
1

d2
E
[ d∑
k,k′=1

D2∑
p,q,r,s=1

gkpgkqgk′rgk′s zpzqzrzs

]
=

1

d2

(
d
∑
p 6=q

|zp|2|zq|2 + d2
∑
p,q

|zp|2|zq|2
)

≤ d2 + d

d2
‖z‖4 = 1 +

1

d
.

Using that the objective value of (1) scales linearly with the norm of the vectors, this bound

lets us upper bound the modulus of the second term on the right-hand side in (9) by (1 +

1/d)β∗(G), so that

E
[∑
s,t

Gs,t
x′s
‖x′s‖

‖x′s‖iα ·
y′t
‖y′t‖
‖y′t‖iα

]
≥
(

1− 1

d

)
β∗(G).

In particular there must exist a choice of coefficients gkp and real parameter α such that

the complex d-dimensional unit vectors
x′s
‖x′s‖
‖x′s‖iα and

y′t
‖y′t‖
‖y′t‖−iα yield a value for the

left-hand side of (9) that is at least (1 − 1/d)β∗(G). Decomposing these vectors into real

and imaginary parts as described earlier in footnote e we obtain a real vector solution of

dimension 2d achieving bias (1 − 1/d)β∗(G) in (1). Applying Tsirelson’s construction (as

described in Section 2.2) yields observables in dimension 2d achieving the same value in G,

proving Theorem 2.

eAlthough a priori SDP(G) considers a supremum over real finite-dimensional vectors, the extension to infinite-
dimensional complex vectors does not allow for a larger value, as the vectors can always be projected down
to their finite-dimensional span, and made real by considering x 7→ <(X)⊕=(x) and y 7→ <(y)⊕ (−=(y)).
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4 Lower bound: rigidity for the CHSH(n) games

The goal of this section is to prove Theorem 1. We start by assuming without loss of generality

that HA, HB are finite dimensional Hilbert spaces of even dimension d each, and that Alice’s

observables are balanced; this assumption is technically required in the proof, and can always

be satisfied by taking the direct sum with a space of appropriate dimension on which the state

|ψ〉 has no support, and on which all operators are extended by taking the direct sum with

an appropriate observable.

The proof of Theorem 1 has several steps, which we give in the following lemmas. Our

first lemma shows that in any good strategy for the CHSH(n) game, Alice’s observables must

approximately pairwise anti-commute.

Lemma 3 Take n ≥ 2, ε > 0. Let (Ai, Bij , |ψ〉) be an ε-optimal strategy in CHSH(n). For

all i < j let

Ãij :=
Bij +Bji
|Bij +Bji|

, Ãji :=
Bij −Bji
|Bij −Bji|

.

Then the following hold:

Ei<j‖{Ai, Aj} ⊗ Id |ψ〉‖ = O(
√
ε), Ei<j‖ Id⊗{Ãij , Ãji}|ψ〉‖ = O(

√
ε), (10)

max
{
Ei<j

∥∥(Ai ⊗ Id− Id⊗Ãij
)
|ψ〉
∥∥, Ei<j∥∥(Aj ⊗ Id− Id⊗Ãji

)
|ψ〉
∥∥} = O(

√
ε). (11)

Proof. For any (i, j) ∈ {1, . . . , n}2 such that i < j let εij be such that the players’ strat-

egy achieves a bias (1−εij)β∗(CHSH) in the game, conditioned on the referee having selected

the pair (i, j) in the first step of the game as described in Definition 1. Then Ei<j [εij ] = ε,

and for any i < j the strategy (Ai, Aj , Bij , Bji, |ψ〉) is an εij-optimal strategy in the CHSH

game.

