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Quantum Information is a quantum resource being advised as a useful tool to set up

information processing. Despite physical components being considered are normally

two-level systems, still the combination of some of them together with their entangling
interactions (another key property in the quantum information processing) become in

a complex dynamics needing be addressed and modeled under precise control to set

programmed quantum processing tasks. Universal quantum gates are simple controlled
evolutions resembling some classical computation gates. Despite their simple forms, not

always become easy fit the quantum evolution to them. SU(2) decomposition is a mech-

anism to reduce the dynamics on SU(2) operations in composed quantum processing
systems. It lets an easier control of evolution into the structure required by those gates

by the adequate election of the basis for the computation grammar. In this arena, SU(2)
decomposition has been studied under piecewise magnetic field pulses. Despite, it is com-

pletely applicable for time-dependent pulses, which are more affordable technologically,

could be continuous and then possibly free of resonant effects. In this work, we combine
the SU(2) reduction with linear and quadratic numerical approaches in the solving of

time-dependent Schrödinger equation to model and to solve the controlled dynamics for

two-qubits, the basic block for composite quantum systems being analyzed under the
SU(2) reduction. A comparative benchmark of both approaches is presented together

with some useful outcomes for the dynamics in the context of quantum information

processing operations.
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1 Introduction

Gates based quantum computation (GBQC) has developed a robust theory to set quan-

tum information processing by manipulating the quantum systems evolution in the form of

archetypical structures barely imitating the classical computation gates. These quantum

gates have been required to fulfill the DiVincenzo criteria [1] to set those tasks. The quest

of this construction is the achievement of a universal purpose quantum computer in terms of

generic or universal gates able to be complete and sufficient in the reproduction of any kind

of information processing. This set has been attained in the form of the Boykin set of gates

B ≡ {Sπ/8, Sπ/4,H, CaNOTb} [2]. On this arena, quantum control should to provide concrete
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1082 Non-local universal gates generated within a resonant magnetic cavity

forms for the dynamics in order to reproduce certain kinds of processing operations (gates)

useful for the people developing quantum algorithms in terms either universal operations or

dedicated operations (specialized operations solving certain common processing).

In order to have a more complete context of the current proposal, we review briefly the

historic theoretical and experimental development of gate design in quantum information

processing, particularly around of the CaNOTb gate, mainly responsible for the entangling

operations in quantum processing. The first relevant fact is the theoretical proposal by Cirac

and Zoller in 1994 [3] for the implementation of CaNOTb gate using cold trapped ions, which

was experimentally achieved by [4, 5] in 1995 and 2003 respectively. This proposal required a

complex control for the individual elements using sequences of laser pulses on them. After, in

1997, an alternative proposal used Nuclear Magnetic Resonance (NMR) to set several quantum

gates on bulk matter [6]. Despite the technological control achieved on this technology,

several limitations in the scaling were advised due to the diamagnetic shielding present in

condensed matter. Then, [7] proposed quantum processing using electronic spin states on

quantum dots, superseding the problems in the previous proposal. Despite, the preparation

and control remain complex through of precise multi-component electronic devices. In 1998,

[8] proposed quantum processing based on silicon nuclear spin by using individual phosphorus

atoms. Nevertheless the possible simplification, this technology still requires lots of solid state

elements and pulses, rapidly introducing decoherence. In 2002, [9] developed controlled-not

gates using linear optical elements (polarization and path encoding) superseding the loss of

non-linear effects in previous approaches. Despite this cleaner technology, quantum processing

on matter is complementary necessary still. In 2009, [10] states the superconducting circuits

approach for qubits, a current wide-spread technology in the current developments of quantum

processing, despite the limited flexibility to set universal computation. In addition, instead of

the sequenced approaches to quantum gates normally used in the overall previous technologies,

this last work also introduced the Fourier approach to quantum gates problem in order to

reduce the piecewise achievement of certain more elusive universal gates, particularly those

controlled. Inspired on in situ processing for ion traps, [11] has proposed the use of traveling

waves under the Fourier approach to quantum gates problem to enhance their implementation.

In such proposal, the use of physical eigenstates remains as grammar.

