
Quantum Information and Computation, Vol. 18, No. 3&4 (2018) 0231–0246
c© Rinton Press

QUANTUM INFORMATION TRANSMISSION THROUGH

A QUBIT CHAIN WITH QUASI-LOCAL DISSIPATION

ROYA RADGOHAR

Department of Physics, Shiraz University, Shiraz, Iran

r.radgohar@gmail.com

LALEH MEMARZADEH

Department of Physics, Sharif University of Technology, Teheran, Iran

memarzadeh@sharif.edu

STEFANO MANCINI

School of Science & Technology, University of Camerino, I-62032 Camerino, Italy

INFN-Sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy

stefano.mancini@unicam.it

Received August 18, 2017
Revised February 2, 2018

We study quantum information transmission in a Heisenberg-XY chain where qubits are

affected by quasi-local environment action and compare it with the case of local action

of the environment. We find that for open boundary conditions the former situation
always improves quantum state transfer process, especially for short chains. In con-

trast, for closed boundary conditions quasi-local environment results advantageous in
the strong noise regime. When the noise strength is comparable with the XY interac-

tion strength, the state transfer fidelity through chain of odd/even number of qubits in

presence of quasi-local environment results smaller/greater than that in presence of local
environment.
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1 Introduction

Quantum state transfer from one site to another is a key task in the field of quantum in-

formation and quantum computation [1]. In addition to its essential role in quantum com-

munication protocols, it is required for connecting small quantum processors in a quantum

computer. Moreover, it might help us to get deep understanding of the behavior of natural

systems, particularity biological systems [2]. Transmitting information demands a physical

system to serve as quantum channel, through which a quantum state is carried. There exist

some schemes considering qubits as the electronic states of trapped ions and transfer quantum

information between ions through their Coulomb mutual interactions [3], vibrational mode

(bus-mode) [4] or photons [5].

Recently, Bose exploited nearest-neighbor interactions of Heisenberg-XY chain to perform

swap operations to transfer quantum state from one end to another along the chain with
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232 Quantum information transmission through a qubit chain with quasi-local dissipation

some fidelity [6]. Despite the previous protocols [7] applying external controls (which are

decoherence sources as well) to switch coupling between qubits to transmit information, this

protocol does not need any external control on the interconnecting qubits between the input

and output qubits. An experimental implementation of the protocol based on Josephson

junction array is provided in [8]. Then, Datta et. al. in [9] proved that fixed but different

couplings can provide perfect state transfer in Heisenberg-XY chain.

Considering the unavoidable noisy effects in the dynamics of real quantum systems as

well as the necessities of miniaturizing devices applied in quantum technologies like quantum

computers, it may happen that nearest-neighbor qubits in Heisenberg-XY chain become so

closely spaced to experience the same environment effects [10]. Inspired by this fact, we would

like to investigate quantum state transfer in a Heisenberg-XY chain with open and periodic

boundary conditions in the presence of “chained” (quasi-local) environments and compare

the results with the case of local environments. This investigation may address the question

of whether one should allow the qubits interact through chained environments or realize a

situation in which each qubit interacts with its own environment.

Here, we found that chained environments in comparison with local ones, giving rise

to indirect interactions between contaminated qubits, facilitates information transfer over a

(short) chain with open boundary conditions. However, due to quantum interference phe-

nomena, these noise induced links enhance/suppress the transfer process through the chain

with periodic boundary conditions depending on its even/odd number of qubits.

The paper is organized as follows. We introduce the model and the master equation

governing its dynamics in Sec. 2; then we describe the strategy to solve such equation and

consider the fidelity as a measure of information transfer efficiency. In Sec. 3, we present

the solution for XY chain with open boundary conditions, analytical for the smallest non

trivial length (3 qubits) and numerical for longer (up to 10 qubits). The results for chains

with periodic boundary conditions are provided in Sec.4, again analytical for the smallest non

trivial length (3 qubits) and numerical for longer (up to 10 qubits). Finally, conclusions are

drawn in Sec. 5.

2 The model

We shall consider a chain of qubits with nearest-neighbor Heisenberg-XY interactions, a model

realized in both condensed-matter [11] and quantum computing [12]. The Hamiltonian of the

Heisenberg-XY chain is given by

Hxy = ξ

N ′∑
n=1

(
σnσ

†
n+1 + σ†nσn+1

)
, (1)

where σi := |0〉〈1| and |0〉 (resp. |1〉) is the ground (resp. excited) state of the ith qubit and ξ

represents the coupling strength between nearest-neighbor qubits. Furthermore N ′ for chains

with open and periodic boundary condition equals N − 1 and N respectively, being N the

total number of qubits in (length of) the chain (in closed boundary conditions the (N + 1)th

qubit coincides with the 1st). The Hamiltonian (1) is hence defined on the Hilbert space H
(of N qubits) spanned by ⊗Ni=1{|0〉i, |1〉i}.

