
Quantum Information and Computation, Vol. 18, No. 1&2 (2018) 0051–0074
c© Rinton Press

REINFORCEMENT LEARNING

USING QUANTUM BOLTZMANN MACHINES

DANIEL CRAWFORD1a ANNA LEVIT1b

NAVID GHADERMARZY2c JASPREET S. OBEROI1,3d POOYA RONAGH1,4,5e

1 1QB Information Technologies (1QBit), Vancouver, Canada
2 Department of Mathematics, University of British Columbia

3 School of Engineering Science, Simon Fraser University
4 Institute for Quantum Computing, University of Waterloo

5 Department of Physics and Astronomy, University of Waterloo

Received Feb 27, 2017
Revised Oct 26, 2017

We investigate whether quantum annealers with select chip layouts can outperform clas-
sical computers in reinforcement learning tasks. We associate a transverse field Ising

spin Hamiltonian with a layout of qubits similar to that of a deep Boltzmann machine

(DBM) and use simulated quantum annealing (SQA) to numerically simulate quantum
sampling from this system. We design a reinforcement learning algorithm in which the

set of visible nodes representing the states and actions of an optimal policy are the first

and last layers of the deep network. In absence of a transverse field, our simulations show
that DBMs are trained more effectively than restricted Boltzmann machines (RBM) with

the same number of nodes. We then develop a framework for training the network as

a quantum Boltzmann machine (QBM) in the presence of a significant transverse field
for reinforcement learning. This method also outperforms the reinforcement learning

method that uses RBMs.

Keywords: Reinforcement learning, Machine learning, Neuro-dynamic programming,

Markov decision process, Quantum Monte Carlo simulation, Simulated quantum an-

nealing, Restricted Boltzmann machine, Deep Boltzmann machine, General Boltzmann
machine, Quantum Boltzmann machine

Communicated by: S Braunstein & A Harrow

1 Introduction

Recent theoretical extensions of the quantum adiabatic theorem [1, 2, 3, 4, 5] suggest the

possibility of using quantum devices with manufactured spins [6, 7] as samplers of the instan-

taneous steady states of quantum systems. With this motivation, we consider reinforcement

learning as the computational task of interest, and design a method of reinforcement learning

consisting of sampling from a layout of quantum bits similar to that of a deep Boltzmann

machine (DBM) (see Fig. 1b for a graphical representation). We use simulated quantum

adaniel.crawford@1qbit.com
banna.levit@1qbit.com
cnavidgh@math.ubc.ca
djaspreet.oberoi@1qbit.com
epooya.ronagh@1qbit.com

51

52 Reinforcement learning using quantum Boltzmann machines

s1

s2

sN

a1

a2

aM

...

...

...

hidden

layer

visible

layer

(a)

s1

s2

sN

...
...

...
...

...
.... . .

a1

a2

aM

state

layer

hidden

layers

action

layer

(b)

Fig. 1. (a) The general RBM layout used in RBM-based reinforcement learning. The visible
layer on the left consists of state and action nodes, and is connected to the hidden layer, forming a

complete bipartite graph. (b) The general DBM layout used in DBM-based reinforcement learning.

The visible nodes on the left represent states and the visible nodes on the right represent actions.
The training procedure captures the correlations between states and actions in the weights of the

edges between the nodes.

annealing (SQA) to demonstrate the advantage of reinforcement learning using deep Boltz-

mann machines and quantum Boltzmann machines over their classical counterpart, for small

problem instances.

Reinforcement learning ([8], known also as neuro-dynamic programming [9]) is an area of

optimal control theory at the intersection of approximate dynamic programming and machine

learning. It has been used successfully for many applications, in fields such as engineering

[10, 11], sociology [12, 13], and economics [14, 15].

It is important to differentiate between reinforcement learning and common streams of re-

search in machine learning. For instance, in supervised learning, the learning is facilitated by

training samples provided by a source external to the agent and the computer. In reinforce-

ment learning, the training samples are provided only by the interaction of the agent itself

with the environment. For example, in a motion planning problem in an uncharted territory,

it is desired that the agent learns in the fastest possible way to navigate correctly, with the

fewest blind decisions required to be made. This is known as the dilemma of exploration versus

exploitation; that is, neither exploration nor exploitation can be pursued exclusively without

facing a penalty or failing at the task. The goal is hence not only to design an algorithm that

eventually converges to an optimal policy, but for it to be able to generate good policies early

in the learning process. We refer the reader to [8, Ch. 1.1] for a thorough introduction to use

cases and problem scenarios addressed by reinforcement learning.

The core idea in reinforcement learning is defining an operator on the Banach space of

real-valued functions on the set of states of a system such that a fixed point of the operator

carries information about an optimal policy of actions for a finite or infinite number of decision

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 53

epochs. A numerical method for computing this fixed point is to explore this function space

by travelling in a direction that minimizes the distance between two consecutive applications

of the contraction mapping operator [9].

This optimization task, called learning in the context of reinforcement learning, can be

performed by locally parametrizing the above function space using a set of auxiliary variables,

and applying a gradient method to these variables. One approach for such a parametrization,

due to [16], is to use the weights of a restricted Boltzmann machine (RBM) (see Fig. 1a) as

the parameters, and the free energy of the RBM as an approximator for the elements in the

function space. The descent direction is then calculated in terms of the expected values of

the nodes of the RBM.

It follows from the universal approximation theorem [17] that RBMs can approximate any

joint distribution over binary variables [18, 19]. However, in the context of reinforcement

learning, RBMs are not necessarily the best choice for approximating Q-functions relating

to Markov decision processes because RBMs may require an exponential number of hidden

variables with respect to the number of visible variables in order to approximate the desired

joint distribution [18, 19]. On the other hand, DBMs have the potential to model higher-order

dependencies than RBMs, and are more robust than deep belief networks [20].

One may, therefore, consider replacing the RBM with other graphical models and inves-

tigating the performance of the models in the learning process. Except in the case of RBMs,

calculating statistical data from the nodes of a graphical model amounts to sampling from a

Boltzmann distribution, creating a bottleneck in the learning procedure. Therefore, any im-

provement in the efficiency of Boltzmann distribution sampling is beneficial for reinforcement

learning and machine learning in general.

As we explain in what follows, DBMs are good candidates for reinforcement learning tasks.

Moreover, an important advantage of a DBM layout for a quantum annealing system is that

the proximity and couplings of the qubits in the layout are similar to those of a sequence of

bipartite blocks in D-Wave Systems’ devices [21], and it is therefore feasible that such layouts

could be manufactured in the near future. In addition, embedding Boltzmann machines

in larger quantum annealer architectures is problematic when excessively large weights and

biases are needed to emulate logical nodes of the Boltzmann machine using chains and clusters

of physical qubits. These are the reasons why, instead of attempting to embed a Boltzmann

machine structure on an existing quantum annealing system as in [22, 23, 24, 25], we work

under the assumption that the network itself is the native connectivity graph of a near-

future quantum annealer, and, using numerical simulations, we attempt to understand its

applicability to reinforcement learning.

We also refer the reader to current trends in machine learning using quantum circuits,

specifically, [26] and [27] for reinforcement learning, and [28] and [29] for training quantum

Boltzmann machines with applications in deep learning and tomography. To the best of our

knowledge, the present paper complements the literature on quantum machine learning as

the first proposal on reinforcement learning using adiabatic quantum computation.