The most common state basis to set the description of quantum information on specific

composed systems is the computational basis. Last basis uses tensor products of basic states

for two-level single systems or qubits. As instance, polarization states for light or spin states

for matter. Nevertheless, this approach becomes complex when quantum systems are com-

bined and the physical evolution should be addressed on the universal gates structure (being

the source of multiple steps in their construction). Recently, SU(2) decomposition [12] has

been developed as a mathematical mechanism for certain two-level quantum systems architec-

tures containing 2d qubits (with their dynamics ruled by the U(22d) group) to re-express and

to translate the dynamics on momentary independent two-level quantum information sub-

spaces (with a dynamics on U(1)×SU(2) each one) as equivalent quantum resources instead

of the physical elements by themselves (with a dynamics on U(22d) group). In the SU(2) de-

composition for two qubits under the Heisenberg-Ising interaction [13], the control is achieved

as driven operations on physical elements in the setup, but reflected on certain pure quantum

information states as a grammar. Then, still the two-qubit case becomes relevant because
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it is the core of SU(2) decomposition. Quantum processing information requires not only of

local operations on each single system, instead of the interaction between these systems in

terms of entangling operations. This single fact does that specific control to reduce the entire

interaction dynamics become complex to fit into concrete quantum gates, particularly those

in the set B.

In the last trend, [14] has proposed for magnetic systems, a set of gates closer to the evolu-

tion generated by the interactions being involved, D = {(11⊗Sπ/82)B, (11⊗Sπ/42)B, (Sπ/81⊗
12)B, (Sπ/41⊗12)B, (11⊗H2)B, (H1⊗12)B, (C

1NOT2)B, (C
2NOT1)B}, which is based on the

Bell basis instead of computational basis. Despite the added complexity to manage non-local

states, recent work goes in that direction [15]. As a result, those gates are non-local, then

operating directly on the quantum information states instead on the states corresponding to

physical observables for the single parts in the system.

Specific prescriptions for those gates have been reported for constant or piecewise control

magnetic fields. Despite, these magnetic fields are difficult to reproduce in the practice com-

pared with single oscillatory magnetic fields being present in the Fourier approach to quantum

gates problem applied to traveling waves [11], thus enhancing the single pulse processing to

reduce the resonant effects due to the sequence of pulses necessary in other approaches. Never-

theless, the dynamics of time-dependent Hamiltonians is difficult to be solved, they require to

be analyzed under the Baker-Campbell-Hausdorff (BCH) formula which rarely provides closed

analytical outcomes. Efficient numerical approaches are necessary to model the dynamics in

a comprehensive way for general time-dependent Hamiltonians.

The aim of this work is to show how the combination of SU(2) decomposition together

with the Fourier approach to quantum gates problem can be effectively combined to reach the

traveling wave processing in [11], thus getting prescriptions for the non-local gates depicted

before when they are generated under time-dependent magnetic fields (it means, in the context

of a time-dependent Hamiltonian). In the second section, we set the problem departing

from [13] and [14], together, we develop the approximation theory to reach a computational

approach to simulate and solve the problem, just avoiding the BCH approach. The third

section sets the concrete conditions on the evolution operator to reach each universal gate in

the set D [14]for single oscillatory magnetic pulses. Fourth section sets the final combined

construction under the Fourier approach (for both blocks in the evolution matrix) for each

quantum gate in D, which can be achieved in magnetic resonant cavities to reach the traveling

wave processing approach. Fifth section discusses some issues about the gates stability and

fidelity, which become natural in the context of quantum error correction theory due to the

SU(2) decomposition. Finally, the conclusions are settled in the last section.

2 Gates in the time-dependent control regime

We will focus in the construction of the non-local gates obtained in [14] for magnetic systems.

They are accomplished under the Hamiltonian:

Hh =

3∑
k=1

Jkσ1k ⊗ σ2k −B1hσ1h ⊗ 12 −B2h11 ⊗ σ2h (1)

for a couple of qubits under the Heisenberg interaction with additional inhomogeneous mag-
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netic fields (but in a fixed direction h = 1, 2, 3 or equivalently h = x, y, z) in their positions.

There, σsk is the k−Pauli matrix operating on the Hilbert space for the spin states of qubit

s. While, 1s is the identity matrix in such matrix space. This Hamiltonian and their de-

rived dynamics has been studied in the Bell basis [13], showing that its Hilbert space splits

in two subspaces as function of the direction h of the magnetic field: H⊗2h = Hh,1 ⊕ Hh,2.