Realistic quantum systems are generally open, always exposed to surrounding environ-

ment. Thus, we must take into account the influence of external environment to get a proper
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understanding of the real dynamics of quantum physical systems. Here we shall consider

quasi-local (or chained) environments affecting the Heisenberg-XY chain as well as local en-

vironments.

(a)

(b)

1 2 3 4

1 2 3 4

Fig. 1. Schematic diagram of 4-qubit chain with chained environments (a) and local environments

(b). Rectangles denote qubits, straight lines XY interaction, and ellipses/circles environments.

In the former case, as shown in Fig.1a, each individual qubit dissipates into two environ-

ments: one common with its left and another with its right nearest neighbor [13]. The time

evolution of the global system consisting of N qubits that interact with each other according

to Eq.(1) as well as with chained environment is described by the following master equation:

ρ̇ = D1[ρ] = −i [Hxy, ρ] +

N ′∑
n=1

γ
[
2 (σn + σn+1) ρ

(
σ†n + σ†n+1

)
−
{(
σ†n + σ†n+1

)
(σn + σn+1) , ρ

}]
, (2)

in which γ is the dissipative parameter and { , } denotes the anti-commutator.

In the latter case, as can be seen in Fig.1b, each individual qubit dissipates only, and in-

dependently, into its local environment. The master equation governing the system dynamics

of the Heisenberg-XY chain in presence of local environments can be written as

ρ̇ = D2[ρ] = −i [Hxy, ρ] +

N∑
n=1

γ
[
2σnρσ

†
n −

{
σ†nσn, ρ

}]
. (3)

In order to solve Eqs. (2) and (3), we follow the same approach used in [14]. In the sense

that we start with the formal solutions ρ(t) = etDiρ(0), i = 1, 2 and then substitute Taylor

expansion of etDi :

ρ(t) = ρ(0) + tDiρ(0) +
t2

2!
D2
i ρ(0) +

t3

3!
D3
i ρ(0) + ... (4)

As can be seen, repeated applications of the super operator Di to the initial state ρ(0) will

result in the state within the subspace of Hρ(0) ⊂ H where H = H ⊗ H∗ (being H∗ the

dual of H). In the case of small number of initial excitations e (e << N) that implies

dim(Hρ0) << dim(H) [15], we can expect to find analytical solutions. Therefore, applying

the super operator Di to the initial state ρ(0), we achieve closed relations determining a

complete set of operators {Πi} spanning Hρ(0), that is Hρ(0) = span{Πi}. Hence ρ(t) can be
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expanded in terms of them:

ρ(t) =
∑
i

ai(t)Πi. (5)

Substituting this into the corresponding master equation (Eq. (2) or Eq. (3)), we find a set

of coupled ordinary differential equations for the coefficients ai(t).

Once we have the density operator at any time, we consider the optimal average fidelity

between input and output states as measuring the goodness of information transfer. We set

the initial state of the chain as

ρ(0) = |ψ〉1〈ψ| ⊗ |0〉2〈0| ⊗ . . .⊗ |0〉N 〈0|, (6)

where

|ψ〉 = cos(θ/2)|0〉+ sin(θ/2)eiφ|1〉. (7)

Qubit 1 is considered as the input, while we label by o the output. It will be o = N for open

boundary conditions and o = dN2 e + 1 for closed boundary conditions. In such a way the

output qubit will always be the farthest from the input one.

After time t, the output state is obtained by reduced density operator of the output qubit

ρo(t) = Tr 6o ρ(t), where Tr 6o means the trace overall qubit of the chain but the output (oth)

one. As we will show the dynamics imposes the following general form for output state at

qubit o in the basis {|0〉, |1〉}:

ρo(t) =

(
%(t) sin2(θ/2) ς(t) sin θeiφ

ς(t)∗ sin θe−iφ 1− %(t) sin2(θ/2)

)
. (8)

The time dependent coefficients ς(t) and %(t) will be explicitly derived in the next Sections.

