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1 Introduction

Contextuality [1]–[5] is a fundamental property of quantum mechanics that distinguishes

it from classical physics. The classical view of a physical system assumes that there are

predefined outcomes for experiments which measurements simply reveal. Non-contextuality

then means that the value corresponding to any given observable is independent of which

other compatible observables might be measured simultaneously. However, it turns out that

for sufficiently complex quantum systems (Hilbert space dimension ≥ 3), no non-contextual

classical model can reproduce the predictions of quantum mechanics [1],[2]. The latter is

therefore called contextual.

Contextuality is also important for the functioning of quantum computation. Its necessity

has been demonstrated for the models of quantum computation with magic states [6], see [7]–

[9], and measurement-based quantum computation (MBQC) [10], see [11]–[14]. It is therefore

natural to consider contextuality as a computational resource.
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Of interest for the present paper is the phenomenology contained in the triangle

quantum mechanical
contextuality

measurement-based 
quantum computation

symmetry and
  cohomology

contextual
fraction

.

Therein, the connection between contextuality and MBQC (top leg) was discovered in [11],

and further studied in [12]–[14]. A cohomological underpinning of contextuality, based on Čech

cohomology, was first described in [15]. A further cohomological framework for contextuality,

which is compatible with MBQC, was described in [16] (left leg). A cohomological formulation

of MBQC (right leg) was provided in [23]. The contextual fraction [4] is a measure of the

amount of contextuality present in physical settings, and it is related to the success probability

of MBQCs [14].

The purpose of this paper is to corroborate the relations in the left half of the above dia-

gram, while preserving compatibility with the right half. We are interested in state-dependent

probabilistic contextuality proofs. Their characteristic property is that, as opposed to state-

independent and state-dependent deterministic proofs, non-contextual value assignments do

exist. However, no probability distribution over these value assignments reproduces the mea-

surement statistics predicted by quantum mechanics. This is demonstrated by the violation

of certain non-contextuality inequalities. For example, for the setting of Mermin’s star it is

known that a state ρ is contextual w.r.t. the local observables Xi, Yi, for i = 1, .., 3 if

〈X1X2X3〉ρ − 〈X1Y2Y3〉ρ − 〈Y1X2Y3〉ρ − 〈Y1Y2X3〉ρ > 2. (1)

This is the well known Mermin inequality [3]. It is maximized for the GHZ state, for which

the above expectation value is 4. Here, we provide a cohomological underpinning for such

probabilistic contextuality proofs. We establish the following results.

• We extend the cohomological contextuality proofs of [16] to probabilistic scenarios. Our

results in this regard are Theorem 3, and Theorem 6 and Corollary 3, invoking the

cohomology of chain complexes and of groups, respectively. Our primary motivation is

the relation between quantum contextuality and measurement-based quantum compu-

tation [11]-[13]. Quantum computation, including MBQC, is typically probabilistic, and

for this reason we seek cohomological contextuality proofs that apply to probablilistic

settings.

• We refine Theorems 3 and 6 by invoking the contextual fraction, see Theorems 5 and

8 (also see Theorem 3 in [14]). Therein, the contextual fraction arises as a resource

that bounds the violation of logical non-contextuality inequalities. The cohomological

aspect is retained—the maximum violation as a function of the contextual fraction is

a cohomological invariant. Herein lies the unification of the resource-theoretic and the

cohomological perspective.

• We establish a connection between the contextual fraction and the classical cost of

evaluating Boolean functions. Namely, a Boolean function can be hard to evaluate
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classically only if evaluating it through MBQC requires a sizeable contextual fraction;

see Theorems 10 and 12.

The remainder of this paper is organized as follows. In Section 2 we review the “magne-

tostatic” perspective on quantum contextuality through cohomology [16]. Section 3 covers

mathematical background, such as hidden variable models, the contextual fraction, and el-

ements of cohomology. Sections 4 and 5 contain our cohomological contextuality proofs for

probabilistic state-dependent scenarios. We establish a connection between the contextual

fraction and the classical cost of evaluating Boolean functions in Section 6. We conclude in

Section 7.

2 Quantum contextuality as seen from magnetostatics

Parity proofs of contextuality, such as Mermin’s square and star [3], have a cohomological

interpretation [16]. When formulated in this way, these proofs bear strong semblance to a

problem in magnetism. Namely, the questions of the existence of a non-contextual value

assignment and of the existence of a globally defined vector potential have essentially the

same mathematical formulation.

To illustrate this similarity, let’s consider the example of Mermin’s star; see Fig. 1a. Can

the ten Pauli observables of the star carry consistent pre-determined measurement outcomes

±1? This is not the case; an algebraic obstruction prevents it. We assume that the reader is

familiar with Mermin’s original argument [3], and do not reproduce it here.

The cohomological version of this argument is as follows. The ten observables in the star

are assigned to the edges in the tessellation of the surface of a torus; See Fig. 1b. Any value

assignment s of a non-contextual hidden variable model (ncHVM) (assuming it exists) is a

function that maps a given edge a to a value s(a) ∈ Z2, with the interpretation that (−1)s(a) is

the eigenvalue obtained in the measurement of the corresponding Pauli observable Ta. From

the cohomological point of view, s is a 1-cochain. Denote by f any of the five elementary faces

of the surface shown in Fig. 1b, such that ∂f = a+b+c+d, for four edges a, b, c, d. Then there

is a binary-valued function β defined on the faces f such that TaTbTcTd = (−1)β(f)I, and the

operators Ta, Tb, Tc, Td pairwise commute. As in Mermin’s original argument, these product

constraints among commuting observables induce constraints among the corresponding values,

namely s(a) + s(b) + s(c) + s(d) mod 2 = β(f). By applying this relation to the five faces of

the torus, we reproduce the five constraints of Mermin’s star.

These constraints have a topological interpretation. Namely, β can be interpreted as

a 2-cochain. Furthermore, for any consistent context-independent value assignment s, the

constraints between the value assignments and the function β are given by the equation

ds = β. (2)

Therein, d is the coboundary operator and the addition is mod 2.

We can now show that for the present function β, no value assignment s can satisfy Eq. (2).

Namely, we observe that β evaluates to 0 on four faces and to 1 on one face. Therefore, the

integral of β over the whole surface F equals 1. Finally we note that F is a 2-cycle, ∂F = 0.

Putting all this information into Stokes’ theorem (with all integration mod 2),

1 =

∫
F

β =

∫
F

ds =

∮
∂F

s =

∮
0

s = 0.
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Fig. 1. Co-chains evaluated by a boundary operator in service of contextuality and magnetostatic
proofs. (a) The Mermin star, standard representation. Each horizontal and vertical line corre-

sponds to a measurement context, composed of four commuting Pauli observables multiplying to

±I. (b) Mermin’s star re-arranged on a surface. The Pauli observables are now associated with
the edges, and each measurement context with the boundary of one of the five elementary faces.

The exterior edges are identified as shown. (c) The relative complex C(E,E0) for Mermin’s star.

Contradiction. This is exactly Mermin’s original argument demonstrating the non-existence

of non-contextual value assignments, but in cohomological guise.

The above reasoning is not confined to Mermin’s star. Rather, it applies to all parity

proofs. The observables in such proofs do not need to be Pauli observables; the only re-

quirement is that all their eigenvalues can be written in the form ωz, where ω := ei2π/d and

z ∈ Zd, for some positive integer d. The general statement is the following [16]. Every parity

proof of contextuality boils down to a chain complex with a 2-cocycle β defined on it. If the

corresponding cohomology class is non-trivial, [β] 6= 0, then the setting is contextual.