Quantum Monte Carlo (QMC) numerical simulations have been found to be useful in

simulating time-dependant quantum systems. Simulated quantum annealing (SQA) [30, 31],

one of the many flavours of QMC methods, is based on the Suzuki–Trotter expansion of the

path integral representation of the Hamiltonian of Ising spin models in the presence of a

54 Reinforcement learning using quantum Boltzmann machines

R

W

P

(a)

R

W

R

R

P

(b)

	

W

↑

←

←
↑

←

←↑

←↑

← ←

↑

↑

←↑

←↑

(c)

→

0.05

0.05

0.80.05 0.05 →

W

1/15

1/15 0.81/15

(d)

Fig. 2. (a) A 3 × 5 maze. W represents a wall, R is a positive real number representing a

reward, and P is a real number representing a penalty. (b) The previous maze with two additional

stochastic rewards. (c) The set of all optimal actions for each cell of the maze in Fig (a). An
optimal traversal policy is a choice of any combination of these actions. (d) A sample conditional

state transition probability for a windy problem with no obstacles (left), and with a wall present
(right).

transverse field driver Hamiltonian. Even though the efficiency of SQA for finding the ground

state of an Ising model is topologically obstructed [32], we consider the samples generated by

SQA to be good approximations of the Boltzmann distribution of the quantum Hamiltonian

[33]. Experimental studies have shown similarities in the behaviour of SQA and that of

quantum annealing [34, 35] and its physical realization by D-Wave Systems [36, 37].

We expect that when SQA is set such that the final strength of the transverse field is

negligible, the distribution of the samples approaches the classical limit one expects to observe

in absence of the transverse field. Another classical algorithm which can be used to obtain

samples from the Boltzmann distribution is conventional simulated annealing (SA), which

is based on thermal annealing. Note that this algorithm can be used to create Boltzmann

distributions from the Ising spin model only in the absence of a transverse field. It should,

therefore, be possible to use SA or SQA to approximate the Boltzmann distribution of a

classical Boltzmann machine. However, unlike in the case of SA, it is possible to use SQA

not only to approximate the Boltzmann distribution of a classical Boltzmann machine, but

also that of a graphical model in which the energy operator is a quantum Hamiltonian in the

presence of a transverse field. These graphical models, called quantum Boltzmann machines

(QBM), were first introduced in [38].

We use SQA simulations to provide evidence that a quantum annealing device that ap-

proximates the distribution of a DBM or a QBM may improve the learning process compared

to a reinforcement learning method that uses classical RBM techniques. Other studies have

shown that SQA is more efficient than thermal SA [30, 31]. Therefore, our method, used in

conjunction with SQA, can also be viewed as a quantum-inspired approach for reinforcement

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 55

learning.

What distinguishes our work from current trends in quantum machine learning is that

(i) we consider the use of quantum annealing in reinforcement learning applications rather

than frequently studied classification or recognition problems; (ii) using SQA-based numerical

simulations, we assume that the connectivity graph of a DBM directly maps to the native

layout of a feasible quantum annealer; and (iii) the results of our experiments using SQA to

simulate the sampling of an entangled system of spins suggest that using quantum annealers

in reinforcement learning tasks can offer an advantage over thermal sampling.

2 Preliminaries

2.1 Adiabatic Evolution of Open Quantum Systems

The evolution of a quantum system under a slowly changing time-dependent Hamiltonian

is characterized by the quantum adiabatic theorem (QAT). QAT has a long history going

back to the work of Born and Fock [39]. Colloquially, QAT states that a system remains

close to its instantaneous steady state provided there is a gap between the eigenenergy of

the steady state and the rest of the Hamiltonian’s spectrum at every point in time if the

evolution is sufficiently slow. This result motivated [40] and [41] to introduce the closely

related paradigms of quantum computing known as quantum annealing (QA) and adiabatic

quantum computation (AQC).

QA and AQC, in turn, inspired efforts in the manufacturing of physical realizations of

adiabatic evolution via quantum hardware ([6]). In reality, the manufactured chips operate

at nonzero temperature and are not isolated from their environment. Therefore, the existing

adiabatic theory did not describe the behaviour of these machines. A contemporary investi-

gation in quantum adiabatic theory was thus initiated to study adiabaticity in open quantum

systems ([1, 2, 3, 4, 5]). These references prove adiabatic theorems to various degrees of

generality and under a variety of assumptions about the system.

In fact, [2] develops an adiabatic theory for equations of the form

εẋ(s) = L(s)x(s), (1)

where L is a family of linear operators on a Banach space and L(s) is a generator of a con-

traction semigroup for every s. This provides a general framework that encompasses many

adiabatic theorems, including that of classical stochastic systems, all the way to quantum

evolutions of open systems generated by Lindbladians. The manifold of instantaneous sta-

tionary states is identical to ker(L(s)), and [2] shows that the dynamics of the system are

parallel-transported along this manifold as ε→ 0.

An example of (1) is the case in which the Banach space is the space of bounded operators

on a Hilbert space, and in this case we study the evolution of the density matrix ρ of a

quantum system. The Lindbladian is defined via the adjoint action of a Hermitian H on ρ,

and couplings to the heat bath are represented via a family of operators Γα with
∑
α Γ∗αΓα

being bounded:

Lρ = −i[H, ρ] +
1

2

∑
α

([Γαρ,Γ
∗
α] + [Γα, ρΓ∗α]).

In the work of [2], it was then proven that ρ(s) is parallel-transported along ker(L(s)), and

that if L:

56 Reinforcement learning using quantum Boltzmann machines

(i) is the generator of a contraction semigroup;

(ii) has closed and complementary range and kernel;

(iii) is Ck with respect to s; and

(iv) is constant near the endpoints s = 0 and s = 1;

then the solution to (1) with initial condition in ker(L(0)) deviates only in O(εk) from

ker(L(1)) at s = 1.

The authors of [5] focuses on estimating the adiabatic error in terms of the physical

parameters of the theory. In particular, they study the case of a quantum system coupled to

a thermal bath satisfying the Kubo–Martin–Schwinger (KMS) condition. Given a distance δ,

in order for the norm of the solution of (1) to stay δ-close to the instantaneous steady state

of the system at s = 1, they show that ε has to decrease at a rate of O(λ2), where λ denotes

the smallest nonzero eigenvalue in L. Note that the KMS condition implies that the Gibbs

state exp(−βH(s))/ tr[exp(−βH(s))] is, in fact, in ker(L(s)).

This stream of research suggests promising opportunities to use quantum annealers to

sample from the Gibbs state of a quantum Hamiltonian using adiabatic evolution. In this

paper, the transverse field Ising model (TFIM) has been the centre of attention. In practice,

due to additional complications in quantum annealing (e.g., level crossings and gap closure),

the samples gathered from the quantum annealer are far from the Gibbs state of the final

Hamiltonian. In fact, [42] suggests that the distribution of the samples would correspond

more closely to an instantaneous Hamiltonian at an intermediate point in time, called the

freeze-out point. Therefore, our goal is to investigate the applicability of sampling from a

TFIM with significant Γ to free energy–based reinforcement learning.

2.2 Simulated Quantum Annealing

Simulated quantum annealing (SQA) methods are a class of quantum-inspired algorithms

that perform discrete optimization by classically simulating quantum tunnelling phenomena

(see [43, p. 422] for an introduction). The algorithm used in this paper is a single spin-flip

version of quantum Monte Carlo numerical simulation based on the Suzuki–Trotter formula,

and uses the Metropolis acceptance probabilities. The SQA algorithm simulates the quantum

annealing phenomena of an Ising spin model with a transverse field, that is,

H(t) = −
∑
i,j

Jijσ
z
i σ

z
j −

∑
i

hiσ
z
i − Γ(t)

∑
i

σxi , (2)

where σz and σx represent the Pauli z- and x-matrices, respectively, the indices i and j range

over the sites of the system, and the time t ranges from 0 to 1. In this quantum evolution,

the strength of the transverse field is slowly reduced to zero at finite temperature. In our

implementations, we have used a linear transverse field schedule for the SQA algorithm as

in [31] and [44]. Based on the Suzuki–Trotter formula, the key idea of this algorithm is to

approximate the partition function of the Ising model with a transverse field as a partition

function of a classical Hamiltonian denoted by Heff , corresponding to a classical Ising model

of one dimension higher. More precisely,

Heff(σ) = −
∑
i,j

r∑
k=1

Jij
r
σikσjk − J+

∑
i

r∑
k=1

σikσi,k+1 −
∑
i

r∑
k=1

hi
r
σik , (3)

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 57

where r is the number of replicas, J+ = 1
2β log coth

(
Γβ
r

)
, and σik represent spins of the

classical system of one dimension higher.