Furthermore, we allow the possibility of acting a suitable unitary transformation V on the

output qubit. Therefore, the input-output fidelity is obtained as [16]

fV1,o = 〈ψ|V ρo(t)V †|ψ〉, (9)

where V takes the general form V =

(
u∗ −v∗
v u

)
with |u|2 + |v|2 = 1. As we will see later V

allows us to introduce phase shifts on the off-diagonal elements of the output density matrix

and affects the fidelity [17]. The average fidelity can be found by integrating over all input

states, that is over the Bloch sphere:

FV1,o =
1

4π

∫ π

0

dθ sin(θ)

∫ 2π

0

dφfV1,o(θ, φ, t) =
1

2
+

1

6

{
2%|u|2 + 2(ςu∗2 + ς∗u2)− %

}
. (10)

We then maximize it over V obtaining the optimal value of u to be

uopt = ei{1/2 tan−1[Im(ς)/Re(ς)]+sgn[Re(ς)]π/2}. (11)

Hence the optimal average fidelity F opt1,o reads as

F opt1,o =
1

2
+

1

6

{
%+ 4

√
[Re(ς)]2 + [Im(ς)]2

}
. (12)
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3 Open boundary conditions

In this section, we shall consider a Heisenberg-XY chain with open boundary condition in

presence of quasi-local and local environments. First, we shall analytically calculate the

optimal average fidelity for the shortest non trivial chain with 3 qubits. Then, we shall

provide the results for longer chains by numerical calculations and analyze the effects of the

local and chained environments on the state transfer process.

3.1 Quasi-local environments

The master equation (2) for a 3-qubit chain with open boundary condition reads

ρ̇ = D1[ρ] =− iξ
[(
σ1σ

†
2 + σ†1σ2

)
+
(
σ2σ

†
3 + σ†2σ3

)
, ρ
]

+ γ
[
2 (σ1 + σ2) ρ

(
σ†1 + σ†2

)
−
{(
σ†1 + σ†2

)
(σ1 + σ2) , ρ

}]
+ γ

[
2 (σ2 + σ3) ρ

(
σ†2 + σ†3

)
−
{(
σ†2 + σ†3

)
(σ2 + σ3) , ρ

}]
,

(13)

where we recall that ξ denotes the coupling strength between nearest-neighbor qubits and γ

the dissipative parameter. Using the strategy mentioned in Sec.2, we get the set of operators

{Πi} that span Hρ(0) as follows:

Π0 = |0〉〈0|,
Πk = |k〉〈k|,
Π2k+2 = |k〉〈0|+ |0〉〈k|,
Π2k+3 = i(|k〉〈0| − |0〉〈k|),
Π2k+2l+4 = |k〉〈l|+ |l〉〈k|,
Π2k+2l+5 = i(|k〉〈l| − |l〉〈k|), (14)

with k, l = 1, 2, 3 and l < k. Here |k〉 stands for the chain state with a single excitation

located on the kth qubit. Expanding the density matrix as Eq.(5) and inserting into Eq.(13),

we find a set of coupled ordinary differential equations for the coefficients that are reported

in Appendix A. Just coefficients a3, a8, a9 appear in output state. Solving the differential

equations for these coefficients (see appendix A) we find the output state (8) with

%(t) =
a3

sin2(θ/2)

=
1

4

{
e−2γt − 2e−5γt/2

[
cosh(

γtx

2
) cos(

γty

2
) +

y cosh(γtx2 ) sin(γty2 ) + x cos(γty2 ) sinh(γtx2 )

x2 + y2

]
+

1

2
e−3γt

[
cos(γty) + cosh(γtx) +

2y sin(γty) + 2x sinh(γtx)− cos(γty) + cosh(γtx)

x2 + y2

]}
,

(15)
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and

ς(t) =
a8 + ia9
sin(θ)eiφ

=
−e−γt

4
+
e−3γt/2

4
cosh

(γt
2

(x+ iy)
)1 +

tanh
(
γt
2 (x+ iy)

)
x+ iy

 , (16)

where

x =

9− 8( ξγ )2 +
√

81 + 112( ξγ )2 + 64( ξγ )4

2


1/2

,

y =

−9 + 8( ξγ )2 +
√

81 + 112( ξγ )2 + 64( ξγ )4

2


1/2

. (17)

Inserting Eqs.(15) and (16) into (12), we get

F opt1,3 =
1

2
− 1

24
+

1

24

{
e−2γt

[
1 +

1

2
e−γt[cos(γty) + cosh(γtx)]− 2e−γt/2 cosh(

γtx

2
) cos(

γty

2
)

+
e−γt

x2 + y2

(1

2
[cosh(γtx)− cos(γty)] + x sinh(

γtx

2
) + y sin(

γty

2
)

− 2eγt/2[x sinh(
γtx

2
) cos(

γty

2
) + y cosh(

γtx

2
) sin(

γty

2
)]
)]1/2

+ 1

}2

.