What is the connection of contextuality to magnetostatics?—The flux created by a mag-

netic monopole is an obstruction to the existence of a global vector potential in the same

way as the above “flux”
∫
F
β is an obstruction to the existence of a non-contextual value

assignment. In more detail, consider the question of whether a given magnetic field B can

be written as the curl of some vector potential A, i.e., B = ∇×A. This possibility is ruled

out by the existence of a closed surface F for which
∫
F
dF · B 6= 0. Here, A is a 1-cochain

(1-form) and B is a 2-cochain (2-form). They are the counterparts of the value assignment s

and the function β, respectively. The magnetic flux
∫
F
dF ·B 6= 0 through some closed surface

F—the counterpart of a contextuality proof β(F ) 6= 0—would indicate (when observed) the

presence of a magnetic monopole.

To prepare for the scenarios of interest for the present work, we make, for the example of

Mermin’s square, the transition from state-independent to the state-dependent scenario. It

is based on the same cohomological interpretation as the state-independent case; see Fig. 1b.

The additional ingredient is the Greenberger-Horne-Zeilinger (GHZ) state, which is a joint

eigenstate of the four non-local observables in Mermin’s star, X1X2X3, X1Y2Y3, Y1X2Y3

and Y1Y2X3, with eigenvalues 1,−1,−1,−1, respectively. We thus have the partial value

assignment

s(aXXX) = 0, s(aXY Y ) = 1, s(aY XY ) = 1, s(aY Y X) = 1. (3)

This value assignment cannot be extended to all observables in the star, as we now show.

Denote F ′ = F1 + F2 + F3 + F4, see Fig. 1b for the labeling. Then, assuming that a value
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assignment exists that satisfies the relation Eq. (2), we have that 0 =
∫
F ′ β =

∫
F ′ ds =∫

∂F ′ s = 1. Contradiction. Hence, there are no non-contextual value assignments in this

setting.

The present paper deals with state-dependent scenarios where the quantum state in ques-

tion does not permit partial deterministic value assignments as in Eq. (3), and where contex-

tuality inequalities such as Eq. (1) apply. We provide a topological underpinning for these

inequalities.

3 Mathematical background

In this section, we define the notion of “non-contextual hidden variable model” that we will

subsequently refer to, review the notion of the contextual fraction [4], and provide necessary

background on the cohomology of chain complexes and of groups.

3.1 Non-contextual hidden variable models

We formalize the classical idea of a hidden variable model for a system, in the same manner

as [16]. Quantum states are described by density matrices ρ, the prescribed set of observables

is O, and M ∈M denote contexts of commuting observables in O.

Definition 1 A non-contextual hidden variable model is a triple (S, qρ,Λ), with qρ a proba-

bility distribution over a set S of internal states. The set Λ = {λν}ν∈S consists of functions,

λν : O → C obeying the following constraints:

1. For any set M ⊂ O of commuting observables there exists a quantum state |ψ〉 such

that:

A|ψ〉 = λν(A)|ψ〉,∀A ∈M (4)

2. The distribution qp satisfies:

tr(Aρ) =
∑
ν∈S

λν(A)qρ(ν),∀A ∈ O (5)

From condition (4) it follows that for any triple of commuting observables A,B,AB ∈ O, the

functions λν obey

λν(AB) = λν(A)λν(B). (6)

3.2 The contextual fraction

An empirical model predicts the outcome distributions for compatible joint measurements

on a physical state [4]. Such models can be used to describe quantum mechanical systems,

among other things, and this is what we use them for here. An empirical model e assigns

an outcome probability distribution eM to every set M of compatible measurements. The

probability distributions eM have to satisfy consistency conditions; essentially they need to

be compatible under marginalization [4].

From the perspective of contextuality, one may ask how much of an empirical model e can

be described by a non-contextual hidden variable model (ncHVM). Splitting the model e into

a contextual part eC and a non-contextual part eNC ,

e = λeNC + (1− λ)eC , 0 ≤ λ ≤ 1, (7)
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we want to know what the maximum possible value of λ is. This maximum value is called

the non-contextual fraction NCF(e) of the model e,

NCF(e) := max
eNC

λ. (8)

The contextual fraction CF(e) is then defined to be the probability weight of the contextual

part eC ,

CF(e) := 1− NCF(e). (9)

3.3 Cohomology of chain complexes

In [16] a cohomological framework is introduced to study contextuality proofs. We first

recall some notions from this framework and present a generalization which is suitable for

probabilistic scenarios. Our approach is to generalize the underlying cohomological structure

of state-dependant deterministic scenarios. In the deterministic case the cohomological basis

of such scenarios consists of a relative complex C(E,EΨ) which depends on a given state

|Ψ〉. The operators corresponding to the labels in EΨ stabilizes the resource state |Ψ〉. In

the symmetry-based version there is a symmetry group acting on the labels with the extra

condition on the transformed eigenvalues. In the present framework we will start with a pair

E0 ⊂ E where E0 replaces EΨ. The eigenvalues are replaced by a function χ defined on E0,

and a symmetry group is required to preserve χ.

Let O denote a set of observables of the form {ωkTa| a ∈ E, k ∈ Zd} where E is a set

of labels for the observables under consideration. We say a, b ∈ E commutes whenever the

corresponding operators commute TaTb = TbTa. The operator Ta has the eigenvalues given

by {ωk| k ∈ Zd}. For commuting observables Ta, Tb the operators multiply as

Ta+b = ωβ(a,b)TaTb. (10)

This gives a corresponding addition operation for the label set. Given commuting a, b ∈ E
the sum a+ b is defined using Eq. (10).

The main object in [16] is the (co)chain complex C(E). For the construction of this complex

E is required to satisfy the property that a+ b ∈ E for commuting labels a, b ∈ E. Compared

to [16], we modify the definition of the chain complex so that it applies to arbitrary E. The

definition of C0(E) and C1(E) remains the same but we change C2(E) and C3(E).

The chain complex C∗(E) consists of one vertex, and edges, faces and volumes. It is

constructed as follows.

1. C0(E) = Zd, geometrically we have a single vertex.

2. C1(E) is freely generated as a Zd-module by the elements [a] where a ∈ E. These labels

correspond to the set of edges.

3. C2(E) is freely generated as a Zd-module by the pairs [a|b] where a, b ∈ E commutes

and a+ b ∈ E. The pairs (a, b) correspond to faces. We denote the set of all faces by F .

4. C3(E) is freely generated as a Zd-module by the triples [a|b|c] where a, b, c ∈ E pair-wise

commute and the labels a + b, b + c, and a + b + c belong to E. These triples (a, b, c)

correspond to volumes and the set of volumes will be denoted by V .
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The differentials in the complex

C3(E)
∂→ C2(E)

∂→ C1(E)
∂→ C0(E)

are defined as before

∂[a] = 0, ∂[a|b] = [b]− [a+ b] + [a], ∂[a|b|c] = [b|c]− [a+ b|c] + [a|b+ c]− [a|b].

