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Determining whether a given integer is prime or composite is a basic task in number

theory. We present a primality test based on quantum order finding and the converse of

Fermat’s theorem. For an integer N , the test tries to find an element of the multiplicative
group of integers modulo N with order N−1. If one is found, the number is known to be

prime. During the test, we can also show most of the times N is composite with certainty

(and a witness) or, after log logN unsuccessful attempts to find an element of order
N − 1, declare it composite with high probability. The algorithm requires O((logn)2n3)

operations for a number N with n bits, which can be reduced to O(log logn(logn)3n2)
operations in the asymptotic limit if we use fast multiplication.
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Prime numbers are the fundamental entity in number theory and play a key role in many of

its applications such as cryptography. Primality tests are algorithms that determine whether

a given integer N is prime or not. A näıve but inefficient solution is trying all the numbers

up to
√
N looking for a factor, which would prove N is prime if no factor is found and show

it is composite if we have one. There are more efficient ways to test for primality based on

different results from number theory. We are going to use basic theorems which can be found,

together with their proofs, in elementary number theory books [1, 2, 3].

Some definitions are useful before we proceed. Let ZN be the ring of integers modulo N

and (a,N) the greatest common divisor of a and N . We call Z∗
N to the multiplicative group

of integers modulo N defined as Z∗
N = {a ∈ ZN : (a,N) = 1}. The elements of Z∗

N are

the integers from 1 to N − 1 which are coprime to N . These integers form a group under

multiplication.

The order of a finite group G, |G|, is the number of elements of that group (its cardinality).

The order of Z∗
N is given by Euler’s totient function ϕ(N) which gives how many integers

1 ≤ a < N are coprime to N .
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1144 A quantum primality test with order finding

The multiplicative order of an element a ∈ Z∗
N , ord(a), is the smallest positive integer r

such that ar ≡ 1 mod N .

With these concepts and known theorems from number theory, we can give different tests

to check if an integer is prime or not. A simple test is given by Fermat’s theorem:

Theorem 1 (Fermat) If a positive integer N is prime, then aN−1 ≡ 1 mod N for any

positive integer a such that (a,N) = 1.

This is a special case of Euler’s theorem:

Theorem 2 (Euler) Let N be a positive integer, then aϕ(N) ≡ 1 mod N for any positive

integer a such that (a,N) = 1.

For a prime N , ϕ(N) = N − 1 and we recover Fermat’s theorem.

If we can find an integer a for which aN−1 6≡ 1 mod N , we have proof N is composite

and we call a a Fermat witness for compositeness. Given a, anyone can quickly check N is

not prime. This gives a simple test for primality. We pick a random a from 1 to N , verify

(a,N) = 1 (otherwise we know N is composite) and then check for Fermat’s condition. After

testing a few different elements, we can declare it prime with high probability.

While this test is simple, there are certain composite numbers, called Carmichael numbers

[4, 5], which obey Fermat’s condition for every possible a. Any other integer will fail Fermat’s

test at least half of the times. To see this, we can use Lagrange’s theorem:

Theorem 3 (Lagrange) Let |G| be the number of elements of a finite group G, then any

subgroup S of G must have a number of elements |S| which is a divisor of the size of the

group.

There is a direct application of Lagrange’s theorem to Fermat’s test. Fermat liars are the

integers a such that aN−1 ≡ 1 mod N for a composite N . The liars form a subgroup of Z∗
N .

If aN−1
1 ≡ 1 mod N and aN−1

2 ≡ 1 mod N then a3 = a1a2 is also a liar, but multiplication

outside the subgroup breaks closure. The remaining subgroup properties, like the existence of

an inverse, an identity, associativity and commutativity, come immediately from the properties

of Z∗
N and the multiplication property we just described.

From Lagrange’s theorem, we see the subgroup L of Fermat liars must have a size which

is a divisor of the size of Z∗
N . The number of possible liars divides ϕ(N) and, if there is

at least one Fermat witness which shows N is composite, there must be at least ϕ(N)/2

witnesses. |L| must have a number of elements ϕ(N)/d, where d|ϕ(N) (d is divisor of ϕ(N)).