(18)

3.2 Local environments

We rewrite Eq.(3) for a chain of three qubits with open boundary condition

ρ̇ = D2[ρ] = −iξ
[(
σ1σ

†
2 + σ†1σ2

)
+
(
σ2σ

†
3 + σ†2σ3

)
, ρ
]

+ γ
[
2σ1ρσ

†
1 − σ

†
1σ1ρ− ρσ

†
1σ1

]
+ γ

[
2σ2ρσ

†
2 − σ

†
2σ2ρ− ρσ

†
2σ2

]
+ γ

[
2σ3ρσ

†
3 − σ

†
3σ3ρ− ρσ

†
3σ3

]
. (19)
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Then, the action of D2 on the initial state ρ(0) of three qubits (of which the first is the input

one) leads to the subspace Hρ(0) spanned by

Π0 = |0〉〈0|,
Πk = |k〉〈k|,
Π2k+2 = |k〉〈0|+ |0〉〈k|,
Π2k+3 = i(|k〉〈0| − |0〉〈k|),
Π10 = i(|2〉〈1| − |1〉〈2|),
Π11 = |3〉〈1|+ |1〉〈3|,
Π12 = i(|3〉〈2| − |2〉〈3|), (20)

with k = 1, 2, 3. Substituting Eq.(5) into Eq.(19) we get the set of ordinary differential

equations reported in Appendix A together with its solutions. Using them we arrive at the

elements of the reduced density operator for the third (output) qubit

% = e−2γt sin4

(
ξt√

2

)
,

ς = −1

2
e−γt sin2

(
ξt√

2

)
.

(21)

Finally, thanks to Eg.(12), the optimal average fidelity reads:

F opt1,3 =
1

2
+

1

6
{%+ 4|ς|}

=
1

2
+
e−γt

3
sin2

(
ξt√

2

)[
1 +

e−γt

2
sin2

(
ξt√

2

)]
. (22)

We are now going to compare the effects of local and quasi-local noise on information

transfer in Heisenberg-XY chain. Fig.2 (a,b) show Eq.(18) (blue dots) and Eq.(22) (red

squares) in two different noise regimes.
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Fig. 2. Optimal average fidelity between first and third qubits of a three-qubit Heisenberg-XY

chain with open boundary conditions in presence of chained (blue dots) and local (red squares)
noise. Insets magnify to short time behavior.
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According to inset of Fig.2 (a), when γ is comparable to ξ we observe residual oscillatory

behavior that comes from the Heisenberg-XY Hamiltonian dynamics. Also, chained environ-

ments induce indirect links between nearest-neighbor qubits and increase the fidelity with

respect to the local environments. The behavior in strong-noise regime (γ >> ξ), inset of

Fig.2 (b), for local environments can be interpreted by the quantum Zeno effect. That is, re-

peated measurements on the quantum system can freeze its Hamiltonian evolution [18]. Here

the strong interaction of the quantum chain with its local environments, playing the role of

measuring apparatus, effectively decouples each qubit from its nearest neighbors in the chain

and leads to the lowest optimal average fidelity. In contrast, chained environments inducing

long-lived indirect interactions between contiguous qubits significantly enhance the optimal

average fidelity and quantum state transfer process.

In the long-time behavior the optimal average fidelity in presence of local environments

exhibits a fast decay to the value 1
2 (according to the law γ−1), while there is a relatively long

timescale to reach such a value in case of dimerized environment. Actually this occurs on a

timescale of the order 10γ for increasing values of γ up until γ ≈ 20, after which it remains

the same. Notice that the value F opt1,3 = 1
2 can be obtained by taking the limit t→∞ in Eqs.

(18) and (22) and it tells us that on average we get an output maximally mixed state.

Next, we have numerically solved the differential equations in Hρ(0) obtained by Eqs.(2)

and (3) for system’s size N = 4, ..., 10, found the optimal average fidelity (F opt1,N ) between

the first and last qubits of the chain. Then we have numerically maximized F opt1,N (t) with

respect to the time t and denoted the maximal value by Fmax1,N representing it for different

chain lengths in Fig.3.
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Fig. 3. Maximum of optimal average fidelity between the two ends of the chain vs number N of

qubits with open boundary conditions in presence of quasi-local (blue dots) and local (red squares)
environments.