The relation (11) then follows directly from (4) from the CHSH rigidity lemma (Lemma 1)

and concavity of the square root function. To prove (10), write

{Ai, Aj} ⊗ Id |ψ〉 ≈√εij (Ai ⊗ Ãji +Aj ⊗ Ãij)|ψ〉

≈√εij (U ⊗ V )†
(
(X ⊗ Z + Z ⊗X)⊗ Id

)
(U ⊗ V )|ψ〉

≈√εij (U ⊗ V )†
(
(X ⊗ Z + Z ⊗X)|φ+〉

)
⊗ |ψ′〉

= 0,

where the first line uses (4), the second (3) and (5) (here the isometries U and V are allowed

to depend on the pair (i, j)), the third (2) and the fourth is by definition of |φ+〉. Averaging

over i < j and using concavity of the square root function proves the first part of (10). The

second part follows similarly (alternatively, from the first part using (11)). �.

Given n pairwise perfectly anticommuting observables A1, . . . , An, we can define m =

bn/3c pairs of observables

Xk = iA3k−2A3k−1 and Zk = iA3k−1A3k,

for k = 1, . . . , bn/3c, such that {Xk, Zk} = 0 and [Pk, Q`] = 0 for k 6= ` and where each of P,Q

stands for either X or Z. The following lemma shows that essentially the same construction

also works in the approximate case.
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Lemma 4 Let δ > 0 and A1, . . . , An and A′1, . . . , A
′
n be observables such that

Ei‖(Ai ⊗ Id− Id⊗A′i)|ψ〉‖ ≤ δ and Ei 6=j‖{Ai, Aj} ⊗ Id |ψ〉‖ ≤ δ. (12)

Then there exists m = bn/3c pairs of observables Xk, Zk and X ′k, Z
′
k such that for all k,

{Xk, Zk} = {X ′k, Z ′k} = 0 and

Ek 6=`‖[Pk, Q`]⊗ Id |ψ〉‖ = O(δ), Ek 6=`‖ Id⊗[P ′k, Q
′
`]|ψ〉‖ = O(δ), (13)

and

Ek‖(Pk ⊗ Id− Id⊗P ′k)|ψ〉‖ = O(δ) (14)

where each of P,Q stands for either X or Z.

Proof. For k ∈ {1, . . . ,m} we construct Xk, Zk, X ′k, Z ′k in two stages. First, apply

Lemma 2 independently to (A3k−1, A3k−2) and to (A3k−1, A3k) to obtain Ã3k−2 and Ã3k that

exactly anti-commute with A3k−1. Next, let Xk = iÃ3k−2A3k−1 and Z̃k = iA3k−1Ã3k. Then

Xk, Z̃k are balanced observables and they satisfy

{Xk, Z̃k} ⊗ Id |ψ〉 = −{Ã3k−2, Ã3k} ⊗ Id |ψ〉
≈ −(Ã3k−2A3k + Ã3kA3k−2)⊗ Id |ψ〉
≈ −Ã3k−2 ⊗A′3k|ψ〉 − Ã3k ⊗A′3k−2|ψ〉
≈ −A3k−2 ⊗A′3k|ψ〉 −A3k ⊗A′3k−2|ψ〉
≈ −{A3k−2, A3k} ⊗ Id |ψ〉 ≈ 0,

where the total error in the chain of approximations is at most

2
√

3/2‖{A3k−2, A3k−1} ⊗ Id |ψ〉‖+ 2
√

3/2‖{A3k−1, A3k} ⊗ Id |ψ〉‖
+ 2‖(A3k−2⊗ Id− Id⊗A′3k−2)|ψ〉‖+ 2‖(A3k⊗ Id− Id⊗A′3k)|ψ〉‖+‖{A3k−2, A3k}⊗ Id |ψ〉‖.

In a similar manner we can define X ′k = iÃ′3k−2A
′
3k−1 and Z̃ ′k = iA′3k−1Ã

′
3k. Then X ′k, Z̃ ′k

are balanced observables and we can obtain a similar bound on ‖ Id⊗{X ′k, Z̃ ′k}|ψ〉‖.
In the second stage, we apply Lemma 2 to Xk, Z̃k to obtain exactly anti-commuting

Xk, Zk such that ‖(Zk − Z̃k) ⊗ Id |ψ〉‖ ≤ ‖{Xk, Z̃k} ⊗ Id |ψ〉‖. Similarly, we apply Lemma

2 to X ′k, Z̃
′
k and obtain exactly anti-commuting X ′k, Z

′
k such that ‖(Z ′k − Z̃ ′k) ⊗ Id |ψ〉‖ ≤

‖{X ′k, Z̃ ′k} ⊗ Id |ψ〉‖. It remains to show that Xk, Zk, X
′
kZ
′
k satisfy the conclusions of Lemma

4.

