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In order to realize the linear nearest neighbor(LNN) of the quantum circuits and re-
duce the quantum cost of linear reversible quantum circuits, a method for synthesizing
and optimizing linear reversible quantum circuits based on matrix multiplication of the
structure of the quantum circuit is proposed. This method shows the matrix represen-
tation of linear quantum circuits by multiplying matrices of different parts of the whole
circuit. The LNN realization by adding the SWAP gates is proposed and the equivalence
of two ways of adding the SWAP gates is proved. The elimination rules of the SWAP
gates between two overlapped adjacent quantum gates in different cases are proposed,
which reduce the quantum cost of quantum circuits after realizing the LNN architecture.
We propose an algorithm based on parallel processing in order to effectively reduce the
time consumption for large-scale quantum circuits. Experiments show that the quantum
cost can be improved by 34.31% on average and the speed-up ratio of the GPU-based
algorithm can reach 4 times compared with the CPU-based algorithm. The average
time optimization ratio of the benchmark large-scale circuits in RevLib processed by the
parallel algorithm is 95.57% comparing with the serial algorithm.
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1 Introduction

Quantum computing is a new computing technique which achieves high efficiency for some
complex computations. With the development of quantum computing, further physical lim-
itations need to be considered. The limited interaction distance between the gate qubits is
one of the most common limitations. In particular, quantum computing technics such as ion
traps [1, 2], quantum dots [3], and superconductors [4, 5] only allow the quantum gates to
perform on adjacent qubits, which is known as the linear nearest neighbor(LNN) constraint.

Since the quantum circuit algorithms are designed without considering this limitation, they
should be converted into the LNN architecture. This process can be realized by the insertion
of the SWAP gates. However, the number of inserted SWAP gates has a significant impact
on the overall quantum costs of the resulting circuit. Accordingly, many approaches attempt
to use a minimum number of SWAP gates to realize the LNN architecture. In [6, 7], exact
approaches that generate an optimal number of SWAP gates are discussed. Nevertheless,
there is a trade-off between the running time and the quantum cost. In [1, 8, 9, 10], heuristic
approaches that do not guarantee an optimal solution are proposed. However, to the best of
our knowledge, the running time of these solutions still has room for improvement, especially
for the conversion of larger circuits. A possible way to reduce time complexity is to accelerate
the algorithm by parallel computing.

However, not all algorithms are fit for a parallel computing architecture. Only data-
intensive computations [11] without strong data associations are good candidates. Quantum
gates in a quantum circuit have strong interactions with each other. This paper intends to
break this limitation and solve the LNN problem through parallel processing.

This paper presents a parallel computing algorithm to accelerate the realization of the
LNN architecture using the parameter random access memory(PRAM) [12] model. In Sec-
tion 2, the basic knowledge of the quantum circuits and the PRAM model is expounded.
Section 3 proposes an algorithm to achieve the LNN architecture by adding the SWAP gates.
To adapt to parallel computing, this method uses a matrix to represent the structure of the
quantum circuit. By multiplying matrices of different parts of the whole circuit, a single non-
neighbored CNOT gate reaches the LNN and the redundancy SWAP gates are eliminated.
Thus, the quantum circuit is converted to the LNN architecture and the quantum cost of the
circuit is reduced. Section 4 gives the LNN algorithm based on the PRAM model. The algo-
rithm divides up a circuit evenly into different groups and each group contains two adjacent
quantum gates. The SWAP gate adding algorithm is applied in each group. In Section 5, the
experiments using the proposed approach are presented. The experimental results show that
the proposed algorithm reduces the nearest neighbor cost and quantum cost of the quantum
circuit without changing the original function of the circuit. Furthermore, the algorithm has
a significant effect on the reduction of runtime for larger scale circuits.

2 Background

2.1 Quantum gates and quantum circuits

The quantum gate is one of the basic elements of quantum circuits. Quantum gate is reversible.
The number of the input qubits and the output qubits are equal and there is a one-to-one
mapping relationship between the input value and the output value.
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An arbitrary reversible 2-qubit quantum logic gate is shown in Figure 1. The control bit
of the reversible logic gate is on the i-th line of the quantum circuit and the target bit is on
the j-th line of the quantum logic circuit [19].

oy 000 mmm:

Fig. 1. An arbitrary reversible 2-qubit quantum gate.Here o denotes a control bit and U denotes
a specific unitary quantum operation [2].

ey 000 mmm:

The CNOT gate [20] is a type of reversible quantum logic gate with two inputs and two
outputs. If the input value of the control bit is 0, the output value of the target bit does not
change. If the input value of the control bit is 1, the output value of the target bit is the
XOR of the two input qubits. The diagram of a CNOT gate is shown in Figure 2.

ja> ja>
|b> la®b>

Fig. 2. A CNOT gate. Here e denotes a control bit and @ denotes an XOR operation. a and b

denote two input values.