Given the chain complex C∗(E), there is a corresponding cochain complex C∗(E) as usual. The

cochains Cn(E) are Zd-linear maps Cn(E)→ Zd. Equivalently we can think of the cochains

as functions on the basis elements of Cn(E). For example in degree 3 we have that C3(E)

is given by the set of functions γ : V → Zd. The abelian group structure on the cochains

are obtained by addition of functions: Given γ, γ′ the sum γ + γ′ is the function defined by

(γ + γ′)(v) = γ(v) + γ′(v) for all v ∈ V . Similarly lower degree cochains can be described

as functions on the basis elements, and the abelian group structure is given by addition of

functions. The coboundary operator d : Cn(E) → Cn+1(E) is defined by dα(x) = α(∂(x))

where α ∈ Cn(E) and x ∈ Cn+1(E).

From Eq. (10) and the above definition of C(E) it is clear that β is a 2-cochain in C∗(E).

We recall from [16] the following properties of β.

Lemma 1 ([16]) β is a 2-cocycle, dβ = 0. Furthermore, if a value assignment s : E −→ Zd
exists, then β is trivial,

β = −ds. (11)

This lemma is the content of Eq. (12) and Lemma 2 in [16]. Eq. (11) is just the condition

Eq. (6) restated in cohomological fashion, using the definition Eq. (10) of β. The cocycle

condition dβ = 0 is a consequence of the associativity of operator multiplication, (TaTb)Tc =

Ta(TbTc).

Lemma 1 describes state-independent contextuality proofs. To the present purpose it is

just an introduction. Here we are interested in the state-dependent case, and more specifically,

in the probabilistic state-dependent case. The deterministic state-dependent case was already

treated in [16], and therein, an important role is played by the set EΨ ⊂ E corresponding to

the stabilizer of the state |Ψ〉 in O. In the present probabilistic scenario, the stabilizer of the

state ρ in O is generally trivial, i.e., it consists of the identity operator only. Nonetheless, the

set EΨ has a non-trivial counterpart E0 in the present discussion, which we now introduce.

E0 ⊂ E chosen such that two properties hold: (i) After removing from Eq. (6) all con-

straints that only involve observables Ta with a ∈ E0, the parity obstruction to the existence

of value assignments disappears, and hence value assignments can exist. (ii) The resulting

ncHVMs imply non-contextuality inequalities involving the expectation values 〈Ta〉, a ∈ E0,

which are violated by quantum mechanics. Our goal is to construct such inequalities.

For concreteness, let us look at the example of the state-dependent Mermin star. In this

case, E0 = {aXXX , aXY Y , aY XY , aY Y X}. The belonging constraint s(aXXX) + s(aXY Y ) +

s(aY XY ) + s(aY Y X) = 1 mod 2 is removed, and in result, non-contextual value assignments

become possible. They imply the Mermin inequality 〈X1X2X3〉 + 〈X1Y2Y3〉 + 〈Y1X2Y3〉 +

〈Y1Y2X3〉 ≤ 2 for ncHVMs. It is violated by quantum mechanics.

We now describe the cohomological underpinning for the probabilistic state-dependent

case. We can construct the chain complex C∗(E0) for the subset E0. The inclusion E0 ⊂ E
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gives an inclusion of the chain complexes C∗(E0) ⊂ C∗(E). Geometrically we can collapse

the edges, faces, and volumes coming from E0 and look at the resulting space. In terms

of chain complexes this idea is expressed using the language of relative complexes. The

relative complex C∗(E,E0) is defined as the quotient C∗(E)/C∗(E0) meaning that in each

degree Cn(E,E0) is given by the quotient group Cn(E)/Cn(E0). The basis is obtained by

erasing the basis elements of Cn(E0) from the basis elements of the larger complex Cn(E).

The relative boundary operator ∂R is induced from the boundary operator ∂ of C∗(E), and

in effect it can be calculated by applying ∂ and removing the chains which lie in C∗(E0).

The relation between the subcomplex and the relative complex is expressed as an exact

sequence

0→ C∗(E0)→ C∗(E)→ C∗(E,E0)→ 0,

and similarly, there exists a corresponding exact sequence for the cochain complexes

0→ C∗(E,E0)→ C∗(E)→ C∗(E0)→ 0.

The relative cochain complex Cn(E,E0) consists of cochains in Cn(E) whose restriction to

Cn(E0) is zero. The relative coboundary operator is the same as the coboundary operator of

C∗(E). The n-th cohomology of the cochain complex C∗(E,E0) is denoted by Hn(C(E,E0)).

We studied both of these constructions in [16] for a special subset EΨ associated to a given

state |Ψ〉.
We fix a partial value assignment χ : E0 → Zd on E0, and ask whether it can be extended

to all of E. In practice the chain complex of E0 will be one dimensional i.e. Cn(E0) = 0 for

n = 2, 3. Although our results work for general E0 we will make this assumption throughout.

Under this assumption a partial value assignment on E0 is simply a function, since there are

no faces imposing compatibility. With respect to χ we can begin our discussion of relative

complexes by defining

βχ = β + dχ̄ (12)

where χ̄ is the extension of χ to E by setting χ(a′) = 0 for all a′ ∈ E − E0. We can regard

βχ as a cochain in the relative complex C∗(E,E0) since it vanishes on C2(E0).

Lemma 2 The cochain βχ is a cocycle, dβχ = 0.

Proof. We are working with relative complexes hence the coboundary is defined with respect

to the relative boundary ∂R. For v ∈ C3(E) we have

dβχ(v) = βχ(∂Rv) = βχ(∂v)− βχ(∂v − ∂Rv) = βχ(∂v) = β(∂v) + dχ̄(∂v) = 0,

since β vanishes on ∂v − ∂Rv. In the last equality we used the fact that β vanishes on

boundaries (as proved in Section 4.2 of [16]), and dχ̄(∂v) = ddχ̄(v) = 0. �

Theorem 1 A value assignment s : E −→ Zd with s|E0
= χ exists only if [βχ] = 0 in

H2(C(E,E0)).

A value assignment χ on E0 cannot be extended to E if [βχ] 6= 0.

Proof. Assume that there exists a value assignment s for E that satisfies s|E0 = χ. Now

let s = s− χ. Thus, s|E0
= 0, and hence s lives in the relative complex C1(E,E0). Further,

ds = ds− dχ = −β − dχ = −βχ, and thus [βχ] = 0. �
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3.4 Symmetry and group cohomology

A symmetry group G is a transformation O → O that acts on Ta by the equation

g(Ta) = ωΦ̃g(a)Tga (13)

and satisfies g(AB) = g(A)g(B) for commuting operators A,B,AB ∈ O. If s : E → Zd is a

value assignment then the function defined as

g · s(a) := s(ga) + Φ̃g(a) (14)

is a value assignment, too [16]. The approach in [16] is to interpret Φ̃ as a cocycle living in

a suitable complex. We generalize this approach in a way that is applicable to probabilistic

scenarios extending the deterministic case.

Let H ⊂ G be a subgroup of our symmetry group which preserves the set E0 and satisfies

h · χ = χ (15)

for all h ∈ H. In the relative version we define the cochain

Φ̃χ = Φ̃ + dhχ̄ (16)

where χ̄ is the extension of χ as before, and dh denotes the group cohomology coboundary:

dhχ̄(g, a) = χ(ga)−χ(a) for all g ∈ H and a ∈ E. We will regard Φ̃χ as a cochain in a group

cohomology complex. Next let us describe the complex. The H action on E given in Eq. (13)

induces an action on Cq(E,E0) and Cq(E,E0) where 0 ≤ q ≤ 3. Then we can consider the

complex Cp(H,Cq(E,E0)) for a fixed q. Here the coefficient module M = Cq(E,E0) has non-

trivial action. Note that the cohomology group H∗(H,M) can be defined for any Zd–module

M with an action of H [21]. For a fixed q the group cohomology cochain complex is given by

Cq(E,E0) = C0(H,Cq(E,E0))
dh−→ C1(H,Cq(E,E0))

dh−→ C2(H,Cq(E,E0))→ · · ·

where dh will be referred to as the horizontal coboundary. Our objects of interest are as

follows: s ∈ C1(E,E0), βχ ∈ C2(E,E0), and Φ̃χ ∈ C1(H,C1(E,E0)). The group cohomology

coboundary on s and βχ is given by

dhs(g, a) = s(ga)− s(a), dhβχ(g, f) = βχ(gf)− βχ(f)

and on Φ̃χ we have

dhΦ̃χ(g1, g2, a) = Φ̃χ(g1, g2a)− Φ̃χ(g1g2, a) + Φ̃χ(g2, a).