According to Fig.3, the fidelity of state transfer in both cases of local and quasi-local

noise decreases by increasing the chain’s length. This behavior, that is also reported in [6] for

Heisenberg-XY chain in the absence of noise, comes from the dispersion of information over

the chain (see also [19]). The better performance of quasi-local environment with respect to

the local one (which is more evident in the strong noise regime) tends to be washed out over

a length of more than 10 qubits.
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4 Periodic boundary condition

In this section, we study the effects of local and quasi-local environments on the efficiency

of state transfer through a chain having closed boundary conditions. Likewise the previous

section analytical calculations for the fidelity in the case of three qubits will be provided for

input qubit 1 and output qubit 3 (although it might have been output qubit 2 as well, due

to the symmetry of configuration, see Fig.4). Moreover, the fidelity for longer chains will be

evaluated numerically in this section.
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Fig. 4. Schematic diagram of 3-qubit chain with periodic boundary condition in the presence

of chained environments (a) and local environments (b). Rectangles denote qubits, straight lines
XY interaction, and ellipses/circles environments.

4.1 Quasi-local environments

Eq.(2) for a three-qubit chain with closed boundary condition becomes:

ρ̇ = D1[ρ] =− iξ
[(
σ1σ

†
2 + σ†1σ2

)
+
(
σ2σ

†
3 + σ†2σ3

)
+
(
σ3σ

†
1 + σ†3σ1

)
, ρ
]

+ γ
[
2 (σ1 + σ2) ρ

(
σ†1 + σ†2

)
−
{(
σ†1 + σ†2

)
(σ1 + σ2) , ρ

}]
+ γ

[
2 (σ2 + σ3) ρ

(
σ†2 + σ†3

)
−
{(
σ†2 + σ†3

)
(σ2 + σ3) , ρ

}]
+ γ

[
2 (σ3 + σ1) ρ

(
σ†3 + σ†1

)
−
{(
σ†3 + σ†1

)
(σ3 + σ1) , ρ

}]
.

(23)

Applying the operator D1 on ρ(0) yields the complete set of operators as in Eq.(14) and a set

of ordinary differential equations that are reported in Appendix B together with its solutions.

Then the reduced density operator for the third qubit results as Eq.(8) with:

% =
e−2γt

9

{
1 + e−6γt − 2e−3tγ cos(3tξ)

}
,

ς =
e2γt(iξ−γ)

6

{
e−6γt(iξ+γ) − 1

}
. (24)

Finally, using Eq.(12), the optimal average fidelity can be found as

F opt1,3 =
1

54

[
1

3

√
e−2γt + e−8γt − 2e−5γt cos(3tξ) + 1

]2
− 1

54
+

1

2
. (25)
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4.2 Local environments

The master equation governing the dynamics of a chain of three-qubit with periodic boundary

conditions is obtained from Eq.(3) as

ρ̇ = D2[ρ] = −iξ
[(
σ1σ

†
2 + σ†1σ2

)
+
(
σ2σ

†
3 + σ†2σ3

)
+
(
σ3σ

†
1 + σ†3σ1

)
, ρ
]

+ γ
[
2σ1ρσ

†
1 − σ

†
1σ1ρ− ρσ

†
1σ1

]
+ γ

[
2σ2ρσ

†
2 − σ

†
2σ2ρ− ρσ

†
2σ2

]
+ γ

[
2σ3ρσ

†
3 − σ

†
3σ3ρ− ρσ

†
3σ3

]
.

(26)

Then, one can arrive at the Eq.(14) and a set of ordinary differential equations for coefficients

ai that are reported in Appendix B together with its solutions. We can then find the elements

of the reduced density operator of the output (third) qubit:

% =
4

9
e−2γt sin2(3tξ/2),

ς = − i
3
e−γt−itξ/2 sin(3tξ/2). (27)

The optimal average fidelity results

F opt1,3 =
1

2
− 1

3
e−2γt

{
1

2
− 2

3
sin2

(
3tξ

2

)
− 1

18
[5 + 4 cos (3tξ)]− 2

3
eγt
∣∣∣∣sin(3tξ

2

)∣∣∣∣} . (28)

At the end, we compare the influence of local and quasi-local noise on the optimal average

fidelity. In Fig.5, we report the optimal average fidelity (25) and (28) for two different noise

regimes.
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Fig. 5. Optimal average fidelity between the first and third qubits of a closed three-qubit chain
with local (red squares) and chained (blue dots) environments.