The SWAP gate [20] has two target bits and no control bit. The function of SWAP gate
is to interchange two input values. The diagram of a SWAP gate is shown in Figure 3.

ja> o>

lb> ja>

Fig. 3. A SWAP gate. Here |a > and |b > denote the values of input and output of a quantum
circuit. X denotes a swap operation.

Quantum logic circuit is a model for quantum computation [20]. Quantum gates are
interconnected by quantum wires in a quantum logic circuit. As the number of inputs and
outputs of each quantum gate is the same, any cut through the quantum circuit crosses the
same number of wires. Quantum computation is performed by a sequence of quantum gates
which are reversible transformations on a quantum mechanical analog of an n-bit register in
a quantum logic circuit.

The relationship between the input and output of a quantum logic circuit can be expressed
by a linear function [13, 14]. The quantum gate is in LNN state if the control bit and target
bit are on adjacent lines in a quantum logic circuit [6].

In an LNN circuit, only adjacent qubits can interact with each other. The distance between
the control bit and the target bit in a two-qubit reversible quantum gate is called the nearest
neighbor cost (NNC)[9]. The quantum gate with the control bit on the i-th line and the target
bit on the j-th line shown in Figure 1 has an NNC of j —i — 1. The NNC of the quantum
logic circuit is the sum of NNCs of all reversible gates.
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Quantum cost [7] of a quantum logic circuit refers to the total quantum cost of each
quantum gate in the circuit. The quantum cost of a quantum gate is determined by the type
of a gate. In general, the quantum cost of a CNOT gate is 1 and the quantum cost of a SWAP
gate is 3 [10].

2.2 The PRAM model

The Parallel Random Access Machine (PRAM)[15] model is a model with shared memory in
a Multiple Instruction Stream Multiple Data Stream (MIMD) parallel machine. As shown in
Figure 4, it assumes that a device is equipped with unlimited amounts of shared memory and
multiple processors with the same function. Any processor has access to the shared memory
at any time.

| Processor 1 H
| Processor 2 k———’
Memory

| Access Unit
I (MAUD

| Processor n H

Fig. 4. The structure of a PRAM model.

Shared
Memory

To solve the LNN problem of quantum logic circuits, we can use the PRAM model to
divide a specific quantum circuit into several modules evenly for parallel processing.

3 The LNN realization based on matrix representation

3.1 Relationship between quantum gates

The function of a SWAP gate is equivalent to the function of three CNOT gates arranged in
a certain order. Two equivalent quantum logic circuits are shown in Fig.5.(a) and Fig.5.(c).
Two adjacent SWAP gates on the same lines can be eliminated as shown in Fig.5.(b).

@ > Ib> 0) > o> © > Ib>
[b> :I: [a> |b>:I:I: |b> |b> m [a>

Fig. 5. (a) denotes a SWAP gate. (b) denotes two adjacent SWAP gates in a quantum circuit.(c)
denotes three LNN CNOT gates in a quantum circuit. |a > and |b > denote the values of input
and output of a quantum logic circuit.

In Fig.5.(a), a and b are the value of input qubits. The vector of input values is set as
la,b >. After the operation of three CNOT gates, the order of output value is |b,a > which
is equivalent to the function of the SWAP gate. The equivalence is shown in Eq. (1).
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la,b >
—la,b®da >
—la® (b®a),bda>=bbDa >
—b,(b@a)®b>=|b,a>

(1)

Therefore, the quantum logic circuits shown in Fig.5.(a) and Fig.5.(c) are equivalent in
function.

Definition 1: If two quantum gates are adjacent in a quantum circuit, we define the location
of two qubits which are on lower lines as L; and Lo respectively and define the location of
two qubits which are on higher lines as H; and Hs respectively. As shown in Figure 6, L1 = 1,
L2:i+1, H1 =j7 H2:]+1
L
i -9 i
i+tl——o—i+1

- r—l ..
i 5u 7 ]
j+14|]i)_I u I— j+1

Fig. 6. Two adjacent quantum gates in a quantum circuit.

i ——— | i i
Y n— w0 :

Fig. 7. Different cases of overlapping gates. (a) denotes case 1. (b) and (c) denote case 2.(i)and
case 2.(ii). (d) and (e) denote case 3.