This splitting generates a SU(2) reduction of its dynamics originally in SU(4) (properly

in U(1) × SU(2)2: Uh(t) = sh1 ⊕ sh2 with shj as a U(1) × SU(2) ⊂ U(2) block on each

Hh,j , j = 1, 2; see Figure 1 in [13]). Last property fulfills independently if magnetic fields are

time-dependent [16]. It recovers easier the computational forms required to set the universal

gates for two-qubit processing despite the complexity introduced by the entangling operations

letting to comprise several local control operations in addition.

Behind the single exact control in the proposal to be presented, SU(2) decomposition lets

a more direct construction of universal gates B in the form D, being able to be fulfilled with

few prescriptions, thus avoiding the stepwise approach necessary in other implementations.

In addition, this reduction is compatible with the Fourier approach to quantum gates [10] as

it will be seen. SU(2) decomposition is a procedure derived from the Lie groups properties

where quantum information dynamics on SU(22d) with d ∈ Z could be expressed in SU(2)

blocks [12], concretely on: U(1)2
2d−1−1 × SU(2)2d−1; see Figure 4 in [12]. Thus, for two-

qubit processing, SU(4), under Heisenberg-Ising operations, those blocks have been reported

analytically in [13, 14] for stepwise magnetic fields, nevertheless, these fields are difficult to

reproduce and to control in the practice, therefore, continuous fields are more able to be

considered for the current purpose. Thus, in the approach used in this work, we analyze a

possible implementation for the non-local gates in D using variable magnetic fields able to

be generated in a resonant cavity with loss, combined with the Fourier approach to quantum

gates.

2.1 Gates in a non-local basis

The non-local gates proposed in D are achieved switching the direction of magnetic field. All

of them are expressed in terms of the Bell states basis. The Hamiltonian (1) has been written

in the Bell basis in [13] as:

Hh = H1,h ⊕H2,h (2)

with : Hk,h ≡ H̃0
k,h + H̃k,h

H̃0
k,h = −s0Jhσ(h,k)

0

H̃k,h = s1J{h}s0
σ
(h,k)
3 + s2Bh−s0σ

(h,k)
q

s0 = (−1)h+k+1, s1 = sp0, s2 = (−1)psp+q0

p = 1 +
1

2
(h− 1)(h− 2), q = 2− hmod2

reflecting the splitting in the Hilbert space in two subspaces. For the dynamics, each Hk,h is

the block k = 1, 2 in the Hamiltonian whose structure will be inherited to Uh(t). While, the

parameters Jh, J{h}s0
, Bh−s0 are physical parameters obtained from the anisotropic Heisen-

berg interaction strengths and the magnetic fields as they are depicted in [13]. s0, s1, s2, p
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and q depend entirely on the election of h, k. In addition:

σ(h,k)
q =

(
0 (−i)q−1

iq−1 0

)
, for q = 1, 2 (3)

note in addition any matrix σ
(h,k)
q , q = 1, 2 has the same form of the correspondent Pauli

matrices but they are understood for certain pairs of Bell states in agreement with the election

of h, k. The correct value of h = 1, 3 should be selected in order to generate each one of the

gates included in D (noting then the only case of interest involves q = 1). In any case, after

of a convenient rearrangement in the order of the Bell states as they are settled in [13], the

gates in D adopt one of the following forms:

(1a ⊗ Sχb)B :


e−iχ 0 0 0

0 eiχ 0 0
0 0 e−iχ 0
0 0 0 eiχ

 (4)

(CaNOTb)B :


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (5)

(1a ⊗Hb)B :
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (6)

2.2 A numerical approach to reproduce the dynamics

As has been presented in [17], by departing from the Schrödinger equation:

HhUh(t) = ih̄
∂Uh(t)

∂t
(7)

then, assuming the SU(2) decomposition in two subspaces explained in the previous section:

2⊕
k=1

(
Hk,hshk − ih̄

∂shk
∂t

)
= 0 (8)

thus, if any state is split in their respective components in the two subspaces |ψ(t)〉 =

α1 |ψ1(t)〉+ α2 |ψ2(t)〉 with |α1|2 + |α2|2 = 1 and |ψk(t)〉 = shk |ψk(0)〉. In addition, because