For |L| 6= ϕ(N), d > 1 and |L| is always equal to or smaller than ϕ(N)/2.

There are also more refined probabilistic tests similar to Fermat’s which are based on more

sophisticated properties. Most take advantage of Lagrange’s theorem to show there is at least

one witness and, therefore, the subgroup of liars has a cardinality of, at most, |Z∗
N |/2. By

choosing a random a for the test, after a few attempts with different elements, we either find a

witness of compositeness or we can be satisfied that there is an exponentially small probability

the number is not a prime. The two most important such methods are the Solovay-Strassen

test [6] and the Miller-Rabin test [7, 8] with liar subgroups at most a half and a quarter of

the total size respectively and a computational complexity essentially cubic in the number of

bits of N . A good description of these and other probabilistic primality tests can be found in

Dixon’s review [9].

Notably, there is also a deterministic algorithm for primality testing. The AKS (Agrawal-

Kayal-Saxena) primality test [10] is based on a generalization of Fermat’s theorem which
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states that:

Theorem 4 A positive integer N is prime if and only if

(x+ a)N ≡ xN + a mod N (1)

for one a such that (a,N) = 1.

The AKS test is deterministic and requires a number of operations essentially of the order of

the sixth power of the number of bits of N [11].

In this paper, we provide a different quantum primality test based on the converse of

Fermat’s theorem [12]

Theorem 5 (Lucas) If

aN−1 ≡ 1 mod N (2)

and

ax 6≡ 1 mod N (3)

for any x < N − 1, then N is prime.

Apart from Lucas theorem, we make use of a couple of additional results (see chapter 8 of

Burton’s book [2]):

Theorem 6 The elements a ∈ Z∗
N have an order ord(a)|ϕ(N) (the order is always a divisor

of |Z∗
N |).

Theorem 7 For a prime p and an integer d|p − 1, Z∗
p has exactly ϕ(d) elements a of order

ord(a) = d.

We can now restate Lucas theorem as

Theorem 8 (Lucas) If a ∈ Z∗
N has order ord(a) = N − 1, then N is prime.

This formulation is contained in Theorem 6. The order of any element must divide ϕ(N)

which is only equal to N − 1 for prime numbers. The only way we can have order N − 1 is if

N is prime. Additionally, from Theorem 7, we see there must be exactly ϕ(N − 1) integers

with this property. If we can find such an integer, we have a way to prove primality.

There is no known classical algorithm that can determine the order of an integer efficiently.

In order to apply Lucas theorem to primality certification on a classical computer, we need

alternative methods. A solution is the Lucas-Lehmer test [13] based on:

Theorem 9 (Lucas-Lehmer) If

aN−1 ≡ 1 mod N (4)

and

a
N−1

p 6≡ 1 mod N (5)

for any prime p|N − 1, then N is prime.

With this and other refinements, there have been multiple proposals for the efficient imple-

mentation of modified Lucas tests on classical computers. In most of them, we require a

complete factorization of N −1, or, in some, a partial factorization with large factors, both of

which might be easier than factoring N (if possible). For instance, these tests are particularly

easy to perform on numbers of the form 2m − 1 [14] which, if prime, are called Mersenne

primes and include many of the largest known prime numbers [15]. The reader can find many

of these methods in chapter 4 of Crandall and Pomerance’s book [3].
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The tests based on Lucas theorem have the advantage that they allow us to prove pri-

mality. With the Solovay-Strassen or the Rabin-Miller test we could only give a witness of

compositeness, but there was no efficient way to show N was prime with certainty.