In our experiments, the strength Γ of the transverse field is scheduled to linearly decrease

from 20.00 to one of Γf = 0.01 or 2.00. The inverse temperature β is set to the constant

2.00. The initial value, 20.00, of the transverse field is empirically chosen to be well above the

coupling strengths created during the training. Each spin is replicated 25 times to represent

the Trotter slices in the extra dimension. The simulation is set to iterate over all replications

of all spins one time per sweep, and the number of sweeps is set to 300, which appears to

be large enough for the sizes of Ising models constructed during our experiments. For each

instance of input, the SQA algorithm is run 150 times. After termination, the configuration

of each replica, as well as the configuration of the entire classical Ising model of one dimension

higher, is returned.

Although the SQA algorithm does not follow the dynamics of a physical quantum annealer

explicitly, it is used to simulate this process, as it captures major quantum phenomena such as

tunnelling and entanglement [34]. In [34], for example, it is shown that quantum Monte Carlo

simulations can be used to understand the tunnelling behaviour in quantum annealers. As

mentioned previously, it readily follows from the results of [33] that the limiting distribution of

SQA is the Boltzmann distribution of Heff . This makes SQA a candidate classical algorithm

for sampling from Boltzmann distributions of classical and quantum Hamiltonians. The

former is achieved by setting Γf ' 0, and the latter by constructing an effective Hamiltonian

of the system of one dimension higher, representing the quantum Hamiltonian with non-

negligible Γf . Alternatively, a classical Monte Carlo simulation used to sample from the

Boltzmann distribution of the classical Ising Hamiltonian is the SA algorithm, based on

thermal fluctuations of classical spin systems.

2.3 Markov Decision Process

The stochastic control problem of interest to us is a Markov decision process (MDP), defined

as having:

(i) finite sets of states S and actions A;f

(ii) a controlled Markov chain [45], defined by a transition kernel P(s′ ∈ S|s ∈ S, a ∈ A);g

(iii) a real-valued function r : S ×A→ R, known as the immediate reward structure; and

(iv) a constant γ ∈ [0, 1), known as the discount factor.

A function π : S → A is called a stationary policy ; that is, it is a choice of action π(s)

for every state s independent of the point in time that the controlled process reaches s. The

application of a stationary policy π reduces the MDP into a time-homogeneous Markov chain

Π, with a transition probability P(s′|s, π(s)).hThe random process Π with initial condition

Π0 = s we denote by Πs.

Our Markov decision problem is to find

π∗(s) = argmax
π

V (π, s), (4)

f When both S and A are finite, the MDP is said to be finite.
g The transition kernel does not need to be time-homogeneous; however, this definition suffices for the purposes
of this work.
h For more-general statements, see [45].

58 Reinforcement learning using quantum Boltzmann machines

where

V (π, s) = E

[∞∑
i=0

γi r(Πs
i , π(Πs

i))

]
. (5)

2.3.1 Maze Traversal as a Markov Decision Process

Maze traversal is a problem typically used to develop and benchmark reinforcement learning

algorithms [46]. A maze is structured as a two-dimensional grid of r rows and c columns

in which a decision-making agent is free to move up, down, left, or right, or to stand still.

During the maze traversal, the agent encounters obstacles (e.g., walls), rewards (e.g., goals),

and penalties (negative rewards, e.g., a pit). Each cell of the maze can contain either a

deterministic or stochastic reward, a wall, a pit, or a neutral value. Fig. 2a and Fig. 2b show

examples of two mazes. Fig. 2c shows the corresponding solutions to the maze in Fig. 2a.

The goal of the reinforcement learning algorithm in the maze traversal problem is for the

agent to learn the optimal action to take in each cell of the maze by maximizing the total

reward, that is, finding a route across the maze that avoids walls and pits while favouring

rewards. This problem can be modelled as an MDP determined by the following components:

• The state of the system is the agent’s position within the maze. The position state s

takes values in the set of states

S = {1, ..., r} × {1, ..., c}.

• In any state, the agent can decide to take one of the five actions

a ∈ {↑, ↓,←,→,	}.

These actions will guide the agent through the maze. An action that would lead the

agent into a wall (W) or outside of the maze boundary is treated as an inadmissible

action. Each action can be viewed as an endomorphism on the set of states

a : S → S.

If a = 	, then a(s) = s; otherwise, a(s) is the state adjacent to S in the direction shown

by a. We do not consider training samples where a is inadmissible.

• The transition kernel determines the probability of the agent moving from one state

to another given a particular choice of action. In the simplest case, the probability of

transition from s to a(s) is one:

P(a(s)|s, a) = 1.

We call the maze clear if the associated transition kernel is as above, as opposed to the

windy maze, in which there is a nonzero probability that if the action a is taken at state

s, the next state will differ from a(s).

• The immediate reward r(s, a) that the agent gains from taking an action a in state s

is the value contained in the destination state. Moving into a cell containing a reward

returns the favourable value R, moving into a cell containing a penalty returns the

unfavourable value P , and moving into a cell with no reward returns a neutral value in

the interval (P,R).

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 59

• A discount factor for future rewards is a non-negative constant γ < 1. In our exper-

iments, this discount factor is set to γ = 0.8. The discount factor is a feature of the

problem rather than a free parameter of an implementation. For example, in a financial

application scenario, the discount factor might be a function of the risk-free interest

rate.

The immediate reward for moving into a cell with a stochastic reward is given by a random

variable R. If an agent has prior knowledge of this distribution, then it should be able to treat

the cell as one with a deterministic reward value of E[R]. This allows us to find the set of all

optimal policies in each maze instance. This policy information is denoted by α∗ : S → 2A,

associating with each state s ∈ S a set of optimal actions α∗(s) ⊆ A.

In our maze model, the neutral value is set to 100, the reward R = 200, and the penalty

P = 0. In our experiments, the stochastic reward R is simulated by drawing a sample from

the Bernoulli distribution 200 Ber(0.5); hence, it has the expected value E[R] = 100, which

is identical to the neutral value. Therefore, the solutions depicted in Fig. 2c are solutions to

the maze of Fig. 2b as well.

2.4 Value Iteration

Bellman [47] writes V (π, s) recursively in the following manner using the monotone conver-

gence theorem:

V (π, s) = E

[∞∑
i=0

γi r(Πs
i , π(Πs

i))

]

= E[r(Πs
0, π(Πs

0))] + γ E

[∞∑
i=0

γi r(Πs
i+1, π(Πs

i+1))

]
= E[r(s, π(s))] + γ

∑
s′∈S

P(s′|s, π(s))V (π, s′) .