H̃0
k,h commutes with H̃k,h, we can define shk ≡ e−i

H̃0
k,h

t

h̄ sh
0
k. Then, it is easy demonstrate

that:

H̃k,hsh
0
k = ih̄

∂sh
0
k

∂t
(9)
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Thus, we can work with H̃k,h and sh
0
k. Note sh

0
k ∈ SU(2) due its generators are only

σ
(h,k)
j , j = 1, 2, 3. By defining the differential evolution operator:

|ψk(t0 + δt)〉 = sh
0
k(t0 + δt, t0) |ψk(t0)〉 (10)

and noting that sh
0
k(t0, t0) = 1k = σ

(h,k)
0 when δt ≈ 0, we arrive to the approximation:

sh
0
k(t0 + δt, t0) ≈ 1k −

i

h̄
H̃k,h(t0)δt− i

2h̄

(
∂H̃k,h(t0)

∂t
+
H̃2
k,h(t0)

ih̄

)
δt2 + ... (11)

Thus, by splitting [0, t] in n sub-intervals [0, δt] ∪ [δt, 2δt] ∪ ... ∪ [(n− 1)δt, nδt = t]:

sh
0
k = sh

0
k(t, 0) ≈

←∏
i=1,...,n

sh
0
k(iδt, (i− 1)δt), if : δt ≈ 0 (12)

where ← means factors stack on the left. Approximation becomes exact if δt → 0. By

identifying Jh = h̄J0,−s1J{h}s0 = h̄Js0 ,−s2Bh−s0 = h̄B−s0 and using the equation (2) into

the last expression, we get:

sh
0
k((s+ 1)δt, sδt) ≈ σ

(h,k)
0 + i

(
Js0σ

(h,k)
3 + B−s0(sδt)σ(h,k)

q

)
δt (13)

−1

2

(
(J 2

s0 + B2−s0(sδt))σ
(h,k)
0 − iB′−s0(sδt)σ(h,k)

q

)
δt2

Last expression (13) is a second order approximation for sh
0
k((s + 1)δt, sδt). Because the

first term has the common parameter Jh for each block and as the remaining parameters are

independent among them, we can reduce the dependence of shk for k = 1, 2 on the unrestricted

parameters and functions J0,J±,B±(t) defined above, together with s0 and q defining the

block and the h-direction being selected. Moreover, the complete shk becomes:

shk ≈ eis0J0t
←∏

i=1,...,n

s0hk(iδt, (i− 1)δt), if : δt ≈ 0 (14)

as in the independent time case, J0 only is responsible from the weak link between the two

SU(2) blocks through the U(1) phase factor eis0J0t in the indirect product U(1) × SU(2)2.

In addition, s0hk((s+ 1)δt, sδt) ∈ SU(2).

For the numerical implementation of shk, a benchmark of the performance was made

by [17] showing the effect by the inclusion of the second order term in (13), improving the

precision around of two figures, letting reduce n from 5 × 104 into 102 with respect to the

linear approximation. This implementation (second order and n = 100) reaches at least five

figures of precision and it will be used as numerical algorithm in the following.

The SU(2) reduction formalism is not only an important simplification procedure to un-

derstand the quantum information dynamics, also it lets to reduce the analysis on easier
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Table 1. General restrictions to reduce SU(2) blocks into the forms required by D.

Gate Block type A φ θ ϕ q J± A∓
(1a ⊗ Sχb )B Sχ 1 −χ - 0, π 1 CJ± CA∓

Sχ 1 −χ - 0, π 1 CJ± CA∓
(1a ⊗ Sχb )B Sχ 1 −χ - χ 1 CJ± CA∓

Sχ 1 χ - −χ 1 CJ± CA∓
(CaNOTb)B σ0 1 0 - π

4
1 0 0

σ1 0 - π
2

−π
4

1 0 2.464

(CaNOTb)B σ0 1 π - π
4

1 0 0
σ1 0 - −π

2
−π

4
1 0 −2.464

(1a ⊗Hb)B H 1√
2
±π

2
±π

2
0, π 1 ±1.240 ±1.532

H 1√
2
±π

2
±π

2
0, π 1 ±1.240 ±1.532

(1a ⊗Hb)B H 1√
2
±π

2
±π

2
−π

2
, π
2

1 ±1.240 ±1.532

H 1√
2
∓π

2
∓π

2
π
2
,−π

2
1 ∓1.240 ∓1.532

problems as in the current case. The block decomposition states an easier analysis to reduce

the dynamics into concrete desired outcomes. Combined with the quadratic approximation

given by (13), it becomes sufficient to deal with this kind of problems involving several physical

parameters in an affordable time without specialized computer resources.