Instead of fixing q we can fix p and construct a cochain complex using the coboundary of the

relative complex C(E,E0) to obtain

Cp(H,Zd) = Cp(H,C0(E,E0))
dv−→ Cp(H,C1(E,E0))

dv−→ Cp(H,C2(E,E0))→ · · ·

where dv is the vertical coboundary. For example, we have dvΦ̃χ(g, f) = Φ̃χ(g, ∂Rf) where

∂R is the relative boundary map.
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Lemma 3 The cochain Φ̃χ defined by Eq. (16) is a cocyle (with respect to dh) in C1(H,C1(E,E0))

and satisfies

dvΦ̃χ = dhβχ. (17)

Proof. Eq. (15) and (16) imply that

Φ̃χ(g, a) = Φ̃g(a) + χ(ga)− χ(a) = 0, ∀a ∈ E0, ∀g ∈ H. (18)

That is the function Φ̃χ(g,−) vanishes on C1(E0), hence belongs to C1(E,E0) by definition

of the relative complex. Therefore Φ̃χ is a cochain in C1(H,C1(E,E0)). For the cocycle

property we check that the group cohomology coboundary dh vanishes:

dhΦ̃χ = dhΦ̃ + dhdhχ̄ = 0

where we used dhΦ̃ = 0 (Lemma 3 Eq. (31a) in [16]) and dhdh = 0. For the second property

we calculate

dvΦ̃χ = dvΦ̃ + dvdhχ̄ = dhβ + dvdhχ̄ = dh(β + dvχ̄) = dhβχ

using dvΦ̃ = dhβ (Lemma 3 Eq. (31b) in [16]) and dhdv = dvdh. �
Next we reduce our symmetry group. Let N ⊂ H denote the normal subgroup of symmetry

elements which fix each element of E. The quotient group Q = H/N is the essential part of

the symmetry which acts on the complex. Let π : H → Q denote the quotient homomorphism.

Furthermore, we need to restrict to boundaries in the relative complex. Let B1 ⊂ C1(E,E0)

denote the image of C2(E,E0) under the relative boundary operator. Let U0 denote the dual

of B1 in the sense that it consists of Zd–linear maps B1 → Zd. We have a surjective map

C1(E,E0)→ U0. We define Φχ to be the composition

Φχ : Q
θ−→ H

Φ̃χ−→ C1(E,E0)→ U0

where θ is a section Q→ H of the quotient map. Unravelling the definition we have

Φχ(q, ∂Rf) = Φ̃χ(θ(q), ∂Rf) = dvΦ̃χ(θ(q), f)

where q ∈ Q and f ∈ C2(E,E0). The quotient map π : H → Q induces a map of cohomology

groups

π∗ : H1(Q,U0)→ H1(H,U0)

and [Φχ] maps to the class of dvΦ̃χ under this map. Using Lemma 2 and 3 we summarize the

relation between βχ, Φ̃χ, and Φχ as follows

Theorem 2 Given (E,E0, χ) and a symmetry group H satisfying h · χ = χ for all h ∈ H if

the class [Φχ] 6= 0 in H1(Q,U0) then [βχ] 6= 0 in H2(C(E,E0)).

Proof. We will show that [βχ] = 0 implies [Φχ] = 0. Assume that βχ = −dvs for some

s ∈ C1(E,E0). For q ∈ Q and f ∈ C2(E,E0) we have

Φχ(q, ∂Rf) = Φ̃χ(θ(q), ∂Rf) = dvΦ̃χ(θ(q), f) = dhβχ(θ(q), f) = −dhdvs(θ(q), f) = s(∂Rf)−s(q∂Rf)

where we used Eq. (17) in Lemma 3 and θ(q)∂Rf = qθRf since the normal subgroup N fixes

each element of E. Thus, [Φχ] = 0 since Φχ(q, ∂Rf) = −dhs(q, ∂Rf). �
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βχ

0

0

π∗Φχ

Φ̃χ

p

q

dv

dh

dv

dh

Fig. 2. The complex Cp(H,Cq(E,E0)) has two types of coboundaries: horizontal dh, and vertical
dv . The cochains βχ and Φ̃χ live in degrees (p, q) = (0, 2) and (1, 1), respectively.

This result is the basis for the extension of the ideas used in [16]. A special case is the

state-dependent symmetry based contextuality proofs. There χ arises as sΨ associated to the

eigenvalues of the state. Note that taking E0 = ∅ specializes to the state-independent case

C(E, ∅) = C(E). In this paper we will introduce a probabilistic version which generalizes the

deterministic scenario of state-dependent contextuality.

4 Cohomological proofs of contextuality based on parity

We now have the tools at hand to construct cohomological proofs of contextuality for prob-

abilistic scenarios. In this section, we provide proofs of this kind that are based on parity

arguments, such as Mermin’s inequality (1).

We begin with the contextuality witnesses. For a subset E0 ⊂ E and a function χ : E0 →
Zd we define the operator

Pχ =
1

|E0|
∑
a∈E0

Pa,χ(a) (19)

where Pa,χ(a) denotes the projector onto the eigenspace of Ta associated to the eigenvalue

ωχ(a). Explicitly, the projector has the form

Pa,χ(a) =
1

d

∑
k∈Zd

ω−kχ(a)T ka .

We define a probability function

pχ(ρ) = 〈Pχ〉ρ (20)

as the expectation value of Pχ with respect to the state ρ. Note that pχ is a probability. By

Eq. (20), 0 ≤ pχ(ρ) ≤ 1, for all density operators ρ.

Depending on the function χ, ncHVMs impose non-trivial bounds on the probabilities

pχ(ρ). To state these bounds and describe their cohomological properties, it is useful to

introduce the notion of “β-compatible cochains”.



C. Okay, E. Tyhurst, and R. Raussendorf 1283

Definition 2 A β-compatible cochain is a 1-cochain s ∈ C1(E) that satisfies Eq. (11).

Thus, every ncHVM value assignment is a β-compatible cochain. The reverse is not necessarily

true. While every ncHVM value assignment has to respect the constraint Eq. (11), it is

conceivable that there are independent additional constraints on those assignments.

We denote the set of β-compatible cochains by Λ,

Λ := {s ∈ C1(E)| ds = −β}. (21)

With Definition 1 and the above observation, we have the relation

Λ ⊆ Λ. (22)

Another ingredient in the bounds stated below is the Hamming distance, which measures the

degree of similarity between two functions. Given two functions f, g : E0 → Zd, the Hamming

distance is defined as

H(f, g) = |E0| −
∑
a∈E0

δf(a),g(a).