In particular, it leads to the Bellman optimality equation:

V ∗(s) = V (π∗, s) = max
a

(
E[r(s, a)] + γ

∑
s′∈S

P(s′|s, a)V ∗(s′)

)
. (6)

Hence, V ∗ is a fixed point for the operator

TV (f) : s 7→ max
a

(
E[r(s, a)] + γ

∫
f

)
on the space L∞(S) of bounded functions S → R endowed with the max norm. Here, the

integral is taken with respect to the probability measure on S, induced by the conditional

probability distribution P(s′|s, a). It is easy to check that TV is a contraction mapping, and

thus V ∗ is the unique fixed point of TV and the uniform limit of any sequence of functions

{TnV f}n. Numerical computation of this limit using (6), called value iteration, is a common

method of solving the Markov decision problem (4). However, even the ε-optimal algorithms

for this approach depend heavily on the cardinality of both S and A, and suffer from the

curse of dimensionality [47, 48]. Moreover, the value iteration method requires having full

knowledge of the transition probabilities, as well as the distribution of the immediate rewards.

60 Reinforcement learning using quantum Boltzmann machines

2.5 Q-functions

For a stationary policy π, the Q-function (also known as the action–value function) is defined

as a mapping of a pair (s, a) to the expected value of the reward of the Markov chain that

begins with taking action a at initial state s and continuing according to π [8]:

Q(π, s, a) = E[r(s, a)] + E

[∞∑
i=1

γi r(Πs
i , π(Πs

i))

]
.

It is straightforward to check that

V (π∗, s) = max
a

Q(π∗, s, a),

and for Q∗(s, a) = maxπ Q(π, s, a) = Q(π∗, s, a), the optimal policy for the MDP can be

retrieved via the following:

π∗(s) = argmax
a

Q∗(s, a). (7)

This reduces the Markov decision problem to computing Q∗(s, a). The Bellman optimality

equation for Q∗(s, a) is

Q∗(s, a) = E[r(s, a)] + γ
∑
s′

P(s′|s, a) max
a′

Q∗(s′, a′),

which makes Q∗ the fixed point of a different operator

TQ(f) : (s, a) 7→ E[r(s, a)] + γ

∫
max
a′

f

defined on L∞(S ×A).

2.6 Temporal-Difference Gradient Descent

In this section, we derive the Q-learning method for MDPs. From the previous section, we

know that starting from an initial Q0 : S ×A→ R, the sequence {Qn = TnQQ0} converges to

Q∗. The difference

Qn+1(s, a)−Qn(s, a) = E[r(s, a)] + γ
∑
s′

P(s′|s, a) max
a

Qn(s′, a)︸ ︷︷ ︸
(∗)

−Qn(s, a) (8)

is called the temporal difference of Q-functions, and is denoted by ETD.

Employing a gradient approach to find the fixed point of T on L∞(S×A) involves locally

parametrizing the functions in this space by a vector of parameters θ, that is,

Q(s, a) = Q(s, a;θ),

and travelling in the direction that minimizes ‖ETD‖2:

∆θ ∝ −ETD∇θETD . (9)

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 61

The method TD(0) consists of treating the (∗) in (8) as constant with respect to the

parameterization θ, in which case we may write

∆θ ∝∼ ETD(s, a)∇θQ(s, a;θ).

For an agent agnostic with respect to the transition kernel or the distribution of the reward

r(s, a), or both, this update rule for θ is not possible. The alternative is to substitute, at each

iteration, the expected value ∑
s′

P(s′|s, a) max
a

Qn(sn+1, a)

by maxaQn(sn+1, a), where sn+1 is drawn from the probability distribution P(s′|s, a), and

substitute E[r(sn, an)] by a sample of r(sn, an). This leads to a successful Monte Carlo

training method called Q-learning .

In what follows, we explain the case in which θ comprises the weights of a Boltzmann

machine. Let us begin by introducing clamped Boltzmann machines, which are of particular

importance in the case of reinforcement learning.

2.7 Clamped Boltzmann Machines

A classical Boltzmann machine is a type of stochastic neural network with two sets V and

H of visible and hidden nodes, respectively. Both visible and hidden nodes represent binary

random variables. We use the same notation for a node and the binary random variable

it represents. The interactions between the variables represented by their respective nodes

are specified by real-valued weighted edges of the underlying undirected graph. A GBM, as

opposed to models such as RBMs and DBMs, allows weights between any two nodes.

The energy of the classical Boltzmann machine is

E (v,h) = −
∑

v∈V, h∈H

wvhvh−
∑

{v,v′}⊆V

wvv
′
vv′ −

∑
{h,h′}⊆H

whh
′
hh′, (10)

with wvh, wvv
′
, and whh

′
denoting the weights between visible and hidden, visible and visible,

and hidden and hidden nodes of the Boltzmann machine, respectively, defined as a function

of binary vectors v and h corresponding to the visible and hidden variables, respectively.

A clamped GBM is a neural network whose underlying graph is the subgraph obtained by

removing the visible nodes for which the effect of a fixed assignment v of the visible binary

variables contributes as constant coefficients to the associated energy

Ev(h) = −
∑

v∈V, h∈H

wvhvh−
∑

{v,v′}⊆V

wvv
′
vv′ −

∑
{h,h′}⊆H

whh
′
hh′ . (11)

A clamped quantum Boltzmann machine (QBM) has the same underlying graph as a

clamped GBM, but instead of a binary random variable, a qubit is associated to each node

of the network. The energy function is substituted by the quantum Hamiltonian

Hv = −
∑

v∈V, h∈H

wvhvσzh −
∑

{v,v′}⊆V

wvv
′
vv′ −

∑
{h,h′}⊆H

whh
′
σzhσ

z
h′ − Γ

∑
h∈H

σxh , (12)

62 Reinforcement learning using quantum Boltzmann machines

where σzh represent the Pauli z-matrices and σxh represent the Pauli x-matrices. Thus, a

clamped QBM with Γ = 0 is equivalent to a clamped classical Boltzmann machine. This is

becauseHv is a diagonal matrix in the σz-basis, the spectrum of which is identical to the range

of Ev. The remainder of this section is formulated for the clamped QBMs, acknowledging that

it can easily be specialized to clamped classical Boltzmann machines.

Let β = 1
kBT

be a fixed thermodynamic beta. For an assignment of visible variables v,

F (v) denotes the equilibrium free energy, and is defined as

F (v) := − 1

β
lnZv = 〈Hv〉+

1

β
tr(ρv ln ρv) . (13)

Here, Zv = tr(e−βHv) is the partition function of the clamped QBM and ρv is the density

matrix ρv = 1
Zv
e−βHv . The term − tr(ρv ln ρv) is the entropy of the system. The notation

〈· · · 〉 is used for the expected value of any observable with respect to the Gibbs measure, in

particular,

〈Hv〉 =
1

Zv
tr(Hve

−βHv).

2.8 Reinforcement Learning Using Clamped Boltzmann Machines

In this section, we explain how a general Boltzmann machine (GBM) can be used to provide

a Q-function approximator in a Q-learning method. To the best of our knowledge, this

derivation has not been previously given, although it can be readily derived from the ideas

presented in [16] and [38]. Following [16], the goal is to use the negative free energy of a

Boltzmann machine to approximate the Q-function through the relationship

Q(s, a) ≈ −F (s,a) = −F (s,a;θ)

for each admissible state–action pair (s, a) ∈ S ×A. Here, s and a are binary vectors encoding

the state s and action a on the state nodes and action nodes, respectively, of the Boltzmann

machine. In reinforcement learning, the visible nodes of the GBM are partitioned into two

subsets of state nodes S and action nodes A.

The parameters θ, to be trained according to a TD(0) update rule (see Sec. 2.6), are the

weights in a Boltzmann machine. For every weight w, the update rule is

∆w = −ε(rn(sn, an) + γmax
a

Q(sn+1, a)−Q(sn, an))
∂F

∂w
.