If the NNC of two adjacent quantum gates are non-zero and the two adjacent quantum
gates satisfy one of the following cases shown in Figure 7, they are overlapping.
1. Ly =Ly & Hy = Hy

2. (i) |Li— Ly| =1& Hy = H,
(ii) |Hy — Hy| =1 & Ly = Ly

3. |Ly— Hy|=1& |Ly — Ho| = 1
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3.2 The matrix representation of the quantum circuit structure

The linear structure of some special quantum circuits can be represented by a square matrix.
When a set of qubits passes through an empty quantum circuit, the quantum circuit does not
have any effect on the qubits. Since the input data is equal to the output data, the empty
quantum circuit can be represented by an identity matrix. The order of the matrix is equal
to the number of lines of the quantum circuit.

Similar to this representation, the matrix representation of a section of the quantum circuit
containing a single quantum gate (a CNOT gate or a SWAP gate) is universal.

Definition 2: The matrix representation of a section of the quantum circuit containing a
single CNOT gate is defined as the matrix representation of the quantum circuit for the
CNOT gate (MQQC).

Definition 3: The matrix representation of a section of the quantum circuit containing a
single SWAP gate is defined as the matrix representation of the quantum circuit for the SWAP
gate (MQS).

Let n denote the total number of lines in a quantum circuit. Let i(i > n) denote the line
number of the control bit and j(j > n) denote the line number of the target bit of the CNOT
gate. Set the element in the i-th column and the j-th row of an n-order identity matrix to 1
and the resulting square matrix is the MQC.

Conversely, if the MQC is given, two qubit positions of the CNOT gate can be located by
the element which is non-zero and not on the diagonal of the matrix.

Two operation lines of the matrix correspond to the control bit and the target bit of the
CNOT gate separately. In order to distinguish two CNOT gates which are in different orders,
we classify two types of CNOT gates by order.

(@ 1—1 () 1———1

—— e
o =

N——-—-0-mn N———-n

Fig. 8. (a) denotes a CNOT-down gate.(b) denotes a CNOT-up gate.Both (a) and (b) are CNOT
gates located in n-line circuits.

Definition 4: Number the matrix from top to bottom by row. Two operation lines are 4
and j separately. If the target bit of the CNOT gate is below the control bit, the CNOT gate
is defined as the CNOT-down gate. Otherwise, the CNOT gate is defined as the CNOT-up
gate. The diagrams of the CNOT-up gate and the CNOT-down gate are shown in Figure 8.

Theorem 1: If two non-zero elements are on the same column of the matrix and on the
adjacent rows of the matrix, the CNOT gate is in the LNN state. Otherwise, it is not in the
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LNN state. Figure 9 shows the diagrams of the LNN CNOT gates.

(@) 1—1 b L—1
i i
J$ J i+ i+1
n n n n

Fig. 9. (a) denotes a LNN CNOT-down gate. (b) denotes a LNN CNOT-up gate. Both (a) and
(b) are CNOT gates located in n-line circuits.

Proof: Since the CNOT-down gate and the CNOT-up gate cover all kinds of CNOT gate,
we prove the MQCs are in LNN state.

Number the lines of the quantum circuit from the top down. According to the MQC, the
control bit of the CNOT-down gate shown in Fig.9.(a) is on the (j — 1)-th row and target bit
is on the j-th row. The matrix representation is converted from the n-order identity matrix
where the element on the (j — 1)-th column and j-th row is set to 1. Thus, the LNN MQC is
shown in Eq. (2).

1 00 --- 0
0 1 0 0

Ap= {0 L 1 0 2)
o0 o0 --- 1

We can conclude from matrix A, that two non-zero elements are in the same column of
the matrix and these two non-zero elements are located in adjacent rows.
Similarly, the LNN MQC is shown in Eq. (3).

1 00 0

B.=10p ... 1 1 0 (3)
0 - 0 10
0 -~ 0 0 1

From matrix B,,, we can conclude that two non-zero elements are in the same column of
the matrix and they are in adjacent rows.

In summary, two elements in the same column of the matrix are in adjacent rows, and
vice versa.

Theorem 1 is proved J.

Theorem 2: A 2-order MQS can be expressed as a matrix, S = [? (1)} .
Proof: The MQS can be calculated by multiplying three MQCs according to Eq. (1) given in

Section 3.1. The linear operation of the quantum circuit in Fig.5.(c) is shown in Eq. (4). Three
MQCs are GG1, G2 and (3 in sequence. The matrix multiplication represents the process of the
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linear input of qubits passing through a sequence of adjacent quantum gates in a quantum
circuit. The order of the matrix multiplication is opposite to the order of quantum gates
located on the circuit.

GG3>.<GQ*G1[]1L ?]*[é }]*E (1)]{(1) (1)] (4)

We can conclude from Eq. (4) that the MQS can be expressed as a symmetric matrix
S=G=[?4] in a two-qubit LNN quantum circuit.
Theorem 2 is proved [J.