A certificate of primality for N is a collection of data which allows anyone to prove N

is prime, ideally with few operations on short certificates with a number of bits of the order

of log(N). For instance, if we have a complete factorization of N − 1, a list of the factors

and an element a ∈ Z∗
N with ord(a) = N − 1 give a fast way to show N is prime using the

Lucas-Lehmer Theorem. In principle, we can always use the AKS test to check if a number is

prime and, from a certain point of view, N is itself a valid certificate of primality. However,

for large integers, there exist more efficient ways to prove primality if we can factor N − 1.

Pratt certificates were the first examples [16] and there are primality proofs requiring only

O(log p) multiplications modulo p for any prime p [17].

At this point, it is interesting to turn to quantum computers. Shor’s algorithm gives an

efficient way to factor composite integers of n bits with a number of expected operations

O((log n)n3) [18], which can become O(log log n(log n)2n2) with fast multiplication circuits.

The quantum primality test of Chau and Lo [19] combines Shor’s quantum factoring algo-

rithm with the Lucas-Lehmer test to prove primality in an expected number of operations

O(n3 log n log log n), essentially cubic with the number of bits of N . Using quantum factoring

has the nice side effect of producing a succinct certificate of primality with the results: the

factors of N − 1 and an element a which passes the Lucas-Lehmer test are enough for anyone

with a classical computer to prove N is prime using only a logarithmic number of modular

exponentiations, for which there are efficient classical algorithms.

Here, we propose a new quantum primality testing algorithm inspired by Shor’s algorithm.

By using directly the quantum order finding algorithm behind Shor’s factoring and discrete

logarithm algorithms, we can reduce the number of quantum operations. Instead of factoring

N − 1, we check the order of different elements in Z∗
N until we find one with order N − 1 or

a witness that N is composite.

This also contrasts with the quantum primality test of Carlini and Hosoya [20], which

applies the concepts of quantum counting and quantum period finding to give an improved

version of the Miller-Rabin test.

While we reduce the number of quantum operations, we loose the classical certificate of

primality of the Chau-Lo test. Instead, we can give a quantum certificate of primality. Any of

the ϕ(N −1) elements a ∈ Z∗
N with ord(a) = N −1 serves to prove N is prime to anyone with

a quantum computer, which can find the order of a efficiently. This certificate is quantum

because order finding is only known to be efficient in quantum computers. Any integer with

ord(a) = N − 1 allows a quantum computer to check N is prime without running the whole

algorithm, but it is not valid as a classical certificate because classical computers have no

efficient way to compute ord(a).

We deal with numbers 2n−1 < N ≤ 2n represented with n bits. We consider quantum

order finding as a black box which requires O((log n)n3) operations and see that, on average,

with log n uses of the black box we can find an element of order N − 1 and prove N is prime

when it is or show it must be composite with high probability, with a proof of compositeness

in most cases.
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Algorithm 1 Quantum primality test

1: Choose at random an integer 1 < a < N .
2: Compute (a,N):
3: if (a,N) 6= 1 then
4: Declare N composite; return factor (a,N) as a proof.
5: else if (a,N) = 1 then

6: Compute a
N−1

2 :

7: if a
N−1

2 6≡ ±1 mod N then
8: Declare N composite; return a as a witness.

9: else if a
N−1

2 ≡ 1 mod N then
10: Go back to Step 1.

11: else if a
N−1

2 ≡ −1 mod N then
12: QUANTUM ORDER FINDING. Compute ord(a):
13: if ord(a) = N − 1 then
14: Declare N prime; return a as a quantum certificate of primality.
15: else
16: Go back to Step 1.
17: end if
18: end if
19: end if

The proposed algorithm (Algorithm 1) checks the order of random integers in the group

until it can prove either primality or compositeness. First we choose an integer at random

from Z∗
N , excluding a = 1, which has a trivial order 1. We take an integer a < N and

compute (a,N). If (a,N) 6= 1, we have a factor of N which serves as a proof N is composite.

Before going into the quantum part, we perform a basic screening to reduce the number of

quantum operations, which are the most challenging in terms of technology, and replace them

by classical steps.