From (13), we obtain

∂F (s,a)

∂w
= − 1

βZs,a

∂

∂w
tr
(
e−βHs,a

)
=

1

βZs,a
tr

(
βe−βHs,a

∂

∂w
Hs,a

)
=

〈
∂

∂w
Hs,a

〉
.

Therefore, the update rule for TD(0) for the clamped QBM can be rewritten as

∆wvh = ε(rn(sn, an) + γQ(sn+1, an+1)−Q(sn, an))v〈σzh〉 (14)

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 63

and

∆whh
′

= ε(rn(sn, an) + γQ(sn+1, an+1)−Q(sn, an))〈σzhσzh′〉, (15)

where the thermodynamic beta is absorbed into the learning rate ε, and

an+1 = argmax
a

Q(sn+1, a).

Here, h and h′ denote two distinct hidden nodes and (by a slight abuse of notation) the letter

v stands for a visible (state or action) node, and also the value of the variable associated to

that node.

To approximate the right-hand side of each of (14) and (15), we use SQA experiments.

By [49, Theorem 6], we may find the expected values of the observables 〈σzh〉 and 〈σzhσzh′〉 by

averaging the corresponding spins in the classical Ising model of one dimension higher used

in SQA. To approximate the Q-function, we take advantage of [49, Theorem 4] and use (13)

applied to this classical Ising model. More precisely, let Heff
v represent the Hamiltonian of the

classical Ising model of one dimension higher and the associated energy function E eff
v . The

free energy of this model can be written

F (v) = 〈Heff
v 〉+

1

β

∑
c

P(c|v) logP(c|v) , (16)

where c ranges over all spin configurations of the classical Ising model of one dimension higher.

The above argument holds in the absence of the transverse field, that is, for the classical

Boltzmann machine. In this case, the TD(0) update rule is given by

∆wvh = ε(rn(sn, an) + γQ(sn+1, an+1)−Q(sn, an))v〈h〉 (17)

and

∆whh
′

= ε(rn(sn, an) + γQ(sn+1, an+1)−Q(sn, an))〈hh′〉 , (18)

where 〈h〉 (referred to as activations of the hidden nodes in machine learning terminology)

and 〈hh′〉 are the expected values of the variables and the product of variables, respectively,

in the binary encoding of the hidden nodes with respect to the Boltzmann distribution given

by P(h|v) = exp(−βEv(h))/
∑

h′ exp(−βEv(h′)). Therefore, they may be approximated using

SA or SQA when Γ→ 0.

The values of the Q-functions in (17) and (18) can also be approximated empirically, since,

in a classical Boltzmann machine,

F (v) =
∑
h

P(h|v)Ev(h) +
1

β

∑
h

P(h|v) logP(h|v) (19)

= −
∑
s∈S
h∈H

wshs〈h〉 −
∑
a∈A
h∈H

waha〈h〉 −
∑

{h,h′}⊆H

uhh
′〈hh′〉+

1

β

∑
h

P(h|s,a) logP(h|s,a).

Remark 2.1 In the case of an RBM, Sallans and Hinton [16] show that the free energy is

given by

− F (s,a) =
∑
s∈S
h∈H

wshs〈h〉+
∑
a∈A
h∈H

waha〈h〉 − 1

β

∑
h∈H

[〈h〉 log〈h〉+ (1− 〈h〉) log(1− 〈h〉)] . (20)

64 Reinforcement learning using quantum Boltzmann machines

Algorithm 1 RBM-RL

1: initialize weights of RBM
2: for all training samples (s1, a1) do
3: s2 ← a1(s1), a2 ← argmaxaQ(s2, a)
4: calculate 〈hi〉 for (i = 1, 2) using (21)
5: calculate F (si,ai) for (i = 1, 2) using (20)
6: Q(si, ai)← −F (si,ai) for (i = 1, 2)
7: update RBM weights using (22) and (23)
8: π(s1)← argmaxaQ(s1, a)

9: return π

The update rule for the weights of the RBM is (17) alone. Moreover, in the case of RBMs, the

equilibrium free energy F (s,a) and its derivatives with respect to the weights can be calculated

without the need for Boltzmann distribution sampling, according to the closed formula

〈h〉 = P(σh = 1|s,a) = σ

(∑
s∈S

wshs+
∑
a∈A

waha

)
(21)

=

{
1 + exp

(
−
∑
s∈S

wshs−
∑
a∈A

waha

)}−1

.

Here, σ denotes the sigmoid function. Note that, in the general case, since the hidden nodes

of a clamped Boltzmann machine are not independent, the calculation of the free energy is

intractable.

3 Algorithms

In this section, we present the details of classical reinforcement learning using RBM, a semi-

classical approach based on a DBM (using SA and SQA), and a quantum reinforcement

learning approach (using SQA or quantum annealing). All of the algorithms are based on the

Q-learning TD(0) method presented in the previous section. Pseudo-code for these methods

is provided in Algorithms 1, 2, and 3 below.

3.1 Reinforcement Learning Using RBMs

The RBM reinforcement learning algorithm is due to Sallans and Hinton [16]. This algorithm

uses the update rule (17), with v representing state or action encoding, to update the weights

of an RBM, and (21) to calculate the expected values of random variables associated with the

hidden nodes 〈h〉. As explained in Sec. 2.8, the main advantage of RBM is that it has explicit

formulas for the hidden-node activations, given the values of the visible nodes. Moreover,

only for RBMs can the entropy portion of the free energy (19) be written in terms of the

activations of the hidden nodes. More-complicated network architectures do not possess this

property, so there is a need for a Boltzmann distribution sampler.

In Algorithm 1, we recall the steps of the classical reinforcement learning algorithm using

an RBM with a graphical model similar to that shown in Fig. 1a. We set the initial Boltzmann

machine weights using Gaussian zero-mean values with a standard deviation of 1.00, as is

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 65

Algorithm 2 DBM-RL

1: initialize weights of DBM
2: for all training samples (s1, a1) do
3: s2 ← a1(s1), a2 ← argmaxaQ(s2, a)
4: approximate 〈hi〉, 〈hih′i〉,P(h|si,ai)

using SA or SQA for (i = 1, 2)
5: calculate F (si,ai) using (19) for (i = 1, 2)
6: Q(si, ai)← −F (si,ai) for (i = 1, 2)
7: update DBM weights using (18), (22), and (23)
8: π(s1)← argmaxaQ(s1, a)

9: return π

common practice for implementing Boltzmann machines [50]. Consequently, this initializes

an approximation of a Q-function and a policy π given by

π(s) = argmax
a

Q(s, a) .

In each training iteration, we select a state–action pair (s1, a1) ∈ S × A. We associate a

classical spin variable σh to each hidden node h. Then, the activations of the hidden nodes

are calculated via (21). In our experiments, all Boltzmann machines have as many state nodes

as |S| and as many action nodes as |A|. We associate one node for every state s ∈ S, and

the corresponding binary encoding is s = (0, 0, . . . , 1, . . . , 0), with zeroes everywhere except

at the index of the node corresponding to s. We use similar encoding for the actions, using

the action nodes. A subsequent state s2 is obtained from the state–action pair (s1, a1) using

the transition kernel outlined in Sec. 2, and a corresponding action a2 is chosen via policy π.

The free energy of the RBM is calculated using (20) for both (s1, a1) and (s2, a2).

This results in an approximation of the Q-function (see Sec. 2.5) defined on the state–

action space S ×A [16],

Q(s, a) ≈ −F (s,a) ,

for both state–action pairs. We then use the update rule (17), or, more precisely,

∆wsh = ε(r(s1, a1) + γQ(s2, a2)−Q(s1, a1))s1〈h〉 (22)

and

∆wah = ε(r(s1, a1) + γQ(s2, a2)−Q(s1, a1))a1〈h〉 , (23)

with a learning rate ε to update the weights of the RBM. In view of (7), the best known

policy can be acquired via π(s) = argmaxaQ(s, a) for any state s.