Further, let H(χ,Λ) denote the minimum of H(χ, s|E0
) as s ∈ Λ is varied,

H(χ,Λ) := min
s∈Λ

H(χ, s|E0
).

Given a function χ : E0 → Zd, which is automatically a β-compatible cochain since C∗(E0)

is one dimensional, we can define βχ as in Eq. (12). It is a cocycle in the relative complex

C2(E,E0).

Theorem 3 A scenario (O, ρ) is contextual if

pχ(ρ) > 1− H(χ,Λ)

|E0|
. (23)

Proof. Assume as given a ncHVM with value assignments Λ and a probability distribution

q. The ncHVM expression pχ(q) for the quantity pχ(ρ) satisfies

pχ(q) =
1

|E0|
∑

s∈Λ,a∈E0

q(s)δχ(a),s(a)

≤ 1

|E0|
max
s∈Λ

∑
a∈E0

δχ(a),s(a)

≤ 1

|E0|
max
s∈Λ

∑
a∈E0

δχ(a),s(a)

=
1

|E0|
(|E0| −H(χ,Λ)).

Therefore, if pχ(ρ) is larger than 1 − H(χ,Λ)/|E0| then no ncHVM can describe the given

scenario (O, ρ). �
Theorem 3 has the following implication.

Corollary 1 A scenario (O, ρ) is contextual if [βχ] 6= 0 and

pχ(ρ) > 1− 1

|E0|
.
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Proof. If [βχ] 6= 0, then Theorem 1 says that no value assignment s : E −→ Zd exists such

that s|E0
= χ. Therefore, H(χ,Λ) ≥ 1. Now combining this with Theorem 3, the scenario

(O, ρ) is contextual if pχ(ρ) > 1− 1/|E0|. �
Corollary 1 generally produces weaker contextuality thresholds than Theorem 3. We state

it nonetheless, for two reasons: (i) It is the direct probabilistic generalization of Theorem 2

in [16]. (ii) Through the condition [βχ] 6= 0 it is evident that also in probabilistic settings

contextuality has a topological aspect.

The latter is not a priori clear for Theorem 3, and Corollary 1 thus prompts the question

“Is the Hamming distance H(χ,Λ) a cohomological invariant?”—This turns out to be the

case.

Theorem 4 The Hamming distance H(χ,Λ) is a cohomological invariant, H(χ,Λ) = H(χ′,Λ)

if [βχ] = [βχ′ ].

Proof. Assume that χ′ is another value assignment on E0 such that βχ and βχ′ are in the

same cohomology class i.e. βχ′ = βχ + ds for some s ∈ C1(E,E0). Note that since s lives in

the relative complex it vanishes on E0. Using the definition for βχ and βχ′ we obtain

d(s+ χ− χ′) = 0. (24)

Now assume a β-compatible cochain s ∈ Λ, i.e., it holds that ds = −β. Now subtracting

Eq. (24) from the last relation, we find that d(s − s − χ + χ′) = −β. Hence, s − s − χ + χ′

also is a β-consistent cochain. By Definition 2 we have

{s− s− χ+ χ′, s ∈ Λ} = Λ. (25)

Then we can write

H(χ,Λ) = mins∈Λ H(χ, s|E0)
= mins∈Λ H(χ, (s− s)|E0)
= mins∈Λ H(0, (s− s− χ)|E0

)
= mins∈Λ H(χ′, (s− s− χ+ χ′)|E0

)
= mins∈Λ H(χ′, s|E0

)
= H(χ′,Λ).

Therein, in the first step we used the fact that s vanishes on E0, and in the last step we used

Eq. (25). We have shown that H(χ,Λ) = H(χ′,Λ) whenever [βχ] = [βχ′ ] in H2(C(E,E0)). �
Example. We return to Mermin’s star, where we have

E − E0 = {aXi , aYi , i = 1, .., 3}, E0 = {aX1Y2Y3 , aY1X2Y3 , aY1Y2X3 , aX1X2X3}

and η(E0) ⊂ η(E) denote the corresponding set of observables. We note that the GHZ state

|GHZ〉 = (|000〉 + |111〉)/
√

2 is an eigenstate of all observables in η(E0), with eigenvalues

−1,−1,−1, 1, respectively. Correspondingly, we choose the function χ that appears in the

definition of βχ to be

χ(aXY Y ) = χ(aY XY ) = χ(aY Y X) = 1, χ(aXXX) = 0.

We now show that for this function χ, both Theorem 3 and Corollary 1 reproduce the Mermin

inequality (1) when applied to Mermin’s star. First, regarding Theorem 3, one of the closest
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functions to χ that is induced by a β-compatible cochain s is s|E0
≡ 1, which comes from

s(aX3
) = s(aY3

) = 1, s(aX1
) = s(aY1

) = s(aX2
) = s(aY2

) = 0. Hence, H(χ,Λ) = 1. Thus,

Theorem 3 says that probabilistic state-dependent version of Mermin’s star is contextual for

all states ρ with

1

2
+
〈X1X2X3〉ρ − 〈X1Y2Y3〉ρ − 〈Y1X2Y3〉ρ − 〈Y1Y2X3〉ρ

8
>

3

4
. (26)

This reproduces the familiar Mermin inequality [3]; cf. Inequality (1). The GHZ state violates

the non-contextuality inequality (26) maximally.

Regarding Corollary 1, the relative complex C(E,E0) and βχ for this scenario is shown

in Fig. 1c. For the surface F ′ in the figure it holds that ∂RF
′ = 0 and

∫
F ′ βχ = 1; hence

[βχ] 6= 0, and Corollary 1 can be applied. It produces the same inequality (26) as Theorem 3.

Returning to the general case, we observe that by using the notion of contextual fraction

we can state Theorem 3 in a more general form. With our quantum setting (ρ,O) the emprical

model e comes from the state ρ. The contextual fraction amounts to the decomposition of e

into a contextual portion eC and a non-contextual portion eNC ,

e = CF(ρ) eC + NCF(ρ) eNC . (27)

Theorem 5 Consider a scenario (ρ,O) and a restricted value assignment χ : E0 −→ Zd.

Then, the probability function p = pχ(ρ) satisfies

p ≤ 1− NCF(ρ)H(χ,Λ)

|E0|
. (28)

Proof. Since quantum mechanical expectation values are linear in the state ρ, with

Eq. (27) we have

pχ(ρ) = CF(ρ) pC + NCF(ρ) pNC .

Now using therein the trivial upper bound pC ≤ 1 for the contextual part, and the bound

pNC ≤ 1−H(χ,Λ)/|E0| of Theorem 3 for the non-contextual part, we obtain Eq. (28). �
Theorem 5 shows that the probability p can get close to the maximal value of 1 only if the

contextual fraction CF(ρ) is close to unity. More generally, the larger the contextual fraction,

the larger the reachable value for p. To make this more explicit, we define the amount ∆χ of

violation of the non-contextuality inequality (23) as

∆χ(ρ) := pχ(ρ)−
(

1− H(χ,Λ)

|E0|

)
.

With Theorem 5 we find that

∆χ(ρ) ≤ CF(ρ)H(χ,Λ)

|E0|
. (29)

The amount ∆χ of violation of a non-contextuality inequality based on χ can only be large if

the contextual fraction is large and the Hamming distance of χ to the closest function in Λ is

large.