2.3 Prescriptions to generate each gate in a resonant cavity

First, we are interested in the reduction of shk into the forms σ0, σ1,H and Sφ = cosφσ0 +

i sinφσ3. By considering that sh
0
k has the generic form [17]:

shk = eiϕsh
0
k ≡ eiϕ

(
Aeiφ Beiθ

−Be−iθ Ae−iφ

)
(15)

with A2 + B2 = 1. Then, that task is affordable by imposing restrictions on A or B, and

some concrete prescriptions for φ, θ and ϕ. Table 1 gathers the restrictions to get each gate

and their constituent blocks in the context of D in terms of the matrices (4). The set of

prescriptions for each gate is contained between each horizontal double line section of the

table. Two possibilities for the implementation of all gates are reported separately between

a single line giving alternative but equivalent prescriptions. Only the election of h = 1, 3

(in anyway q = 1) is open as a function of how the information states should be combined

in agreement with [14]. Thus, ϕ is reported in the perspective of blocks could be combined

among them as in (4). Clearly, ϕ is only related with the restrictions imposed on Jh through

the relation ϕ = s0J0t and the restriction of this phase appears in both blocks with opposite

signs.

3 Gates under a time-dependent magnetic field inside a resonant magnetic fields

In the present section, we will fix the magnetic field into a easier model based on a magnetic

resonant cavity of width d operating in a TM mode, it means without phase change under

the reflection. These arrangements have been simulated in order to understand their control

[18, 19]. Together, a similar approach has given for qubits as superconducting circuits [20].

Figure 1a shows the setup, there, field is shown in the z direction (vertical) but it could be

directed in the x direction too (horizontal), in agreement with the requirements to generate the
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gates. Cavity modes are identified by m = 1, 2, ..., thus, taking the mode m for our immediate

purposes, by defining t′ = mc
d t and doing the identification A′± = A± d

mc ,J
′
± = J± d

mc , we

will assume an effective field given by:

Bh±(t′) = A± sin(πt′) (16)

which is the most basic form experimentally achievable and it is in agreement with the

Fourier approach to quantum gates. This approach to quantum gates eases the control im-

plementation but only combined with the use of Bell states basis as grammar under the

SU(2)decomposition. The precise relation with this approach will be seen after.

Fig. 1. a) A qubit inside of a rectangular magnetic cavity in a TM mode traveling through the

direction y with the time evolution of the field represented in the transverse one-half cycle. b)

Contour plot for A in the J± −A∓ space.

The general solutions have been obtained by [17] for this field, we report here the outcomes

useful for our concrete purposes in this work. We will comeback with the specification of m.

In the meanwhile development, we will remove the apostrophe in t′. Thus, we will focus in

the generation of the gates depicted before by imposing the restrictions of Table 1 on A in

the equation (15) while we use together the model (16) during a time t′ ∈ [0, 1] (it means, in

the original time scale we want reach the gate in the interval [0, d
mc ], one-half of the sin( 2πc

λ t)

cycle because in the complete cycle only the identity is achieved). Figure 1b shows a contour

plot for A in the J± −A∓ space for both cases q = 1, 2. This graph exhibits the existence of

the necessary full set of solutions for A ∈ [0, 1], nevertheless the achievement of the correct

value combinations for φ and θ should be still demonstrated.
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Fig. 2. Solutions for the parameters A∓,J± with φ indicated in colors in agreement with the color

chart and θ as an inset for each curve depicting the cases A = 0, 1√
2
, 1. Two cases a) q = 1, and

b) q = 2 are reported.