We need to check aN−1 ≡ 1 mod N . Instead of performing this Fermat test directly, we

check a
N−1

2 , which should be ±1 if a passes Fermat’s test. Otherwise, N cannot be prime

and we return a as a primality witness for the Fermat test. If a
N−1

2 ≡ 1 mod N , the order of

a is, at most, N−1
2 , which gives no information on whether N is prime or not. Then we start

again and choose a new random integer. We only proceed if a
N−1

2 ≡ −1 mod N .

At this point, we need to resort to the quantum order finding algorithm. If ord(a) = N−1

the number is prime with certainty and we can stop the procedure and return a as a quantum

certificate of primality.

The classical screening guarantees ord(a)|N − 1. This follows from the condition a
N−1

2 ≡
−1 mod N , which means aN−1 ≡ 1 mod N , and from [2]:

Theorem 10 Let a ∈ Z∗
N have order ord(a). Then ah ≡ 1 mod N if and only if ord(a)|h.

If ord(a) 6= N − 1, we cannot tell anything about N . We need to start again the search with

a new element.

The average number of iterations before finding an element of order N − 1 when N is

prime is of the order of log logN . From Theorem 7, we know there are ϕ(N − 1) elements of

order N − 1 among the N − 1 elements of Z∗
N . The probability of finding an element which
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confirms primality at each iteration is

ϕ(N − 1)

N − 1
>

1

3 log log(N − 1)
(6)

for a large enough N . In order to prove this bound we can turn to known estimations, starting

from the lower bound [21]:

ϕ(M)

M
>

1

eγ log logM + 2.50637
log logM

(7)

where γ ≈ 0.57721 is the Euler-Mascheroni constant and eγ ≈ 1.781. For M > ee
√

2.50637
3−1.781 ≈

49.2 there is a lower bound
ϕ(M)

M
>

1

3 log logM
, (8)

which tells us that for a prime N of n > 6 bits Equation (6) will be valid. With 3 log log(N−1)

attempts we have a high probability of finding an element of order N−1. While there is some

room to improve the estimate, in the general case we cannot give a much tighter bound as it

is known that for infinitely many integers

ϕ(M)

M
<

1

eγ log logM
<

0.562

log logM
(9)

will hold [22]. We need a number of repetitions logarithmic with the number of bits of

the integer under test. The complexity of each iteration is determined by the order finding

subroutine.

Quantum order finding requires O((log n)n3) quantum operations, with O(log n) uses of

modular exponentiation. The quantum order finding subroutine of Shor has two main steps:

modular exponentiation and a Quantum Fourier Transform. The Quantum Fourier Transform

circuit is quadratic in n [18]. Modular exponentiation with the binary method needs O(n)

multiplications [23]. There are many quadratic quantum multiplication circuits, for instance

[24, 25], which gives a total complexity of O(n3) for exponentiation. In principle, with fast

multiplication using the Schönhage-Strassen algorithm [26], for which there is a quantum

circuit [27], the total complexity for order finding would be O(log log n(log n)2n2). However,

the constant factors involved make it only worthwhile in the asymptotic limit for very large

N [28].

The number of operations in the classical part is also dominated by modular exponenti-

ation. Computing the greatest common divisor of two integers up to n bits using Euclid’s

algorithm has a complexity O(n2) and there are faster modern methods (see chapter 4 of

[29]). The total expected complexity of our algorithm is O((log n)2n3) for the log n repeti-

tions needed to find an element of order N − 1 with high probability. For very large N we

can use fast multiplication to have an expected number of operations O(log log n(log n)3n2).

The screening in line 7 of the algorithm identifies N is not prime when ord(a) - N − 1,

but it is possible for N to be composite and still give inconclusive results when tested. For

instance, Carmichael numbers satisfy aN−1 ≡ 1 mod N for all a such that (a,N) = 1 and,

from Theorem 10, ord(a)|N − 1 for all a ∈ Z∗
N . In any case, the order will be smaller than
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N −1 and, after 3 logn tested elements, we can say that N is composite with high probability

and stop there to avoid entering an infinite loop.