The cohomological aspect of Eq. (29) is that the map CF(ρ) 7→ max ∆χ(ρ) is a cohomologi-

cal invariant, since H(χ,Λ)/|E0| is one by Theorem 4. In this way, Theorems 4 and 5 represent

a unification of the resource-theoretic and the cohomological aspects of contextuality.
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5 Cohomological proofs of contextuality based on symmetry

In the previous section we provided cohomological contextuality proofs based on parity. The

central result therein, Theorem 5, is by itself not topological, but a cohomological interpreta-

tion for it is provided by Theorem 4. In this section we will consider symmetry-based versions

of these results. The Hamming distance needs to be modified in order to include the sym-

metry group. We present two results of this kind, in Sections 5.2 and 5.3. In addition, one

result from Section 4, Corollary 1, has a direct symmetry-based counterpart, and we present

it in Section 5.1.

5.1 Symmetry-based counterpart to Corollary 1

Recall that we have an additional requirement for the symmetry group H, namely h · χ = χ

for all h ∈ H that is

h(Ta) = ωχ(a)−χ(ha)Tha for all a ∈ E0.

Then Φ̃χ is a cocycle in C1(H,C1(E,E0)) by Lemma 3, and Theorem 2 applies.

Corollary 2 Consider a physical setting (O, ρ), with a restricted value assignment χ : E0 −→
Zd and a symmetry group H with corresponding phase function Φχ : Q −→ U0 such that

[Φ] 6= 0 in H1(Q,U0). This setting is contextual if it holds that

pχ(ρ) > 1− 1

|E0|
.

Proof. Since [Φ] 6= 0 Theorem 2 implies that [βχ] 6= 0. Then we can apply Corollary 1 to

conclude that the given system is contextual. �

5.2 First symmetry-based counterpart to Theorems 3-5

As in the parity case the bound can be improved using a suitable Hamming distance with the

cost of modifying the probability function. The symmetry group Q enters into the picture for

both the Hamming distance and the probability function. We define the set

Λ̄Q = {s ∈ C1(E)| dvdhs = −dhβ} (30)

which will replace the role of Λ̄.

For the symmetry-based proofs we consider dhχ and dhs|E0 as functions of the form

Q×E0 → Zd, and their Hamming distance H(dhχ, dhs|E0
). We denote by H(dhχ, dhΛ̄Q) the

minimum distance as dhs varies in the set dhΛ̄Q = {dhs| s ∈ Λ̄Q}.
We now include H(dhχ, dhΛ̄Q) in a contextuality bound. This new bound requires that

the quotient group Q and the set E0 are such that [qa, a] = 0, ∀q ∈ Q and all a ∈ E0. We

define a new probability function which invokes the quotient group Q,

pdhχ(ρ) =
1

|Q||E0|
∑

(q,a)∈Q×E0

〈Pqa−a, dhχ(q,a)−β(qa,a)〉ρ.

Using TqaT
−1
a = ωβ(qa,a)Tqa−a the projector can be expressed as

Pqa−a, dhχ(q,a)−β(qa,a) =
1

d

∑
k∈Zd

ω−k(χ(qa)−χ(a))(TqaT
−1
a )k.
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Theorem 6 Consider a physical setting (O, ρ), with a restricted value assignment χ : E0 −→
Zd and a symmetry group H such that qa and a commute for all q ∈ Q and a ∈ E0. This

setting is contextual if it holds that

pdhχ(ρ) > 1− H(dhχ, dhΛ̄Q)

|Q||E0|
.

Proof. Assume that a ncHVM is provided with value assignments Λ and a probability

distribution q. The ncHVM expression pdhχ(q) for the quantity pdhχ(ρ) satisfies

pdhχ(q) =
1

|Q||E0|
∑

s∈Λ,a∈E0

q(s)δdhχ(q,a)−β(qa,a),s(qa−a)

≤ 1

|Q||E0|
max
s∈Λ

∑
a∈E0

δdhχ(q,a),dhs(q,a)

≤ 1

|Q||E0|
max
s∈ΛQ

∑
a∈E0

δdhχ(q,a),dhs(q,a)

=
1

|Q||E0|
(|Q||E0| −H(dhχ, dhΛQ)).

where in the second line we use s(qa − a) = s(qa) − s(a) − β(qa, a) since by assumption qa

commutes with a. Therefore, if pdhχ(ρ) is larger than 1−H(dhχ, dhΛQ)/|E0| then no ncHVM

can describe the given scenario. �
Example. Continuing with the Mermin star example we consider dhΛ̄Q that is the set

consisting of dhs where s ∈ Λ̄Q. Functions in Λ̄Q satisfy s(aXXX) + s(aY Y X) + s(aXY Y ) +

s(aY XY ) = 0 (similar to Λ̄). Then we see that the restriction of dhs(q,−) to E0 either maps

all edges in E0 to 0 or it maps them to 1. Taking χ as before, χ(aXXX) = 0 and on other

edges it takes the value 1, the Hamming distance

H(dhχ, dhΛ̄Q) = 2

since dhχ sends aXXX , aY Y X to 1, and aXY Y , aY XY to 0. We get the same result if we use

dhΛ̄ instead. Therefore the bound gives

pdhχ(q) ≤ 1− H(dhχ, dhΛ̄)

|Q||E0|
= 1− 2

2 · 4
=

3

4

as in the parity case.

We show that this Hamming distance is an invariant in group cohomology.

Theorem 7 Let H and H ′ be symmetries of the system (E,E0, χ) and (E,E0, χ
′), and N ⊂

H and N ′ ⊂ H ′ normal subgroups that fix the edges in E0 such that H/N = H ′/N ′ = Q. It

holds that if [Φχ] = [Φχ′ ] then H(dhχ, dhΛ̄Q) = H(dhχ′, dhΛ̄Q).

Proof. The equation [Φχ] = [Φχ′ ] means that Φχ − Φχ′ = dhs where s ∈ C1(E,E0).

Unravelling the definitions of Φχ and Φχ′ we have

Φ̃(θ′(q), ∂f) + dhχ̄′(q, ∂f)− Φ̃(θ(q), ∂f)− dhχ̄(q, ∂f) = dhs(q, ∂f) (31)

where θ and θ′ are the sections corresponding to the symmetry groups H and H ′. After pulling

the relative boundary out as dv we use the relation dvΦ̃ = dhβ, which allows us to forget about
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the sections and retain only the symmetry element q in the arguments. Cancelling dhβ we

find that

dvdh(χ̄′ − χ̄− s) = 0.

Therefore, given χ, χ′ satisfying [Φχ] = [Φχ′ ], there exists an s ∈ C(E,E0) such that

{s− s− χ̄+ χ̄′, s ∈ ΛQ} = ΛQ. (32)

We now turn to the Hamming distance. We have

H(dhχ, dhΛQ) = mins∈ΛQ
H(dhχ, dhs|E0

)

= mins∈ΛQ
H(0, dh(s− s− χ)|E0

)

= mins∈ΛQ
H(dhχ′, dh(s− s− χ+ χ′)|E0)

= H(dhχ′, dhΛQ).

Therein, in the second line, s|E0
= 0 since s ∈ C(E,E0). The last line follows with Eq. (32).

�

We can generalize Theorem 6 by invoking the contextual fraction, in the same way as we

promoted Theorem 3 to Theorem 5.

Theorem 8 Consider a physical setting (O, ρ), with a restricted value assignment χ : E0 −→
Zd and a symmetry group H such that qa and a commute for all q ∈ Q and a ∈ E0. The

probability function p = pdhχ(ρ) then satisfies

p ≤ 1− NCF(ρ)H(dhχ, dhΛQ)

|Q||E0|
. (33)

The proof of Theorem 8 given Theorem 6 is the same as the proof for Theorem 5 given

Theorem 3.