For each k 6= l, we can bound ‖(Pk⊗ Id− Id⊗P ′k)|ψ〉‖, ‖ Id⊗[P ′k, Q
′
`]|ψ〉‖, and ‖[Pk, Q`]⊗

Id |ψ〉‖ (again, each of P,Q stands for either X or Z) using a similar chain of approximations

to the one above. What is important here is that there is a small constant c such that for all

i 6= j, the terms ‖(Ai ⊗ Id− Id⊗A′i)|ψ〉‖ and ‖{Ai, Aj} ⊗ Id |ψ〉‖ appear at most c times in

the different error bounds that we obtain from the chains of approximation. Therefore, we

can average over k 6= l and use the assumptions (12) to obtain the conclusions of Lemma 4.

�.

Lemma 4 gives us qubits that approximately commute on average. On the other hand, we

would like to apply Theorem 3, which requires there to be an absolute upper bound that holds

for all commutators. In order to switch from the conclusions of Lemma 4 to the assumptions

of Theorem 3, we prove the following combinatorial lemma:
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Lemma 5 Let Kn be the complete graph on n vertices. Suppose that to each vertex v,

there are associated two non-negative weights, w1(v), w2(v), such that Evwi(v) ≤ δ for i =

1, 2. Suppose further that to each edge e, there are associated eight non-negative weights

w1(e), . . . , w8(e) such that Eewi(e) ≤ δ for i = 1, . . . 8. Then, for each a > 0, there exists a

subset S of the vertices of size at least

(a− 2)2n

8a(n− 1) + a(a− 2)

such that

∀v ∈ S,∀i = 1, 2, wi(v) ≤ aδ ,
∀e ∈ S × S,∀i = 1, . . . 8, wi(e) ≤ aδ .

Proof. First, delete any vertex v for which w1(v) > aδ or w2(v) > aδ. Let n′ be the number

of remaining vertices. Then

(n− n′)aδ <
∑
v

(w1(v) + w2(v)) ≤ 2nδ

so

n′ >
a− 2

a
n .

Next, delete any edge e for which ∀i, wi(e) ≤ aδ. Let m′ be the number of remaining

edges. Then,

m′aδ <
∑
e

8∑
i=1

wi(e) ≤ 8

(
n

2

)
δ ,

so

m′ <
8

a

(
n

2

)
.

Note that we have kept acceptable vertices and have deleted acceptable edges. Thus, we

are interested in finding a large independent set among the remaining vertices. Recall the

Theorem of Turan: if a graph G = (V,E) has average degree 2|E|/|V | that is at most d, then

G contains an independent set of size at least |V |/(d+ 1).fApplying this theorem to our case

gives an independent set of size at least

n′

2m′

n′ + 1
>

a−2
a n

8
a−2 (n− 1) + 1

=
(a− 2)2n

8a(n− 1) + a(a− 2)

as needed. �.

We will also need a lemma that demonstrates that if a state is close to a tensor product

of a number of EPR pairs and an ancilla, then the state has high entanglement entropy.

Lemma 6 Let |ψ〉AA’BB’ be a state in (C2 ⊗ C2)⊗rAB ⊗ (HA’ ⊗HB’) such that

‖|ψ〉AA’BB’ − |φ+〉⊗rAB ⊗ |extra〉A’B’‖ ≤ δ/2 (15)

Then, |ψ〉AA’BB’ has entanglement entropy at least

r − 3δr + 2δ log(δ)
fProof: Go through the vertices in a random order. Add each vertex to the set if none of its neighbors are
already in. The expected size of the independent set produced is

∑
v 1/(d(v) + 1) ≥ |V |/(d + 1).



D. Ostrev and T. Vidick 629

Proof. We will use ρ with appropriate subscripts to denote reduced density matrices of

|ψ〉AA’BB’ and σ with appropriate subscripts to denote reduced density matrices of |φ+〉⊗rAB ⊗
|extra〉A’B’.