In order to reduce the number of quantum operations, we can introduce a previous classical

selection phase that uses the Miller-Rabin test. The elements a ∈ Z∗
N for which a

N−1
2 ≡ ±1

mod N for a composite N are sometimes called Euler liarsa. Euler liars are a subgroup of

Fermat liars, the a for which a composite N passes the Fermat test. We can impose harder

constraints on the integers that survive to the quantum part of the algorithm. For a composite

number N with N − 1 = 2sd, with odd d, the bases for which ad ≡ 1 mod N or ad2
r ≡ −1

mod N for some 0 ≤ r < s are called strong liars. For a prime N the condition always holds,

but, if N is composite, at most one fourth of the a ∈ Z∗
N are strong liars [8]. If we perform

a classical Rabin-Miller test on k random bases and do not find a witness for compositeness,

the probability of N not being prime is bounded by 4−k and we are left with a collection of

k elements of order ord(a)|N − 1. We can discard the bases with ad ≡ 1 mod N , which have

order d < N − 1, and use the rest of the elements in the quantum order finding subroutine.

Finally, we can further reduce the number of steps with some insights from the analysis

of quantum order finding. The factor log n which appears in the complexity of quantum

order finding is due to the average number of times we have to measure in order to find two

divisors of the order from which we can deduce its exact value, ord(a). However, with some

classical processing testing small multiples of the values extracted from each measurement, it

is possible to reduce the log n repetitions to a constant number [18].

The algorithm we have proposed offers an alternative quantum primality test which har-

nesses quantum order finding to give a direct proof an integer is prime by producing an element

a ∈ Z∗
N with order N − 1. The quantum part uses the same circuits as Shor’s factoring algo-

rithm and it could serve as a previous stage when factoring on a quantum machine. Shor’s

algorithm requires its input integer N not to be of the form pk or 2pk for a prime p and an

integer k ≥ 1. For odd inputs, we only need to worry about detecting primes. There are clas-

sical efficient methods to detect prime powers pk for k ≥ 2 [30], but we can also use a modified

version of our quantum primality test. Theorems 6 and 7 can be generalized to show that an

integer N > 1 has an element of order ϕ(N), called a primitive root, only when N = 2, 4, pk

or p2k, in which case there are ϕ(ϕ(N)) of them (chapter 4 of [2]). The analysis then is

essentially the same we have used in our primality test. For N = pk, ϕ(N) = pk−1(p − 1).

If we find a primitive root, its order ord(a) gives (ord(a), N) = pk−1 6= 1, which factors N .

We can check by repeated division by p = N
(ord(a),N) that N is a prime power. The number

of divisions is polynomial in the number of bits of N and the bound of log n order finding

steps is still valid. The probability of finding a primitive root is ϕ(ϕ(N))
ϕ(N) and 3 log logϕ(N)

repetitions give a high probability of getting a valid basis. ϕ(N) ≤ N − 1, so our bound for

the primes also holds in this situation.

Our algorithm reduces the asymptotic complexity of the Chau-Lo quantum primality test

from O((log n)(log log n)n3) to O((log logn)(log n)3n2) at the cost of replacing the classical

primality certificate which includes the factors of N − 1 by a quantum certificate of primality

consisting in an element a of order N−1, which can be checked on a quantum computer. The

test can prove with certainty that a given integer is prime and it can be complemented with

aThe most usual definition of Euler liars is the a which satisfy a
N−1

2 ≡
(

a
N

)
mod N for a composite N ,

where
(

a
N

)
is the Jacobi symbol.
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the Miller-Rabin test in the initial screening stage to also identify composite numbers with

high probability. Our test has a complexity comparable to classical tests for compositeness

which can convince us a number is prime with an exponentially small probability of error.

Its complexity is essentially quadratic in the asymptotic limit, which is more efficient than

classical tests that prove primality with certainty, which are usually restricted to integers of

a particular form, or require a number of operations of the order of the sixth power of the

number of bits (AKS test).
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