Theorem 3: Let n denote the total number of lines in a quantum circuit. If two input qubits
of a SWAP gate are on the ¢ — th(i > n) and the (i + 1) —th((i + 1) > n) line of the quantum
circuit respectively, the n-order MQS can be realized by modifications to an n-order identity
matrix as shown in Eq. (5). The 2-order submatrix started from the i-th column and i-th row
is equal to the 2-order MQS given in Theorem 2.

—_
o
o
o

(R en)
SO -
— o O

Proof: Since the two qubits of the SWAP gate are in the LNN state, the equivalent circuit
contains three LNN CNOT gates. According to Eq. (1), two quantum circuits shown in
Fig.10.(a) and Fig.10.(b) are equivalent.

@1 1 b) 11
i i i i
i+1mi+l i+lii+1
n—  n n— n

Fig. 10. (a) denotes three LNN CNOT gates located in a n-line quantum circuit. (b) denotes a
SWAP gate located in a n-line quantum circuit.

Thus, we multiply three LNN MQCs, G1, G5 and G, to calculate the matrix representa-
tion of the SWAP gate shown in Fig.10.(b).

1 0 0 O

GZGg*GQ*Glz 0 0 1 0 (6)
0 1 0 0
0 0 0 1
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It can be seen that the matrix representation obtained by Eq. (6) is equal to the MQS
proposed by the matrix construction rule in Theorem 3.

Therefore, any n-order (n > 3) MQS can be expressed as a matrix containing a 2-order
symmetric matrix S = [? (1)] and the rest of the diagonal elements in the matrix are all 1.

Theorem 3 is proved J.

3.3 The LNN realization algorithm based on matrix representation

In order to realize LNN without changing the function of quantum circuits, we can scan each
quantum gate in the quantum circuit and calculate the NNC of each quantum gate. If the
NNC of a CNOT gate is 0, skip it. Otherwise, we convert the quantum gate to LNN state by
adding SWAP gates.

Theorem 4: For a 3-line quantum circuit, adding SWAP gates from the top down and from
the bottom up are two ways of realizing LNN. As long as the numbers of added SWAP gates
are the same, two ways in different order of adding SWAP gates as shown in Fig.11.(b) and
Fig.11.(c) are equivalent.

@ 1—e—1 ) 1 | © 1 1
9—t—2 2%2 2%2
3—P—3 3 3 3 3

Fig. 11. (a) denotes a CNOT gate. (b) denotes a LNN CNOT gate realized by adding swap gates
from the top down. (c) denotes a LNN CNOT gate realized by adding swap gates from the bottom

up.

Proof: According to Theorem 2 and Theorem 3, we can prove the equivalence of three
quantum circuits shown in Figure 11.

The MQC in Fig.11.(a). is expressed in Eq. (7)
1 00
G,=10 1 0 (7)
1 01
In Eq. (7), two non-zero elements are located in the first column. To convert two qubits of
the CNOT gate shown in Fig.11.(a) to the LNN state, we can move the qubit from the first
line to the second line and add the SWAP gates to both sides of the CNOT gate as shown in

Fig.11.(b) and Fig.11.(c).
The linear operation in Fig.11.(b) is shown in Eq. (8).

010 1 00 010 1 00
Gy,=G3%xGaxGy=|1 0 0«0 1 O|*«(1 0 O]=|0 1 0 (8)
0 0 1 0 11 0 01 1 01

Similarly, the linear operation in Fig.11.(c) is shown in Eq. (9).
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1 00
Gc:Gg*GQ*Glz 0 0 1]«
01 0

Since G, = Gy = G, the two ways of adding the SWAP gates do not change the original
function of the quantum circuit.

Theorem 4 is proved J.

Since the method proposed in Theorem 4 is universal, the two ways of adding the SWAP
gates are applicable to any arbitrary n-line(n > 3) quantum circuit as shown in Figure 12.

(@ I— i b) i i © i
P I+1 +1 : :
——1] j j j j

Fig. 12. (a) denotes a CNOT gate. (b) denotes a LNN CNOT gate realized by adding the swap
gates from the top down. (c) denotes a LNN CNOT gate realized by adding the swap gates from
the bottom up.

To convert a quantum circuit to the LNN architecture, we can add the SWAP gates into
the circuit. The LNN architecture is realized by the matrix multiplication of the CNOT gates
and the SWAP gates. To minimize the SWAP gates used for the architecture, this section
proposes an algorithm to eliminate redundancy SWAP gates.