As shown in Fig.5, when the dissipative parameter is not large enough to establish strong

environment-induced chain links in quasi-local case, due to the interference phenomena, local

environments are more efficient. Anyway, the decaying timescale can be considered γ−1 for

both kind of environment.
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To have a clear picture of the effect of these two kind of noise we report the maximum of

optimal average fidelity between the 1st and its farthest qubit (denoted by Fmax1,o ) for chains

with periodic boundary condition of odd and even sizes in Figs.6,7.
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Fig. 6. Maximum of optimal average fidelity between the first qubit and its farthest neighbor in

a closed chain of odd size (N = 3, 5, 7, 9). Here o = dN
2
e + 1 labels the output qubit affected by

chained (blue dots) and local (red squares) environments.
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(b) ξ = 1,γ = 20
Fig. 7. Maximum of optimal average fidelity between the first qubit and its farthest neighbor in
a closed chain of even size (N = 4, 6, 8, 10). Here o = dN

2
e+ 1 labels the output qubit affected by

chained (blue dots) and local (red squares) environments.

In the regime in which γ is comparable with ξ, both Hamiltonian and dissipative terms

play relevant roles in the system’s dynamics. The wave function propagating in a closed chain

depending on the odd/even number of qubits experiences opposite phases, as a consequence

of the quantum interference phenomena, hence the induced links by dimerized environment

reduce/enhance the performance of information transfer (see Figs.(6a,7a)). In the strong

dissipative regime (γ >> ξ), there is weak direct connection between qubits (due to quantum

Zeno kind effect) that implies Fmax1,o ≈ 0.5 in the case of local noise. However, the dimerized

case exploits the indirect induced connections and significantly enhances the state transfer

process on the chain (Figs.(6b,7b)). However, this higher performance is also decreasing by

increasing the system’s size.

5 Conclusion

We have studied the effect of two different kinds of dissipation, quasi-local and local, on quan-

tum state transfer precess in Heisenberg-XY chain with open and closed boundary conditions.
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We have shown that the chained environments inducing indirect connections between nearest-

neighbor qubits remarkably enhance the fidelity of state transfer in short chains (N < 10)

with open boundary conditions. In the situation of chains with closed boundary conditions

the same behavior is found in the strong noise regime. However, due to quantum interfer-

ence phenomena, distinct behaviors appear in the weak-noise regime: chained environments

decrease/increase the fidelity of state transfer in chains with odd/even number of qubits.

Going beyond the quasi-local dissipation model investigated here, we might claim that the

fidelity enhancement can be related to the spatial extension of non-local environment effects.

The obtained results highlight the relevance of the topology of environmental actions on a

set of Hamiltonian interacting qubits. A subject that deserves attention due the continuing

miniaturization of quantum devices.
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Appendix A (Density matrix for open boundary conditions)

Here, we shall investigate the dynamics of density matrix of a three-qubit Heisenberg-

XY chain with open boundary condition dissipating in quasi-local environments as well as in

local environments. In the former case, we expand the density matrix using the operators in
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Eq.(14) and insert into Eq.(13) and get:

ȧ0(t) = 2γ {a1(t) + a3(t) + 2[a10(t) + a14(t) + a2(t)]} ,
ȧ1(t) = −2γ[a1(t) + a10(t)] + 2ξa11(t),

ȧ2(t) = −2γ[a10(t) + a14(t) + 2a2(t)] + 2ξ[a15(t)− a11(t)],

ȧ3(t) = −2γ[a3(t) + a14(t)]− 2ξa15(t),

ȧ4(t) = −γ[a4(t) + a6(t)] + ξa7(t),

ȧ5(t) = −γ[a5(t) + a7(t)]− ξa6(t),

ȧ6(t) = −γ[a4(t) + 2a6(t) + a8(t)] + ξ[a5(t) + a9(t)],

ȧ7(t) = −γ[a5(t) + 2a7(t) + a9(t)]− ξ[a4(t) + ξa8(t)],

ȧ8(t) = −γ[a6(t) + a8(t)] + ξa7(t),

ȧ9(t) = −γ[a7(t) + a9(t)]− ξa6(t),

ȧ10(t) = −γ[a1(t) + a2(t) + 3a10(t) + a12(t)] + ξa13(t),

ȧ11(t) = −γ[3a11(t) + a13(t)]− ξ[a1(t)− a2(t) + a12(t)],

ȧ12(t) = −γ[a10(t) + 2a12(t) + a13(t)] + ξ[a11(t)− a15(t)],

ȧ13(t) = −γ[a11(t) + 2a13(t)− a15(t)]− ξ[a10(t)− a14(t)],

ȧ14(t) = −γ[a2(t) + a3(t) + a12(t) + 3a14(t)]− ξa13(t),

ȧ15(t) = −γ[a13(t) + 3a15(t)]− ξ[a2(t)− a3(t)− a12(t)], (A.1)