3.2 Reinforcement Learning Using DBMs

Since we are interested in the dependencies between states and actions, we consider a DBM

architecture that has a layer of states connected to the first layer of hidden nodes, followed by

multiple hidden layers, and a layer of actions connected to the final layer of hidden nodes (see

Fig. 1). We demonstrate the advantages of this deep architecture trained using SQA and the

derivation in Sec. 2.8 of the temporal-difference gradient method for reinforcement learning

using general Boltzmann machines (GBM).

66 Reinforcement learning using quantum Boltzmann machines

In Algorithm 2, we summarize the DBM-RL method. Here, the graphical model of the

Boltzmann machine is similar to that shown in Fig. 1b. The initialization of the weights of

the DBM is performed in a similar fashion to the previous algorithm.

In each training iteration, we select a state–action pair (s1, a1) ∈ S × A. Every node

corresponding to a state or an action is removed from the graph and the configurations of

the spins corresponding to the hidden nodes are sampled using SA or SQA on an Ising spin

model constructed as follows: the state s1 contributes to a bias of ws1h to σh if h is adjacent

to s1; and the action a1 contributes to a bias of wa1h to σh if h is adjacent to a1. The bias

on any spin σh for which h is a hidden node not adjacent to state s1 or action a1 is zero.

A subsequent state s2 is obtained from the state–action pair (s1, a1) using the transition

kernel outlined in Sec. 2, and a corresponding action a2 is chosen via policy π. Another SQA

sampling is performed in a similar fashion to the above for this pair.

According to lines 4 and 5 of Algorithm 2, the samples from the SA or SQA algorithm

are used to approximate the free energy of the classical DBM at points (s1, a1) and (s2, a2)

using (19).

If SQA is used, averages are taken over each replica of each run; hence, there are 3750

samples of configurations of the hidden nodes for each state–action pair. The strength Γ of

the transverse field is scheduled to linearly decrease from 20.00 to Γf = 0.01.

The SA algorithm is used with a linear inverse temperature schedule that increases from

0.01 to 2.00 in 50,000 sweeps, and is run 150 times. So, if SA is used, there are only 150

sample points used in the above approximation. The results of DBM-RL using SA or SQA

have no significant differences.

The final difference between Algorithm 1 and Algorithm 2 is that the update rule now

includes updates of weights between two hidden nodes given by (18),

∆whh
′

= ε(r(s1, a1) + γQ(s2, a2)−Q(s1, a1))〈hh′〉 , (24)

in addition to the previous rules (22) and (23).

3.3 Reinforcement Learning Using QBMs

The last algorithm is QBM-RL, presented in Algorithm 3. The initialization is performed

as in Algorithms 1 and 2. However, according to lines 4 and 5, the samples from the SQA

algorithm are used to approximate the free energy of a QBM at points (s1, a1) and (s2, a2)

Algorithm 3 QBM-RL

1: initialize weights of QBM
2: for all training samples (s1, a1) do
3: s2 ← a1(s1), a2 ← argmaxaQ(s2, a)
4: approximate 〈hi〉, 〈hih′i〉, 〈Heff

si,ai
〉,

and P(c|si,ai) using SQA for (i = 1, 2)
5: calculate F (si,ai) using (16) for (i = 1, 2)
6: Q(si, ai)← −F (si,ai) for (i = 1, 2)
7: update QBM weights using (18), (22), and (23)
8: π(s1)← argmaxaQ(s1, a)

9: return π

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 67

by computing the free energy corresponding to an effective classical Ising spin model of one

dimension higher representing the quantum Ising spin model of the QBM, via (16).

In this case, 〈Heff
s,a〉 from (16) is approximated by the average energy of the entire system

of one dimension higher and P(c|s,a) is approximated by the normalized frequency of the

configuration c of the entire system of one dimension higher (hence, there are only 150 sample

points for each input instance in this case). The strength Γ of the transverse field in SQA

is scheduled to linearly decrease from 20.00 to Γf = 2.00. In this algorithm, the weights are

updated as in Algorithm 2. However, 〈h〉 and 〈hh′〉 in this algorithm represent expectations

of measurements in the z-basis.

In each training iteration, we select a state–action pair (s1, a1) ∈ S × A. Every node

corresponding to a state or an action is removed from this graph and the configurations of

the spins corresponding to the hidden nodes are sampled using SQA on an Ising spin model

constructed as follows: the state s1 contributes to a bias of ws1h to σh if h is adjacent to s1;

and the action a1 contributes to a bias of wa1h to σh if h is adjacent to a1. The bias on any

spin σh for which h is a hidden node not adjacent to state s1 or action a1 is zero.

A subsequent state s2 is obtained from the state–action pair (s1, a1) using the transition

kernel outlined in Sec. 2, and a corresponding action a2 is chosen via policy π. Another SQA

sampling is performed in a similar fashion to the above for this pair.

In Fig. 3a and Fig. 3b, the selection of (s1, a1) is performed by sweeping across the set of

state–action pairs. In Fig. 3d, the selection of (s1, a1) and s2 is performed by sweeping over

S ×A× S. In Fig. 3c, the selection of s1, a1, and s2 are all performed uniformly randomly.

We experiment with a variety of learning-rate schedules, including exponential, harmonic,

and linear; however, we found that for the training of both RBMs and DBMs, an adaptive

learning-rate schedule performed best (for information on adaptive subgradient methods, see

[51]). In our experiments, the initial learning rate is set to 0.01.

In all of our studied algorithms, training terminates when a desired number of training

samples have been processed, after which the updated policy is returned.

4 Numerical Results

We study the performance of temporal-difference reinforcement learning algorithms (explained

in detail in Sec. 3) using Boltzmann machines. We generalize the method introduced in [16],

and compare the policies obtained from these algorithms to the optimal policy using a fidelity

measure, which we define in (25).

For Tr independent trials of the same reinforcement learning algorithm, Ts training samples

are used for reinforcement learning. The fidelity measure at the i-th training sample is defined

by

fid(i) = (Tr × |S|)−1
Tr∑
l=1

∑
s∈S

1A(s,i,l)∈α∗(s), (25)

where A(s, i, l) denotes the action assigned at the l-th run and i-th training sample to the state

s. In our experiments, each algorithm is run 1440 times, and for each run of an algorithm,

Ts = 500 training samples are generated.

Fig. 3a and Fig. 3b show the fidelity of the generated policies obtained from various

reinforcement learning experiments on two clear 3 × 5 mazes. In Fig. 3a, the maze includes

68 Reinforcement learning using quantum Boltzmann machines

one reward, one wall, and one pit, and in Fig. 3b, the maze additionally includes two stochastic

rewards. In these experiments, the training samples are generated by sweeping over the maze.

Each sweep iterates over the maze elements in the same order. This explains the periodic

behaviour of the fidelity curves (cf. Fig. 3c).

0 100 200 300 400 500

Training Sample

0.0

0.2

0.4

0.6

0.8

1.0

fid

1R1W1P

(a)

0 100 200 300 400 500

Training Sample

0.0

0.2

0.4

0.6

0.8

1.0

fid

3R1W1P

(b)

0 100 200 300 400 500

Training Sample

0.0

0.2

0.4

0.6

0.8

1.0

fid

1R1W1P

(c)

0 100 200 300 400 500

Training Sample

0.0

0.2

0.4

0.6

0.8

1.0

fid
1R1W1P-windy

(d)

RBM-RL DBM-RL QBM-RL

Fig. 3. Comparison of RBM-RL, DBM-RL, and QBM-RL training results. Every underlying

RBM has 16 hidden nodes and every DBM has two layers of eight hidden nodes. The shaded areas

indicate the standard deviation of each training algorithm. (a) The fidelity curves for the three
algorithms run on the maze in Fig 2a. (b) The fidelity curves for the maze in Fig 2b. (c) The

fidelity curves of the mentioned three algorithms corresponding to the same experiment as that

of (a), except that the training is performed by uniformly generated training samples rather than
sweeping across the maze. (d) The fidelity curves corresponding to a windy maze similar to Fig

2a.