5.3 Second symmetry-based counterpart to Theorems 3-5

We have the following result.

Corollary 3 A scenario (O, ρ) is contextual if

pχ(ρ) > 1− H(χ,ΛQ)

|E0|
. (34)

Proof. We recall the definitions of Λ and ΛQ, cf. Def. 2 and Eq. (30). Since dvs = −β
implies dvdhs = −dhβ, it holds that Λ ⊆ ΛQ. Thus, H(χ,ΛQ) ≤ H(χ,Λ), and Eq. (34) follows

with Theorem 3. �

Again our goal is to show that the quantity on the r.h.s. of Eq. (34) is an invariant under

group cohomology.

Theorem 9 Let H and H ′ be symmetries of the system (E,E0, χ) and (E,E0, χ
′), and N ⊂

H and N ′ ⊂ H ′ normal subgroups that fix the edges in E0 such that H/N = H ′/N ′ = Q.

Then, [Φχ] = [Φχ′ ] implies

H(χ,ΛQ) = H(χ′,ΛQ).
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Proof. We have

H(χ,ΛQ) = min
s∈ΛQ

H(χ, s|E0)

= min
s∈ΛQ

H(0, (s− χ)|E0
)

= min
s∈ΛQ

H(χ′, (s− s− χ+ χ′)|E0
), for some s ∈ C(E,E0)

= min
s∈ΛQ

H(χ′, s|E0)

= H(χ′,ΛQ)

Therein, in the third line we choose the particular s ∈ C(E,E0) that satisfies the relation

Φχ − Φχ′ = dhs, granted from the condition [Φχ] = [Φχ′ ]. In the fourth line we have used

Eq. (32). �

6 A computational interpretation of the contextual fraction

Contextuality is a necessary ingredient for measurement-based quantum computation. This

was first revealed in [11], where the state-dependent version of Mermin’s star [3] was repur-

posed as a small MBQC evaluating an OR-gate. In MBQC with two measurement bases per

site (the qubit setting), the evaluation of an OR gate—and, in fact any non-linear Boolean

function—requires contextuality.

This result can be puzzling. Per se, there is nothing quantum about OR gates; it can hardly

get any more classical in computation. If so, then how can these gates be contextual?—The

resolution is that OR-gates are classical when executed by classical means, as they normally

are. They require quantumness, however, when executed as MBQCs. The statement [11] does

not lead to a contradiction because its domain of applicability is so narrow. Ways of evaluating

Boolean functions other than MBQC, in particular classical ways, are not constrained by it.

Yet, there is a connection between the efficiencies of evaluating non-linear Boolean func-

tions by MBQC and by purely classical means. As we show in this section, the classical mem-

ory cost of storing a Boolean function can be high only if evaluating this function through

MBQC is substantially contextual. Further, in Appendix 1 we show that, with some addi-

tional assumptions on the set E0, the same holds for the operational cost of evaluating a

Boolean function.

Up to now, the function χ has merely been a label for contextuality witnesses. For some

such functions the maximum violation ∆χ of the corresponding non-contextuality inequality

is high, for other functions χ it is low, and for yet others there is no violation at all; see

Eq. (29). There are limiting cases, such as the maximal violation of Mermin’s inequality in

the GHZ scenario, where the witness pχ assumes its optimal value of 1. These limiting cases

amount to determining the function χ by measurement of the observables {Ta| a ∈ E0}.
Now, even away from these limiting cases, we may regard the measurement of a contex-

tuality witness as the probabilistic evaluation of the corresponding function χ on all inputs,

with average success probability pχ(ρ). This observation induces a shift in how χ may be

viewed, from parameter in contextuality witnesses to function computable by physical mea-

surement. Measurement-based quantum computation pertains to the latter view, for sets E0

with a special structure [23].
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With this in mind, we consider the task of evaluating the function χ : E0 −→ Zd, by

measurement of the quantum state ρ. To evaluate χ(a) ∈ Zd for any given a ∈ E0, the

observable Ta = η(a) is measured and the corresponding outcome is reported. This is in

general a probabilistic process. We may compare it to a classical process computing the

function χ with the same average success probability, and ask how much information the

classical process needs to have about χ.

Since the present settings allow for non-contextual value assignments, with Lemma 1 we

have [β] = 0. Therefore, we can choose the function η such that β ≡ 0. We call this specific

choice of function η0.

Theorem 10 Consider the probabilistic computation of a function χ : E0 −→ Zd, (a) by

quantum means via the measurement of the observables η0(E0), and (b) by classical means.

Then, the amount I of information, in bits, required by the optimal classical routine (b) to

compute χ with the same average success probability as the quantum routine (a) is bounded

by

I ≤ C dCF(ρ)H(χ,Λ)e+D, (35)

with C = (dlog2 |E0|e+ dlog2 d− 1e) and D = dlog2 de logd
∣∣Λ∣∣.

Thus, the classical memory cost for storing the function χ (or a sufficiently close approximation

to it) can be high only if the contextual fraction of the equivalent MBQC substantially deviates

from zero. Furthermore, by comparison of Eqs. (29) and (35), we find that the upper bounds

on the violation ∆χ(ρ) of non-contextuality inequalities and on the information I depend on

the quantum state ρ and the function χ only through the product CF(ρ)H(χ,Λ).

With extra conditions on the structure of the set E0, e.g. through the invariance of E0

under Q, Theorem 10 can be extended to bound the operational cost of evaluating the function

χ; see Appendix 1.

Proof of Theorem 10. We prove the statement by explicitly constructing an algorithm

that computes χ and satisfies the conditions of the theorem. We start with a whole family of

algorithms to compute χ, and later pick one member. These algorithms use the best ncHVM

approximation sopt ∈ Λ of χ and a list L of exceptions. Any list L is a subset L ⊂ Lmax,

where

Lmax = {(a, χ(a)− sopt(a)) | a ∈ E0, χ(a) 6= sopt(a)}.

The algorithms are as follows: Given an input a, if (a, δ(a)) ∈ L for some δ(a) then the output

is χ(a) = sopt(a) + δ(a), and otherwise the output is χ(a) = sopt(a).

Within this family of classical algorithms for computing χ, we choose a list L of ex-

ceptions such that |L| =
⌈
CF(ρ)H(χ,Λ)

⌉
. The resulting function evaluations thus fails for

b(1− CF(ρ))H(χ,Λ)c of the |E0| inputs, and the average success probability of function eval-

uation therefore is

pS = 1− b(1− CF(ρ))H(χ,Λ)c
|E0|

.

This equals (or slightly exceeds by virtue of rounding) the upper limit of what the MBQC

with contextual fraction CF(ρ) can reach, cf. Theorem 5. The algorithm is thus correct.

To recover the function χ with sufficient accuracy, the optimal value assignment s and

the list L of exceptions are stored. The memory cost of storing the list L, with its |L| =
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CF(ρ)H(χ,Λ)

⌉
items, is (dlog2 |E0|e + dlog2 d − 1e)dCF(ρ)H(χ,Λ)e. The memory cost for

storing sopt is as follows. With the special choice η0 for the function η it holds that β ≡ 0,

and Eq. (11) implies that ds = 0. Hence, Λ is a vector space, of rank logd
∣∣Λ∣∣. Therefore,

the function sopt ∈ Λ is fully specified by logd
∣∣Λ∣∣ evaluations of sopt. The cost of storing this

information is dlog2 de logd
∣∣Λ∣∣ bits.