with the following initial conditions:

a0(0) = cos2(θ/2), a1 = sin2(θ/2),

a4(0) =
1

2
sin(θ) cos(φ), a5(0) =

1

2
sin(θ) sin(φ),

ai(0) = 0,∀i 6= 0, 1, 4, 5. (A.2)

We only report solutions for coefficients a3, a8, a9 that are required to calculate the reduced

density matrix for the third qubit.

a3 =
1

4

{
e−2γt − 2e−5γt/2

[
cosh(

γtx

2
) cos(

γty

2
)

+
y cosh(γtx2 ) sin(γty2 ) + x cos(γty2 ) sinh(γtx2 )

x2 + y2

]
+

1

2
e−3γt

[
cos(γty) + cosh(γtx)

+
2y sin(γty) + 2x sinh(γtx)− cos(γty) + cosh(γtx)

x2 + y2

]}
× sin2(θ/2),

a8 =
1

8
e−

3γt
2

{
−2eγt/2 cosφ+ e−iφ cosh[

γt

2
(x− 16iξ

x
)]
(

1



244 Quantum information transmission through a qubit chain with quasi-local dissipation

+
tanh[γt2 (x− 16iξ

x )]

x− 16iξ/x

)
+ eiφ cosh[

γt

2
(x+

16iξ

x
)]
(

1+

+
tanh[γt2 (x+ 16iξ

x )]

x+ 16iξ
x

)}
× sin(θ),

a9 =
1

8
e−

3γt
2

{
−2eγt/2 sinφ+ ie−iφ cosh[

γt

2
(x− 16iξ

x
)]
(

1+

+
tanh[γt2 (x− 16iξ

x )]

x− 16iξ/x

)
− ieiφ cosh[

γt

2
(x+

16iξ

x
)]
(

1+

+
tanh[γt2 (x+ 16iξ

x )]

x+ 16iξ
x

)}
× sin(θ). (A.3)

In the case of local environments, using Eqs.(5) and (14) into (19), we get

ȧ0(t) = 2γ[a1(t) + a2(t) + a3(t)],

ȧ1(t) = −2γa1(t) + 2ξa10(t),

ȧ2(t) = −2γa2(t) + 2ξ[a12(t)− a10(t)],

ȧ3(t) = −2γa3(t)− 2ξa12(t),

ȧ4(t) = −γa4(t) + ξa7(t),

ȧ5(t) = −γa5(t)− ξa6(t),

ȧ6(t) = −γa6(t) + ξ[a5(t) + a9(t)],

ȧ7(t) = −γa7(t)− ξ[a4(t) + a8(t)],

ȧ8(t) = −γa8(t) + ξa7(t),

ȧ9(t) = −γa9(t)− ξa6(t),

ȧ10(t) = −2γa10(t) + ξ[a2(t)− a1(t)− a11(t)],

ȧ11(t) = −2γa11(t) + ξ[a10(t)− a12(t)],

ȧ12(t) = −2γa12(t) + ξ[a11(t) + a3(t)− a2(t)],

(A.4)

with the initial conditions as Eq.(A.2) and the following relevant solutions

a3(t) = e−2γt sin4(tξ/
√

2) sin2(θ/2),

a8(t) = −1

2
e−γt sin2(tξ/

√
2) sin(θ) cos(φ),

a9(t) = −1

2
e−γt sin2(tξ/

√
2) sin(θ) sin(φ).

(A.5)

Appendix B (Density matrix for closed boundary conditions)
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The time evolution of density matrix of a three-qubit chain with closed boundary con-

ditions interacting through XY Hamiltonian in presence of quasi-local and local noises are

given by Eq.(23) and Eq.(26), respectively. In the case of quasi-local noise, the coefficients

of Eq.(5) determining the density matrix are obtained through the following set of ordinary

differential equations:

ȧ0(t) = 2γ[a1(t) + a2(t) + a3(t)],

ȧ1(t) = −2γa1(t) + 2ξ[a11(t) + a13(t)],

ȧ2(t) = −2γa2(t) + 2ξ[a15(t)− a11(t)],

ȧ3(t) = −2γa3(t)− 2ξ[a13(t) + a15(t)],

ȧ4(t) = −γa4(t) + ξ[a7(t) + a9(t)],

ȧ5(t) = −γa5(t)− ξ[a5(t) + a8(t)],

ȧ6(t) = −γa6(t) + ξ[a5(t) + a9(t)],

ȧ7(t) = −γa7(t)− ξ[a4(t) + a8(t)],

ȧ8(t) = −γa8(t) + ξ[a5(t) + a7(t)],

ȧ9(t) = −γa9(t)− ξ[a4(t) + a6(t)],

ȧ10(t) = −2γa10(t) + ξ[a13(t) + a15(t)],

ȧ11(t) = −2γa11(t) + ξ[a2(t) + a14(t)− a1(t)− a12(t)],

ȧ12(t) = −2γa12(t) + ξ[a11(t)− a15(t)],

ȧ13(t) = −2γa13(t) + ξ[a3(t) + a14(t)− a1(t)− a10(t)],

ȧ14(t) = −2γa14(t)− ξ[a11(t) + a13(t)],

ȧ15(t) = −2γa15(t) + ξ[a3(t) + a12(t)− a2(t)− a10(t)], (B.1)

where the initial conditions read as Eq.(A.2).

The coefficients that we need to find the reduced density matrix of the third qubit read

a3(t) =
e−2γt

9

{
1 + e−6γt − 2e−3γt cos(3tξ)

}
sin2(θ/2),

a8(t) =
e−γt

6

{
e−3γt cos(φ− 2tξ)− cos(φ+ tξ)

}
sin(θ),

a9(t) =
e−γt

6

{
e−3γt sin(φ− 2tξ)− sin(φ+ tξ)

}
sin(θ). (B.2)

When the chain is affected by local environments, we get

ȧ0(t) = 4γ[a1(t) + a2(t) + a3(t) + a10(t) + a12(t) + a14(t)],

ȧ1(t) = −2γ[2a1(t) + a10(t) + a12(t)] + 2ξ[a11(t) + a13(t)],

ȧ2(t) = −2γ[2a1(t) + a10(t) + a14(t)]− 2ξ[a11(t)− a15(t)],

ȧ3(t) = −2γ[2a3(t) + a12(t) + a14(t)]− 2ξ[a13(t) + a15(t)],
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ȧ4(t) = −γ[2a4(t) + a6(t) + a8(t)] + ξ[a7(t) + a9(t)],

ȧ5(t) = −γ[2a5(t) + a7(t) + a9(t)]− ξ[a6(t) + a8(t)],

ȧ6(t) = −γ[a4(t) + 2a6(t) + a8(t)] + ξ[a5(t) + a9(t)],

ȧ7(t) = −γ[a5(t) + 2a7(t) + a9(t)]− ξ[a4(t) + a8(t)],

ȧ8(t) = −γ[a4(t) + a6(t) + 2a8(t)] + ξ[a5(t) + a7(t)],

ȧ9(t) = −γ[a5(t) + 2a9(t) + a7(t)]− ξ[a4(t) + a6(t)],

ȧ10(t) = −γ[a1(t) + a2(t) + 4a10(t) + b12(t) + a14(t)]

+ ξ[a13(t) + a15(t)],

ȧ11(t) = −γ[a13(t) + a15(t) + 4a11(t)]

+ ξ[a2(t)− a1(t)− a12(t) + a14(t)],

ȧ12(t) = −γ[a1(t) + a3(t) + a10(t) + 4a12(t) + a14(t)]

+ ξ[a11(t)− a15(t)],

ȧ13(t) = −γ[a11(t) + 4a13(t) + a15(t)]

+ ξ[a14(t)− a1(t) + a3(t)− a10(t)],

ȧ14(t) = −γ[a2(t) + a3(t) + a10(t) + a12(t) + 4a14(t)]

− ξ[a11(t) + a13(t)],

ȧ15(t) = −γ[4a15(t)− a11(t) + a13(t)]

+ ξ[a3(t)− a2(t)− a10(t) + a12(t)], (B.3)

with the initial conditions mentioned in Eq.(A.2) and the following relevant solutions:

a3(t) =
4

9
e−2γt sin2(3tξ/2) sin2(θ/2),

a8(t) =
1

3
e−γt sin(

3tξ

2
) sin(φ− tξ

2
) sin(θ),

a9(t) = −1

3
e−γt sin(

3tξ

2
) cos(φ− tξ

2
) sin(θ). (B.4)