3.1 Concrete prescriptions to get each gate

The concrete prescriptions to get the blocks needed in the gates construction are reported in

Table 1 as a result of the analysis of Figure 2 (a reproduction of the plot reported in [17] only

for the cases interesting here). This figure was obtained by sweeping the region [−5, 5]×[−5, 5]

in the plane A±,J∓ to seek the values A = 0, 1√
2
, 1 for the two cases q = 1 (Fig. 2a) and

q = 2 (Fig. 2b). This last value is included despite it is not used in our discussion. Each

curve then presents the φ values in color in agreement with the color-bar on the right. Several

insets are allocated to specify the corresponding values of A and θ (which are unique for each

curve). Values of θ for A = 1 are obtained as a limit case. For the case of Sχ, the solutions

for A±,J∓ are located in the entire curves C = (CJ± , CA∓) for the case A = 1 as function

of χ. In the Table 1, pairs of signs reported in some columns are always corresponding with

another pair for the same block type in the row. While, values separated by colon are both

possible for any combination of other values. Thus, ϕ is reported as it should appear in the

global context to reproduce the entire gates in D and (4).

4 The time-dependent magnetic field within a resonant magnetic cavity

Fourier approach to the quantum gate problem was stated with the superconducting circuit

approach to quantum processing as physical system in order to avoid the multi-pulse approach

to the gates construction and then the resonant effects. For a magnetic cavity with length d

operating without loss, the resonant magnetic field inside could be modeled for a single mode

as:
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Bh(t) = B0
h

(
sin(

2π

λ
(y − ct)) + sin(

2π

λ
(−(y − 2d)− ct))

)
= −2B0

h cos(
2π

λ
y) sin(

2πc

λ
t) (17)

where λm = 2d
m for the m-mode, m = 1, 2, ... and h = 1, 3. Then a complete set of functions

depicting the field inside are: cos( 2π
λm
y) cos( 2πc

λm
t),m = 0, 1, ... and cos( 2π

λm
y) sin( 2πc

λm
t),m =

1, 2, .... In the last section it was analyzed the procedure to reproduce the universal set

of gates in D through a single semi-harmonic pulse (16). Thus, we can realize a quantum

computational algorithm as a train of N magnetic semi-harmonic pulses in the directions y

and z (with only one turned-on at the time) and a tight control of the Heisenberg interaction

strengths, Ji. Each pulse will represent a gate in D and it will have the form (16) with the

prescriptions given in the Table I as it will be required:

Bh±(t) =

N∑
j=1

Ajh± sin(
πNc

d
t)δNc

d
[j](t) (18)

where δa[ζ](t) = θ ζ−1
a

(t)− θ ζ
a

(t) is the discrete unit impulse function defined in terms of the

Heaviside step function θζ(t) ≡ θ(t − ζ). Note there is magnetic field in only one direction

at the time to fulfill the requisites. Thus, when Ajh± 6= 0 for some h, j and for at least one

−s0 ∈ {+,−}, then Ajh′± = 0 for any h, h′ ∈ {x, z}, h 6= h′. The magnetic field on each qubit

position yi is:

Bih(t) = Bh(yi, t) =
1

2
(Bh+(t)− (−1)iBh−(t)) (19)

where this function could be achieved as a Fourier series of fundamental modes pulses within

the resonant magnetic cavity:

Bh(y, t) =

∞∑
k=0

αh
k
i cos(

πk

d
x) cos(

πck

d
t) +

∞∑
k=1

βh
k
i cos(

πk

d
x) sin(

πck

d
t) (20)

Due to the properties of the last set of functions:

αh
k
i =

c

d cos(πkd yi)

∫ 2d
c

0

Bih(t) cos(
πck

d
t)dt (21)

βh
k
i =

c

d cos(πkd yi)

∫ 2d
c

0

Bih(t) sin(
πck

d
t)dt (22)

In the following we assume each qubit is located in independent magnetic fields with

different amplitudes, meaning they are not necessarily collinear on the same y line. This

aspect clearly is a challenge on the current design cavities in spite of the effective distances
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for the Heisenberg-Ising interactions. In addition, the fields (20) still exhibits discontinuities

in their derivatives, so it induces overshoots or undershoots in the magnetic signal, thus in

the desired target behavior of the system [21]. Despite, they are lower to those presented in

the step-magnetic fields case as it was considered in [14].

5 Gates fidelity issues and quantum error analysis

SU(2) decomposition lets to address the quantum error correction in a very similar way that

for traditional constructions using physical eigenstates for the spin. Thus, in this section we

will evaluate the impact on shk of uncontrollable deviations on prescriptions in A± and J∓.