The curves labelled ‘QBM-RL’ represent the fidelity of reinforcement learning using QBMs.

Sampling from the QBM is performed using SQA. All other experiments use classical Boltz-

mann machines as their graphical model. In the experiment labelled ‘RBM-RL’, the graphical

model is an RBM, trained classically using formula (21). The remaining curve is labelled

‘DBM-RL’ for classical reinforcement learning using a DBM. In these experiments, sampling

from configurations of the DBM is performed with SQA (with Γf = 0.01). The fidelity results

of DBM-RL coincide closely with those of sampling configurations of the DBM using SA;

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 69

therefore, we have not included them. Fig. 3c regenerates the results of Fig. 3a using uniform

random sampling (i.e., without sweeping through the maze).

R R

W

W

W

...

R

P

	

W

W

...

↑

←

←

↑ ←↑ ↑ ←↑

↑ ←↑

←↑
↑

↑

←↑

←↑

← ← ←

n
−

2
5

(a)

2
×

5

3
×

5

4
×

5

5
×

5

6
×

5

7
×

5

8
×

5

9
×

5

10
×

5

Maze Size

0.0

0.2

0.4

0.6

0.8

1.0

av
`

3R(n−2)W1P - QBM/DBM [10,10], RBM [20]

DBM-RL, `= 500

DBM-RL, `= 250

DBM-RL, `= 10

RBM-RL, `= 500

RBM-RL, `= 250

RBM-RL, `= 10

QBM-RL, `= 500

QBM-RL, `= 250

QBM-RL, `= 10

(b)

Fig. 4. A comparison between the performance of RBM-RL, DBM-RL, and QBM-RL as the size

of the maze grows. All Boltzmann machines have 20 hidden nodes. (a) The schematics of an
n × 5 maze with one deterministic reward, two stochastic rewards, one pit, and n − 2 walls. (b)

The scaling of the average fidelity of each algorithm run on each instance of the n× 5 maze. The

dotted line is the average fidelity of uniformly randomly generated actions.

Our next result, shown in Fig. 3d, compares RBM-RL, DBM-RL, and QBM-RL for a

windy maze of size 3 × 5. The transition kernel for this experiment is chosen such that

P(a(s)|s, a) = 0.8, and P(s′|s, a) has a nonzero value for all s′ 6= a(s) that are reachable from

s by taking some action, in which case all these values are equal. The transition probability

is zero for all other states. Fig. 2d shows examples of the transition probabilities in the windy

problem.

To demonstrate the performance of RBM-RL, DBM-RL, and QBM-RL with respect to

scaling, we define another measure called average fidelity, av`, where we take the average

fidelity over the last ` training samples of the fidelity measure. Given Ts total training

samples and fid(i) as defined above, we write

av` =
1

`

Ts∑
i=Ts−`

fid(i) .

70 Reinforcement learning using quantum Boltzmann machines

In Fig. 4, we report the effect of maze size on av` for RBM-RL, DBM-RL, and QBM-RL for

varying maze sizes. We plot av` for each algorithm with ` = 500, 250, and 10 as a function

of maze size for a family of problems with one deterministic reward, two stochastic rewards,

one pit, and n − 2 walls. We use nine n × 5 mazes in this experiment, indexed by various

values of n. In addition to the av` plots, we include a dotted-line plot depicting the fidelity

for a completely random policy. The fidelity of the random policy is given by the average

probability of choosing an optimal action at each state when generating admissible actions

uniformly at random, which is given by 18n+7
48n+24 . Note that the fidelity of the random policy

increases as the maze size increases. This is due to the fact that maze rows containing a wall

have more average admissible optimal actions than the top and bottom rows of the maze.

5 Discussion

The fidelity curves in Fig. 3 show that DBM-RL outperforms RBM-RL with respect to the

number of training samples. Therefore, we expect that in conjunction with a high-performance

sampler of Boltzmann distributions (e.g., a quantum or a quantum-inspired oracle taken as

such), DBM-RL improves the performance of reinforcement learning. QBM-RL is not only on

par with DBM-RL, but actually slightly improves upon it by taking advantage of sampling

in the presence of a significant transverse field.

This is a positive result for the potential of sampling from a quantum device in machine

learning, as we do not expect quantum annealing to obtain the Boltzmann distribution of

a classical Hamiltonian [42, 52, 53]. However, given the discussion in Sec. 2.1, a quantum

annealer viewed as an open system coupled to a heat bath could be a better choice of sampler

from its instantaneous Hamiltonian in earlier stages of the annealing process, compared to a

sampler of the problem Hamiltonian at the end of the evolution. Therefore, these experiments

address whether a quantum Boltzmann machine with a transverse field Ising Hamiltonian can

perform at least as well as a classical Boltzmann machine.

In each experiment, the fidelity curves from DBM-RL produced using SQA with Γf = 0.01

match the ones produced using SA. This is consistent with our expectation that using SQA

with Γ → 0 produces samples from the same distribution as SA, namely, the Boltzmann

distribution of the classical Ising Hamiltonian with no transverse field.

The best algorithm in our experiments is evidently QBM-RL using SQA. Here, the final

transverse field is Γf = 2.00, corresponding to one-third of the anneal for a quantum an-

nealing algorithm that evolves along the convex linear combination of the initial and final

Hamiltonians with constant speed. This is consistent with ideas found in [38] on sampling at

freeze-out [42].

Fig. 3c shows that, whereas the maze can be solved with fewer training samples using

ordered sweeps of the maze, the periodic behaviour of the fidelity curves is due to this peri-

odic choice of training samples. This effect disappears once the training samples are chosen

uniformly randomly.

Fig. 3d shows that the improvement in the learning of the DBM-RL and QBM-RL al-

gorithms persists in the case of more-complicated transition kernels. The same ordering of

fidelity curves discussed earlier is observed: QBM-RL outperforms DBM-RL, and DBM-RL

outperforms RBM-RL.

It is worth mentioning that, even though it may seem that more connectivity between

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 71

the hidden nodes may allow a Boltzmann machine to capture more-complicated correlations

between the visible nodes, the training process of the Boltzmann machine becomes more

computationally involved. In our reinforcement learning application, an RBM with m hidden

nodes, and n = |S| + |A| visible nodes, has mn weights to train. A DBM with two hidden

layers of equal size has 1
4m(2n+m) weights to train. Therefore, when m < 2n, the training

of the DBM is in a domain of a lower dimension. Further, a GBM with all of its hidden nodes

forming a complete graph requires mn +
(
m
2

)
weights to train, which is always larger than

that of an RBM or a DBM with the same number of hidden nodes.

One can observe from Fig. 4 that, as the maze size increases and the complexity of the

reinforcement learning task increases, av` decreases for each algorithm. The RBM algorithm,

while always outperformed by DBM-RL and QBM-RL, shows a much faster decay in average

fidelity as a function of maze size compared to both DBM-RL and QBM-RL. For larger mazes,

the RBM algorithm fails to capture maze traversal knowledge, and approaches av` of a random

action allocation (the dotted line), whereas the DBM-RL and QBM-RL algorithms continue

to be trained well. DBM-RL and QBM-RL are capable of training the agent to traverse larger

mazes, whereas the RBM algorithm, utilizing the same number of hidden nodes and a larger

number of weights, fails to converge to an output that is better than a random policy.