Theorem 5: If two adjacent quantum gates are overlapping, they have redundancy SWAP
gates to be eliminated between them after applying Theorem 4 to both quantum gates. The
exact number of the SWAP gates that can be eliminated are given below by Gate_Num using
the representing method of Definition 1.

1. Case 1 of Definition 1 :
Gate_.Num = (Hy — L1 — 1) 2

2. Case 2 of Definition 1 :

(1) Zf |H1 — L1| < ‘HQ — L2| then
Gate_Num = (Hy — L1 — 1) %2

(11) Zf |H1 — L1| > ‘HQ — L2| then
Gate_Num = (Hy — Ly — 1) % 2

3. Case 3 of Definition 1 :
Gate_ZNum = 2

Proof: If two SWAP gates are inserted into the same line of a quantum circuit successively,
the functions of the two SWAP gates can cell out as shown in Fig 5.(b). To maximize the
number of the SWAP gates that can be eliminated, the insertion of the SWAP gates should
be in different orders for different cases.
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In Theorem 5.1, both quantum gates are decomposed by inserting the SWAP gates from
the top down as shown in Figure 13. Thus, all the SWAP gates between two original quantum
gates can be eliminated layer by layer. The number of the SWAP gates that can be eliminated
is (H1 7L171)>|<2

[ * ¢ i [
i+1 i+1 i+l

. o0e soe
. oee soe
——.vee oo
¥

— o

Fig. 13. Two adjacent quantum gates decomposed by inserting SWAP gates.These quantum gates
satisfy case 1 of Definition 1.

In Theorem 5.2, since the qubits which are on the lower lines and the higher lines may
not be on the same line, we have to scan each line of the circuit to decide the order of
inserting the SWAP gates. If H; = Hy, we insert the SWAP gates from the bottom up. If
Ly = Loy, we insert the SWAP gates from the top down. The maximum number of the SWAP
gates that can be eliminated is determined by the shorter distance between the two qubits
of a quantum gate. Figure 14 shows the process of decomposition of the CNOT gates which
satisfy Theorem 5.2 (i). In this case, the number of the SWAP gates that can be eliminated
is (Hy — Ly — 1) * 2. Similarly, the number of the SWAP gates that can be eliminated in
Theorem 5.2 (ii) is (Hy — La — 1) % 2.

R0 e mitee =—
LT

X e + —®® O
K
N

o eee o =
[N

S eee see m,eee ==

:

Fig. 14. Two adjacent quantum gates decomposed by inserting the SWAP gates. These quantum
gates satisfy case 2 of Definition 1. Since H; = Ha, the SWAP gates are added from the bottom
up.

In Theorem 5.3, the overlapping distance of two adjacent quantum gates only covers two
lines of the circuit. The number of the SWAP gates that can be eliminated is 2. Figure 15
shows the process of decomposition of the CNOT gates.

Theorem 5 is proved [J.

The algorithm of the LNN realization of two adjacent quantum gates in a quantum circuit
is given in Theorem 5. We use Definition 1 to describe the data structure of the algorithm.
H,,Hs, L1, Ly represent the line number of the qubits of two quantum gates. We assure
L, < Hy and Ly < Hy when entering information of the quantum circuit.
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I ® 1
j *— |
j+1— ] j+1
k — [ul—k

Fig. 15. Two adjacent quantum gates decomposed by inserting the SWAP gates. These quantum

gates satisfy case 3 of Definition 1.

Algorithm 1 The SWAP gate adding algorithm: Gate_Num_Add(

)

Input: Variables:Ly, Hy, Lo, Ho;
Output: Gate_Num ;

N N R e e S S S R o N T

© XD TR W

st (Hi—Ly 4+ Ha—Lg + 2) x 2;

if Hlle =1 or HQ*LQ =1 then
c+0;

celseif [hb—Hy =1 or L;—Hs; =1 then

c 2

- else if Hy = Hy and |L; — Ls| =1 then

if (Hl — Ll) < (HQ — LQ) then
C(—(Hl—Ll—l)*Q;

else
C(—(HQ—LQ—]_)*Q;

end if

celseif Ihb—Hy =1 or L;—Hs; =1 then

if (Hl—Ll) < (HQ—LQ) then
¢« (Hi—Li—1)%2;

else
C<_(H2_L2_1)*2;

end if

C(—(H]_—Ll—l)*Q;

: end if
: Gate_Num +t — ¢ ;

celseif (Hi=Hs and Ly =1Ls) or (Ly=Hs and H;= Ly)then

cir

The proposed algorithm traverses the circuit to locate the lower number and higher number
of the lines where the qubits locate on. If the two qubits are both located, the algorithm is
terminated. Thus, the algorithm is a linear search algorithm and the time complexity is
determined by the number of circuit lines. In the worst case, the lower qubit is on the first
line of the circuit and the higher qubit is on the last line. The algorithm will traverse each
line of the circuit and the time consumption is O(M) (M is the number of lines in a quantum

cuit).
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4 The LNN realization algorithm based on PRAM model