In agreement with the decomposition (9), it is possible to set a comparison between a block

sh
0
kp with the exact prescriptions in Table 1 and another block sh

0
k obtained as some deviation

δp = (δJ∓, δA±) from those prescriptions. Then, by defining ∆h
0
kp = sh

0
ksh

0
kp

−1
, we have:

sh
0
k |ψk〉 = ∆h

0
kpsh

0
kp |ψk〉 (23)

thus, the operator ∆h
0
kp states the deviation from the final desired quantum state sh

0
kp |ψk〉.

Because this operator underlies in SU(2):

∆h
0
kp = αIσ0 + αXσ1 + αZσ3 + αY σ1σ3 (24)

which can be understood as a combination of quantum error syndromes on the corresponding

block k (bit flipping σ1, phase flipping σ3, or both σ1σ3, corresponding with the quantum

states being related by sh
0
k). While, the quantities:

pS ≡ |αS |2 =
1

4
|Tr(σS∆h

0
kp)|2, σS ∈ {σI = σ0, σX = σ1, σY = σ1σ3, σZ = σ3} (25)

could be understood as the probabilities to get certain error syndrome. Here, it is better use

pS to measure the impact of variations than the quantum state fidelity, because each gate

(and their blocks) works on a wide variety of quantum states. Thus, pI can be understood

as the probability to get the correct quantum state as it was planned under the precise gate

application. In the following, we report pI as a measure of the key blocks fidelity reported in

Table 1.

Figure 3 shows the values of pI for each block: a) shk ∼ σ0, b) shk ∼ σ1, c) shk ∼ H, and

d) shk ∼ Sχ. The first three figures show a contour map of pI around of prescriptions for

each gate with variations of (δJ∓, δA±) ∈ [−0.5, 0.5] × [−0.5, 0.5], it means around of 10%

of values considered in the Figure 2. Only the representative cases for q = 1 with positive

parameters J∓ and A± are reported, other cases are identical or similar with reflexions

through the axis of the variables δJ∓, δA±. pI values are higher than 0.69, 0.85 and 0.70

respectively. Note for σ1 the best stability. For the Sχ case, we have several prescriptions

as function of the associated χ value. Then we report the lower pI value for the region

(δJ∓, δA±) ∈ [−0.5, 0.5] × [−0.5, 0.5] on each prescription given in the Figure 2. Assigned

color on each prescriptions line gives that worst pI value. For any curve, the worst values

sets between 0.68 and 0.85. Despite aspects related with the errors introduced by the control
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Fig. 3. pI -values for possible deviations (δJ±, δA∓) ∈ [−0.5, 0.5]× [−0.5, 0.5] around the prescrip-

tions in A∓ and J± for blocks a) shk ∼ σ0, b) shk ∼ σ1, c) shk ∼ H, and d) shk ∼ Sχ. In the
last case the worst pI -value is reported for each solution.

on J0 and the entire gate construction departing from the blocks, this brief analysis shows a

good stability for the gates corresponding to errors until 10% in the values of δJ∓ and δA±.

6 Conclusions

Several approaches to the quantum gates design are being explored in the experimental arena.

The task is not always easy, because it is highly dependent on the kind of systems on which

the implementation is being considered and of course on innumerable aspects of experimental

issues in control. Clearly, this aspect is still independent of the proper technological restric-

tions added, as decoherence or noise. Approaches based on gate factorization [22] reduce that

task to be able to control the form and prescriptions for the factor gates, a mathematical idea

presented in [23], which fits perfectly into the SU(2) decomposition outcomes. Otherwise, the

use of universal gates becomes convenient in terms of the development of a set of well-defined

and tuned gates with multiple and repeated use. In any case, those constructions will have

an efficiency and fidelity depending on the number of basic gates being used.