We will show that

S(ρA) ≥ r − δr + δ log(δ) (16)

and

S(ρAB) ≤ 2δr − δ log(δ), (17)

which using strong subadditivity as

S(ρAA’) ≥ S(ρAA’B) + S(ρA)− S(ρAB) ≥ S(ρA)− S(ρAB)

will prove the result.

The trace distance between |ψ〉〈ψ| and |φ+〉⊗rAB ⊗ |extra〉A’B’〈φ+|⊗rAB ⊗ 〈extra|A’B’ is at most

δ. Take partial trace and get that the trace distance between ρA and σA is at most δ. Apply

Fannes’ inequality [30, Box 11.2]:

|S(ρA)− S(σA)| ≤ Tr|ρA − σA| log(dim(HA))− Tr|ρA − σA| log(Tr|ρA − σA|)

to get the bound (16). Similarly, the trace distance between ρAB and σAB is at most δ. Apply

Fannes’ inequality again and get the bound (17). This completes the proof of Lemma 6. �.

Theorem 1 follows from Lemma 3, Lemma 4, Lemma 5, Lemma 6 and Theorem 3.

Proof. [Proof of Theorem 1] Let (Ai, Bij , |ψ〉) be an ε-optimal strategy in CHSH(n).

Apply Lemma 3 and get operators Ai, Ãij satisfying (10) and (11).

Next, for each i, take A′i to be that operator among Ãi1, . . . Ãi(i−1), Ãi(i+1), . . . Ãin that

makes ‖(Ai ⊗ Id− Id⊗A′i)|ψ〉‖ smallest. From (11) we obtain

Ei‖(Ai ⊗ Id− Id⊗A′i)|ψ〉‖ = O(
√
ε)

Next, apply Lemma 4 with δ = O(
√
ε). We obtain Xk, Zk, X

′
k, Z

′
k, k = 1, . . . bn/3c sat-

isfying (13) and (14). We think of a complete graph on m = bn/3c vertices, and asso-

ciate the two weights ‖(Pk ⊗ Id− Id⊗P ′k)|ψ〉‖ to vertex k and the eight weights ‖[Pk, Ql] ⊗
Id |ψ〉‖, ‖ Id⊗[P ′k, Q

′
l]|ψ〉‖ to edge (k, l) (again, each of P,Q stands for either X or Z). We

apply Lemma 5 and obtain a subset of {1, . . .m} of size at least

r =
(a− 2)2n

8a(n− 1) + a(a− 2)

such that the corresponding observables satisfy the assumptions of Theorem 3 with η =

O(a
√
ε).

We apply Corollary 1, and get that the first bound in the corollary holds with error

δ/2 = cr3/2a
√
ε. We apply Lemma 6 and get that the entanglement entropy of |ψ〉 is at least

r − 3δr + 2δ log(δ)

We choose a = Θ(ε−1/5) so that r = Θ(ε−1/5) and δ = 1/100. For this choice, the lower

bound on the entanglement entropy of |ψ〉 is Ω(ε−1/5) as needed. �.
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d’Analyse Mathématique, 2(2):209–218, 1952.
20. Ben Reichardt, Falk Unger, and Umesh Vazirani. A classical leash for a quantum system: Com-

mand of quantum systems via rigidity of CHSH games. Nature, 496(7446):456–460, 2013.
21. Jedrzej Kaniewski, Marco Tomamichel, and Stephanie Wehner. Entropic uncertainty from effective

anticommutators. Physical Review A, 90(1):012332, 2014.
22. Boris S Tsirelson. Quantum analogues of the bell inequalities. the case of two spatially separated

domains. Journal of Soviet Mathematics, 36(4):557–570, 1987.
23. Boris S Tsirelson. Some results and problems on quantum bell-type inequalities. Hadronic Journal

Supplement, 8(4):329–345, 1993.
24. Sander Gribling, David de Laat, and Monique Laurent. Matrices with high completely positive

semidefinite rank. Linear Algebra and its Applications, 513:122–148, 2017.
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