The matrix-based LNN algorithm proposed in Section 3 can transform two adjacent quantum
gates into the LNN state. Thus, a quantum circuit can be divided up evenly into different
groups and each group contains two adjacent quantum gates. N is the total number of
quantum gates in a quantum circuit. If N is even, the total number of groups is N/2. If N
is odd, the total number of groups is (N — 1)/2 and the last quantum gate only performs
the SWAP gate adding operation. The LNN realization of quantum gates in each group
is considered as a sub-problem and the algorithm proposed in Section 3 is applied to each
sub-problem. All sub-problems are processed in parallel.

By adding the SWAP gates, two adjacent quantum gates are converted to the LNN archi-
tecture. The algorithm only considers two adjacent quantum gates and has no effect on other
quantum gates in the circuit. We use Definition 1 to distinguish each group of quantum gates
and calculate the number of the SWAP gates that can be eliminated. We use Theorem 5 to
get the maximum number of the SWAP gates that can be inserted. The final result of each
group can be obtained by subtracting the number of redundancy SWAP gates.

Algorithm 2 The LNN realization algorithm based on PRAM model
Input: The set of qubit locations of the quantum gates, Py;

Output: The sum of added swap gates, Gate_Num_Sum ;

1: Divide the given circuit evenly and allocate a structure array C,, to save the data with
the help of Py;

Allocate a structure array D,, on a parallel computing device;

D, + C, ;

Run Gate_Num_Add( ) with the help of P, on each parallel computing unit;

Return Gate_Num_Sum to host;

AN

Example 1: The quantum circuit is shown in Figure 16. We apply the proposed method
based on the PRAM model to the circuit.

1 r——* 1
2 —e—{u] T 2
3 D L [] T3
44— LU 4
5 o D—D—5

Gl Gz GS G4 Gs Gs

Fig. 16. A 5-line quantum circuit with 6 basic two-qubit quantum gates.

Step 1: Divide the initial circuit into groups and each group contains two quantum gates.
In the circuit shown in Figure 16, we divide the entire circuit into three groups and put each
group into a parallel processing unit, as shown in Figure 17.

Step 2: Perform the matrix-based LNN algorithm on each group. For example, a matrix-
based LNN algorithm is applied to G; and G> in the first group respectively. Since G; and Go
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11 R s
2' UJir—| i :2
37 LYUJ | T3
LD | I—U—|! 1
4O | |_||/\ /\|4
5 4 : BN \45

Gy G, G; G, Gs Gs

Fig. 17. A 5-line quantum circuit with 6 basic two-qubit quantum gates. The dotted lines divide
the circuit into 3 different groups. Each group contains two quantum gates.

satisfy case 2 of Definition 1, we add the SWAP gates from top to bottom. The steps of adding
and reducing SWAP gates in different groups are shown in Fig.18.(a), (b), (c) separately.

—~~
O
~

<

OB WN K
l
I
LT o
O wWDNPE

o)

1
2
3
4
5

Gs'

Fig. 18. The LNN realization process of each group of quantum gates. The elimination rules in
Theorem 5 are applied. G’ is the LNN state of Gy, in the original circuit.

GOR_rWDNPEF-
GO WDNPEF-

Gl' Gz' Ggl G4' GSl GGl

Fig. 19. The LNN quantum circuit converted from the original circuit by adding the SWAP gates.
Gy’ is the LNN state of G, in the original circuit.

The LNN quantum circuit converted from the original circuit in Figure 16 is shown in
Figure 19.

The equivalence of the final quantum circuit and the original one is proved below.

Divide the quantum circuit into six groups along the dotted lines as shown in Figure 20.

As shown in Figure 21, by the change of line number, the final output sequence is equivalent
to the input sequence. The optimized quantum circuit is equivalent to the original circuit in
function.

N is the number of quantum gates in the circuit. M is the number of lines. The algorithm
needs to execute N/2 cycles and the running time of each cycle is O(M). If the algorithm
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Fig. 20. The LNN quantum circuit converted from the original circuit by adding the SWAP gates.
The dotted lines divide the circuit into 6 different groups. Each group represents part of the circuit
which has the same function with the corresponding quantum gate in the original circuit.