Adding these two contributions gives the r.h.s. of (35). The minimal memory cost is the

same or lower. �

We note that contextuality can also place lower bonds on the memory requirements for

classically simulating quantum phenomena [22].

7 Conclusion

In this paper, we have provided state-dependent probabilistic contextuality proofs in which

the resource-theoretic perspective on quantum contextuality and the cohomological perspec-

tive are combined. The resource perspective is important because of the recently discovered

connection between contextuality and quantum computation [11], [7].The cohomological per-

spective finds strong relevance in MBQC, since even the simplest example of a contextual

MBQC [11] has cohomological interpretation [16].

Furthermore, we have advanced the cohomological viewpoint to probabilistic state-dependent

contextuality proofs. These proofs are based on contextuality witnesses, i.e., expectation val-

ues of suitable linear operators. Contextuality is demonstrated whenever the value of a wit-

ness exceeds a corresponding threshold. The cohomological aspect of this is that the threshold

value is a cohomological invariant; cf. Theorems 4, 7.

We have also unified the cohomological perspective with the resource perspective. At the

center of this unification stands the notion of the contextual fraction [4]. We have provided

the following results involving it:

• The maximum possible amount of violation of cohomological non-contextuality inequal-

ities is proportional to the contextual fraction of the considered setting; see Eq. (29).

• The contextual fraction has an operational interpretation that links it to classical com-

putation. Namely, the classical evaluation of a Boolean function can be hard only if

the MBQC evaluation of the same function requires a large contextual fraction; see

Theorems 10 and 12.

At first sight, the cohomological language may seem a complication, but the opposite is the

case. The cohomological viewpoint removes decorum and reveals the essential and invariant

features of parity-based and symmetry-based contextuality proofs.
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Appendix A The contextual fraction bounds the cost of function evaluation

With additional assumptions on the structure of the set E0 that hold for measurement-

based quantum computation, we can extend Theorem 10 to a relation between the contextual

fraction of an MBQC and the operational cost of classical function evaluation.

We consider the l2-MBQC; see [13] or [14] for the full definition. This MBQC-variant

formalizes the original scheme [10], and is characterized by two properties: (i) there is a

choice between two measurement bases per local system, and (ii) the classical side-processing

is mod 2 linear. We have the following result [14], specialized to a single bit of output.

Theorem 11 ([14]) Let f : (Z2)m −→ Z2 be a Boolean function, and H(f,L) its Hamming

distance to the closest linear function. For each l2-MBQC with contextual fraction CF(ρ) that

computes f with average success probability pS over all 2m possible inputs it holds that

pS ≤ 1− (1− CF(ρ))H(f,L)

2m
. (A.1)

This result is a counterpart to Theorem 5 with f = χ, adjusted to MBQC. It is instructive to

first look at two limiting cases of Theorem 11. For CF(ρ) = 1, i.e., strong contextuality, it holds

that pS ≤ 1, and the theorem is not constraining. For the opposite limit of a non-contextual

hidden variable model, CF(ρ) = 0, the bound in Theorem 11 reduces to pS ≤ 1−H(f,L)/2m,

which is the result of [13].

Now in general, for a given non-linear function f , the larger the contextual fraction CF(ρ),

the higher the potentially reachable success probability of function evaluation. In this sense,

the contextual fraction is an indicator of computational power of MBQC.

The evaluation of Boolean functions by classical means and via MBQC are related as

follows.

Theorem 12 Consider an l2-MBQC with contextual fraction CF(ρ), probabilistically evalu-

ating a Boolean function f : (Z2)m −→ Z2 that has a Hamming distance H(f,L) to the set of

linear functions. If the closest linear function g to f is known, then the operational cost Cop

of classically computing f with at least the same probability of success are bounded by

Cop ≤ O (m log2 CF(ρ)H(f,L)) .

Thus, the evaluation of a given function with a target probability of success can be a hard task

for classical computers only if the contextual fraction of the equivalent MBQC substantially

deviates from zero.

As for the classical computational model whose performance is compared to the MBQC, we

consider a dedicated device hard-wired to compute f . The MBQC itself—with fixed resource

state and measurement sequence—is a hard-wired device too, and thus the comparison is fair.

Using a dedicated device to classically compute the function f justifies the assumption of

Theorem 12 that the best linear approximation g to f is known.

Theorem 12 is a counterpart to similar results invoking entanglement [18], [19] or the

negativity of Wigner functions and similar quasi-probability distributions [20]—some applying

to MBQC and others to the circuit model and quantum computation with magic states. For

reference, we quote here a result on the role of entanglement in MBQCa[19],

aTheorem 13 as stated here is a combination of Theorems 4 and 6 in [19]. Their Theorem 4 is broader in
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Theorem 13 ([19]) Let |G〉 be an n-party graph state, and be τ the entanglement rank width

of |G〉. Then, any MBQC on |G〉 can be simulated classically in O(n poly(2τ )) time.

Therein, the entanglement rank width is a proper entanglement monotone [19]. MBQC can

solve a hard computational problem only if the entanglement in the resource state—as mea-

sured by the specific monotone of rank width—is substantial.

The structural likeness of Theorem 12 and Theorem 13 is apparent, and, in fact, the same

structure is present in the other results mentioned: All these theorems state an upper bound

on the classical computational cost of reproducing the output of the quantum computation;

and this upper bound is a monotonically increasing function in some measure of quantumness.

But there is also a difference. Theorem 13 and the other results mentioned compete with

the quantum protocol by simulating it classically. Theorem 12 admits further generality. In

this setting, we merely require of the classical algorithm that it evaluates the same function

f with the same average success probability. The theorem is agnostic about whether the

classical algorithm achieves this by simulating the quantum protocol or by other means.

The proof of Theorem 12 is very similar to the proof of Theorem 10.

Proof of Theorem 12. We prove the statement by explicitly constructing an algorithm that

computes f and satisfies the conditions of the theorem. We consider family of algorithms to

compute f which use the best linear approximation g of f and a list L of exceptions. Any list

L is such that x ∈ L only if f(x) 6= g(x), and otherwise the size |L| of L is a free parameter.

The algorithms are as follows: Given an input i, if i ∈ L then the output is o = g(i)⊕ 1, and

otherwise the output is o = g(i).

Within this family of classical algorithms for computing f , we choose a list L of ex-

ceptions such that |L| = dCF(ρ)H(f,L)e. The resulting function evaluations thus fails for

b(1− CF(ρ))H(f,L)c of the 2m inputs, and the average success probability of function evalu-

ation therefore is

pS = 1− b(1− CF(ρ))H(f,L)c
2m

.

This equals (or slightly exceeds by virtue of rounding) the upper limit of what the MBQC

with contextual fraction CF(ρ) can reach, cf. Theorem 11. The algorithm is thus correct.

The algorithm requires to evaluate the function g on an input i, which takes 2m binary

additions and multiplications, the lookup of the input i in the list L, which takes O(m log2 |L|)
operations, and the preparation of the output, which takes a constant number of operations.

The operational cost is thus dominated by the lookup of the input i in the list L, Cop =

O(m log2 CF(ρ)H(f,L)). The cost of the optimal algorithm to compute f is the same or less.

�

that it does not only refer to graph states but all quantum states of a fixed number of spins. However, it also
comes with additional conditions concerning the knowledge of the optimal tensor network decomposition of
the state. For graph states, these extra conditions can be eliminated, cf. Theorem 6 in [19].