The use of an adequate basis for specific systems could to help in the reduction of the

number of factor gates, as in the case presented here, where each gate is reached in one
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single operation. Still for no universal processing approach, for arbitrary gates on demand

involving more than two qubits (a scenario not strictly necessary because two-qubit processing

is universal), the current Fourier approach could be extended under the most general SU(2)

decomposition [12] than for the SU(4) case. Together, improved solutions using optimal

control for SU(2) processing could be implemented [24, 25]. Despite, in the proposal there

are other technological issues to be addressed, as the tight control required on the entangled

states working as a grammar. Nevertheless, the SU(2) decomposition approach to construct

alternative gates becomes very precise in terms of the improvement provided by the use of

natural basis of quantum information states resembling the properties of the system where

they are settled [14]. In addition, the use of time-dependent fields as driven elements is an

open possibility to integrate fields technologically more affordable [17] and not only the case

exploited in the current work.

The proposal based on continuous multichannel fields (in terms of their alternative di-

rection) has been exploited in other works [11]. These magnetic fields, as in our case, could

to work as traveling agents providing control in the generation of programmed quantum in-

formation processing on condensed matter. These ideas should be still matured into a more

robust design, inclusively proposing more optimal solutions in terms of the avoidance of su-

perposition modes as in our approach. The numerical approach introduced in [17], opens the

possibility to explore alternative designs where the qubits exposure to the waves becomes in

a design parameter, letting the possibility to contribute in still more simple solutions for the

induction of quantum processing on matter.
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nológico de Monterrey in the developing of this research work.

References

1. D. P. DiVincenzo (1997), Topics in Quantum Computers, Mesoscopic Electron Transport, of
NATO Advanced Study Institute E: Applied Sciences, 345, pp. 657.

2. P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury and F. Vatan (1999), On universal and fault
tolerant quantum computing, quant-ph/9906054.

3. J. Cirac and P. Zoller (1995), Quantum Computations with Cold Trapped Ions, Physical Review
Letters, 74(20), pp. 40914094.

4. C. Monroe, D. Meekhof, B. King, W. Itano and D.Wineland (1995) Demonstration of a Funda-
mental Quantum Logic Gate, Physical Review Letters, 75(25), pp. 4714-4717.

5. F. Schmidt-Kaler, H. Hffner, M. Riebe, S. Gulde, G. Lancaster, T. Deuschle, C. Becher, C. Roos, J.
Eschner (2003). Realization of the Cirac-Zoller controlled-NOT quantum gate, Nature, 422(6930),
pp. 408411.

6. D. Cory, A. Fahmy and T. Havel (1997), Ensemble quantum computing by NMR-spectroscopy,
Proceedings of the National Academy of Sciences of the United States of America 94(5), pp.
1634-1639.

7. D. Loss and D. DiVincenzo (1998), Quantum computation with quantum dots, Phys. Rev. A, 57,
pp. 120-126.

8. B. E. Kane (1998), A silicon-based nuclear spin quantum computer, Nature 393, pp. 133137.
9. T. Pittman, B. Jacobs and J. Franson (2004). Quantum Computing Using Linear Optics, Johns

Hopkins APL Technical Digest 25(2), pp. 84-90.



1094 Non-local universal gates generated within a resonant magnetic cavity

10. C. Rigetti (2009), Quantum gates for superconducting qubits, ProQuest Dissertations and Theses
Yale University 70(6). ISBN: 9781109198874.

11. T. Serikawa, Y. Shiozawa, H. Ogawa, N. Takanashi, S. Takeda, J. Yoshikawa and A. Furusawa
(2018), Quantum information processing with a travelling wave of light, Proceedings of SPIE
OPTO 2018, pp. 10535.

12. F. Delgado (2018). SU(2) Decomposition for the Quantum Information Dynamics in 2d-Partite
Two-Level Quantum Systems, Entropy, 20 (8), pp. 610.

13. F. Delgado (2015), Algebraic and group structure for bipartite anisotropic Ising model on a non-
local basis, Int. J. Quant. Info., 13, pp. 1550055.

14. F. Delgado (2017), Universal Quantum Gates for Quantum Computation on Magnetic Systems
Ruled by Heisenberg-Ising Interactions, J. Phys.: Conf. Series, 839, pp. 012014.

15. L. Magazzu, J. Jamarillo, P. Talkner and P. Hanggi (2018), Generation and stabilization of Bell
states via repeated projective measurements on a driven ancilla qubit, quant-ph/04839v1.

16. F. Delgado (2016), Generation of Control by SU(2) Reduction for the Anisotropic Ising Model, J.
Phys.: Conf. Series, 698, pp. 012024.
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