[x1> [x1> [x1> [x2> I [x1> A x> [x;>
x> x> x> [x;> I x> I NV I [x2> x>
> be> =y s> o> o> i i bo> o>
x> x> x> k> — U > s> @ x>

[x5> [x5> [x5> [x4> [xs> x> [x5>
G, G,' Gs' G, Gs' G¢'

Fig. 21. The sequence of the input values after applying operations to 6 original quantum gates.
Here the output sequence is the same as the input sequence.

is executed serially, the time complexity O(M * N/2). If the algorithm is designed based
on the PRAM model, each loop body is put into a parallel processor. Therefore, the time
complexity of the algorithm performed on the parallel processing device is O(M). The time
consumption of the transferring data between the parallel processor and the host is O(N).
Therefore, the algorithm based on the PRAM model has a time complexity of O(M + N).
Consequently, the speed-up ratio of the parallel algorithm is O(M x N)/O(M + N) comparing
to the conventional serial one.

RevLib[16] is a benchmark library of quantum circuits. The largest circuit in RevLib is
cpu_alu_32bit_425.real. The number of the lines exceeds 6000 and the number of the gates
in the circuit exceeds 30000. Therefore, M is 6000 and N is 30000 in extreme cases, and the
speed-up ratio is O(6000 x 30000)/O(6000 + 30000), that is, the maximum speed-up ratio is
5000.

5 Experimental results

In this section, the experiments using the proposed approach are presented. The programs
are carried out on a GeForce GT 630M graphics card with 1 GB RAM, installed in a PC with
an Intel Core i5-3317U CPU with 1.70GHz and 8 GB of memory running the Windows 10.
We design the experiments from two aspects, the reduction ratio of quantum cost and the
running time of the program. To evaluate the performance of the proposed solution, quantum
circuits from RevLib have been applied. All quantum circuits are decomposed into two-qubit
quantum circuits using the method proposed in [17, 18].

The lines of quantum circuits ranged from 3 ~ 8 are included to evaluate the optimizations
of the quantum cost. The number of the decomposed quantum gates in each quantum circuit is
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less than 400. Experiments show that our algorithm has a distinct advantage on the reduction
of quantum cost, especially for groups applied to casel and case2 in Theorem 5. It can be
seen that using our approach fewer SWAP gates are implemented and therefore the reduction
of quantum cost is improved by 34.3% in average compared to [9], except for a few of the
cases in which the elimination algorithm is limited.

In Table 1, Benchmark represents the name of quantum circuit. N is the number of
lines. Original_qc represents the initial quantum cost of a circuit. Line_Order_qc shows the
optimized quantum using the approach proposed in [9]. The quantum cost of our method and
the optimization comparing with [9] are shown in Cuda_gc and Qc_optimization separately.

Table 1. Results of quantum cost optimizations for quantum circuits between 3 ~ 8 line.

benchmark n Original q¢c  Line_Order_qc[9] Cuda_qc Qc_optimization

3-17_13 3 14 26 22 15.38%
hwb4_52 4 23 63 47 25.40%
decod24 v3.46 4 9 21 23 0
44917 4 32 92 50 45.65%
4gt5_75 5 21 70 56 20%
4gt11_84 5 7 14 21 0
4gt10_v1.81 5 34 120 100 16.67%
4gt13_v1.93 5 16 74 34 54.05%
hwb5_55 5 104 335 180 46.27%
4mod5_v1_23 5 24 72 40 44.44%
4mod7_v0_95 5 38 121 56 53.72%
aj_ell_165 5 45 160 96 40%
alu_v4_36 5 31 98 90 8.16%
4gt4 v0_80 6 34 132 80 39.39%
4gt12_v1.89 6 42 141 150 0
hwb6_58 6 142 542 200 63.10%
modbadder_128 6 83 330 200 39.39%
mod8_10_177 6 88 317 210 33.75%
ham?7_.104 7 83 327 102 68.81%
rd53.135 7 77 303 156 48.51%
hwb7_62 8 2325 12853 5430 57.75%
Ave_qc 34.30%

The lines of quantum circuits ranged from 8 ~ 6205 are included to evaluate the opti-
mizations of the running time for large-scale quantum circuits. Based on the time complexity
of the two methods given in Section 3 and Section 4, we give the theoretical value of the
optimization rate of the parallel algorithm. We analyse the benchmark large-scale circuits
in RevLib. For each circuit, we give the theoretical running time of serial computation and
parallel computation proposed in this paper. Analysis results show that the average time
optimization ratio of the GPU-based algorithm is 95.57% of the CPU-based algorithm for
large-scale quantum circuits.

In Table 2, Benchmark represents the name of quantum circuit. N is the number of lines.
Original_qc represents the initial quantum cost of a circuit. We assume that the execution
time of each instruction as a unit time(ut). Serial(ut) shows the theoretical running time of
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serial computation. Parallel(ut) shows the theoretical running time of parallel computation.
Optimization_ratio shows the time optimization ratio of the parallel computation comparing

with the serial computation.

Table 2. Results of time optimization ratio for large scale quantum circuits.

benchmark n qc Serial(ut) Parallel(ut) Optimization_ratio
hwb8_118 8 14260 114080 14268 87.49%
urfl_149 9 57770 519930 57779 88.89%
sym9_148 10 4368 43680 4378 89.98%
urf3_155 10 132340 1323400 132350 90.00%
plus63mod4096-163 12 25492 305904 25504 91.66%
plus63mod8192_164 13 32578 423514 32591 92.30%
plusl27mod8192_162 13 57400 746200 57413 92.31%
0410184_169 14 90 1260 104 91.75%
ham15_108 15 453 6795 468 93.11%
urf6_160 15 53700 805500 53715 93.33%
cnt3-5-180 16 120 1920 136 92.92%
add8_172 25 96 2400 121 94.96%
add16.174 49 192 9408 241 97.44%
add32-183 97 384 37248 481 98.71%
add64.184 193 768 148224 961 99.35%
apex5-290 1025 10349 10607725 11374 99.89%
frg2 297 1219 12468 15198492 13687 99.91%
bubblesort_32.365 1596 42281 67480476 43877 99.93%
bubblesort_32.437 1597 24569 39236693 26166 99.93%
seq-314 1617 19362 31308354 20979 99.93%
cpu_alu_16bit_352 2140 31244 66862160 33384 99.95%
cpu_alu_16bit 424 2141 30208 64675328 32349 99.95%
cpu_alu_32bit_353 6204 112396 697304784 118600 99.98%
cpu-alu_32bit_425 6205 107136 664778880 113341 99.98%
Ave_opt 95.57%

The line chart in Figure 22 is employed to show the trend of the optimization ratio of the
parallel algorithm. The line chart shows that the larger the scale of the quantum circuit is,
the better the optimization ratio is.

CUDA platform uses blocks and threads to represent parallel computing. Generally,
we start 128 blocks and each block contains 128 threads. The index of each thread is
threadldz.x + blockIdx.x x blockDim.zx.

Since the time complexity of our algorithm has no connection with the type of quantum
gates, we construct a number of quantum circuits containing random two-qubit quantum
gates. The numbers of quantum gates in each circuit range from 400 to 286840. In Figure
23, experiments show that the quantum circuits on a smaller scale run slower on the GPU
than on the CPU. It can be explained by the extra time consumption of transferring data
between host and device. With the increasing scale of quantum circuits, the advantage of
parallel computation becomes clear. With the full use of parallel units in the GPU, the
speed-up ratio of the GPU-based algorithm can reach to 4 times comparing with the CPU-
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Fig. 22. Time optimization ratio for large scale quantum circuits.
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Fig. 23. Results of runtime of serial algorithm and parallel algorithm.

based algorithm. Thus, our algorithm has a significant effect on the reduction of the runtime
for larger scale circuits.



Z.-Y. Zhang, Z.-J. Guan, H. Zhang, H.-Y. Ma and W.-P. Ding 1113

6 Discussion and conclusions

In this paper, we propose a linear nearest neighbor optimization algorithm based on matrix
transformation of quantum circuits constructed by the PRAM model. Considering the differ-
ent situations of adjacent quantum gates, we design the algorithm by dividing the circuits into
different groups, which can effectively reduce the quantum cost and improve the computa-
tional efficiency by inserting the SWAP gates on the parallel computing device. Experimental
results show that the algorithm can optimize both quantum cost and computing speed. In
addition, the algorithm enables the conversion of large-scale quantum circuits into the LNN
architectures in a short period of time.

While our method is designed for nearest neighbor constraints, the recently proposed IBM
QX architectures require the satisfaction of slightly different constraints [21]. In the IBM QX
architectures, a given quantum circuit need to be decomposed into a sequence of elementary
gates [22]. The basic gates in the IBM QX architectures include the H (Hadamard) gate, T
(phase shift by 7/4) gate and the CNOT gate in the Clifford+ T library. To satisfy the IBM
QX constraints, we can add H-gates and SWAP gates to the quantum circuit. The algorithm
proposed in this paper is based on the NCV library and the linear nearest neighbor is realized
by adding SWAP gates. Both the Clifford+ T and the NCV library are suitable for our
proposed parallel optimization algorithm.

In the further research, we will focus on reducing the quantum cost required to satisfy
the constraints of the IBM QX architectures and integrating this method into the parallel
computing system to improve the efficiency of the algorithm.
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