The runtime and computational resources needed to compare DBM-RL and QBM-RL with

RBM-RL have not been investigated here. We expect that in view of [19], the size of RBM

needed to solve larger maze problems will grow exponentially. Thus, it would be interesting to

research the extrapolation of the asymptotic complexity and size of the DBM-RL and QBM-

RL algorithms with the aim of attaining a quantum advantage. Applying the algorithms

described in this paper to tasks that have larger state and action spaces, as well as to more-

complicated environments, will allow us to demonstrate the scalability and usefulness of the

DBM-RL and QBM-RL approaches. The experimental results shown in Fig. 4 represent only

a rudimentary attempt to investigate this matter, yet the results are promising. However,

this experiment does not provide a practical characterization of the scaling of our approach,

and further investigation is needed.

Acknowledgements

We would like to thank Hamed Karimi, Helmut Katzgraber, Murray Thom, Matthias Troyer,

and Ehsan Zahedinejad, as well as the referees and editorial board of Quantum Information

and Computation, for reviewing this work and providing many helpful suggestions. The idea

of using SQA to run experiments involving measurements with a nonzero transverse field was

communicated in person by Mohammad Amin. We would also like to thank Marko Bucyk

for editing this manuscript.

References

1. M. S. Sarandy and D. A. Lidar, “Adiabatic approximation in open quantum systems,” Phys. Rev.
A, vol. 71, p. 012331, 2005.

2. J. E. Avron, M. Fraas, G. M. Graf, and P. Grech, “Adiabatic theorems for generators of contracting
evolutions,” Commun. Math. Phys., vol. 314, no. 1, pp. 163–191, 2012.

3. T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi, “Quantum adiabatic Markovian master equa-
tions,” New J. Phys., vol. 14, no. 12, p. 123016, 2012.

72 Reinforcement learning using quantum Boltzmann machines

4. S. Bachmann, W. De Roeck, and M. Fraas, “The Adiabatic Theorem for Many-Body Quantum
Systems,” arXiv:1612.01505, 2016.

5. L. C. Venuti, T. Albash, D. A. Lidar, and P. Zanardi, “Adiabaticity in open quantum systems,”
Phys. Rev. A, vol. 93, p. 032118, 2016.

6. M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J.
Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizin-
sky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik,
S. Uchaikin, J. Wang, B. Wilson, and G. Rose, “Quantum annealing with manufactured spins,”
Nature, vol. 473, pp. 194–198, 2011.

7. J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus,
B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, C. Neill, P. J. J. O’Malley,
C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, “State
preservation by repetitive error detection in a superconducting quantum circuit,” Nature, vol. 519,
pp. 66–69, 2015.

8. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, 1998.
9. D. Bertsekas and J. Tsitsiklis, Neuro-dynamic Programming. Anthropological Field Studies,

Athena Scientific, 1996.
10. V. Derhami, E. Khodadadian, M. Ghasemzadeh, and A. M. Z. Bidoki, “Applying reinforcement

learning for web pages ranking algorithms,” Appl. Soft Comput., vol. 13, no. 4, pp. 1686–1692,
2013.

11. S. Syafiie, F. Tadeo, and E. Martinez, “Model-free learning control of neutralization processes
using reinforcement learning,” Engineering Applications of Artificial Intelligence, vol. 20, no. 6,
pp. 767–782, 2007.

12. I. Erev and A. E. Roth, “Predicting how people play games: Reinforcement learning in experi-
mental games with unique, mixed strategy equilibria,” Am. Econ. Rev., pp. 848–881, 1998.

13. H. Shteingart and Y. Loewenstein, “Reinforcement learning and human behavior,” Current Opin-
ion in Neurobiology, vol. 25, pp. 93–98, 2014.

14. T. Matsui, T. Goto, K. Izumi, and Y. Chen, “Compound reinforcement learning: theory and an
application to finance,” in European Workshop on Reinforcement Learning, pp. 321–332, Springer,
2011.

15. Z. Sui, A. Gosavi, and L. Lin, “A reinforcement learning approach for inventory replenishment in
vendor-managed inventory systems with consignment inventory,” Engineering Management Jour-
nal, vol. 22, no. 4, pp. 44–53, 2010.

16. B. Sallans and G. E. Hinton, “Reinforcement learning with factored states and actions,” JMLR,
vol. 5, pp. 1063–1088, 2004.

17. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal ap-
proximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

18. J. Martens, A. Chattopadhya, T. Pitassi, and R. Zemel, “On the representational efficiency of
restricted Boltzmann machines,” in Advances in Neural Information Processing Systems, pp. 2877–
2885, 2013.

19. N. Le Roux and Y. Bengio, “Representational power of restricted Boltzmann machines and deep
belief networks,” Neural Computation, vol. 20, no. 6, pp. 1631–1649, 2008.

20. R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann Machines,” in Proceedings of the Twelfth In-
ternational Conference on Artificial Intelligence and Statistics, AISTATS 2009, Clearwater Beach,
Florida, USA, April 16-18, 2009, pp. 448–455, 2009.

21. R. Harris, M. W. Johnson, T. Lanting, A. J. Berkley, J. Johansson, P. Bunyk, E. Tolkacheva,
E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata, I. Perminov, P. Spear, C. Enderud, C. Rich,
S. Uchaikin, M. C. Thom, E. M. Chapple, J. Wang, B. Wilson, M. H. S. Amin, N. Dickson,
K. Karimi, B. Macready, C. J. S. Truncik, and G. Rose, “Experimental investigation of an eight-
qubit unit cell in a superconducting optimization processor,” Phys. Rev. B, vol. 82, p. 024511,
2010.

22. M. Benedetti, J. Realpe-Gmez, R. Biswas, and A. Perdomo-Ortiz, “Quantum-assisted learning of

D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, and P. Ronagh 73

graphical models with arbitrary pairwise connectivity,” arXiv:1609.02542, 2016.
23. S. H. Adachi and M. P. Henderson, “Application of Quantum Annealing to Training of Deep

Neural Networks,” arXiv:1510.06356, 2015.
24. M. Denil and N. de Freitas, “Toward the implementation of a quantum RBM,” in NIPS 2011

Deep Learning and Unsupervised Feature Learning Workshop, 2011.
25. M. Benedetti, J. Realpe-Gómez, R. Biswas, and A. Perdomo-Ortiz, “Estimation of effective tem-

peratures in quantum annealers for sampling applications: A case study with possible applications
in deep learning,” Phys. Rev. A, vol. 94, p. 022308, 2016.

26. V. Dunjko, J. M. Taylor, and H. J. Briegel, “Quantum-enhanced machine learning,” Phys. Rev.
Lett., vol. 117, p. 130501, 2016.

27. D. Dong, C. Chen, H. Li, and T. J. Tarn, “Quantum reinforcement learning,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, pp. 1207–1220, 2008.

28. N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum deep learning,” Quantum Inf. Comput., vol. 16,
no. 7-8, pp. 541–587, 2016.

29. M. Kieferova and N. Wiebe, “Tomography and Generative Data Modeling via Quantum Boltzmann
Training,” arXiv:1612.05204, 2016.

30. E. Crosson and A. W. Harrow, “Simulated Quantum Annealing Can Be Exponentially Faster than
Classical Simulated Annealing,” arXiv:1601.03030, 2016.

31. B. Heim, T. F. Rønnow, S. V. Isakov, and M. Troyer, “Quantum versus classical annealing of Ising
spin glasses,” Science, vol. 348, no. 6231, pp. 215–217, 2015.

32. M. B. Hastings and M. H. Freedman, “Obstructions to classically simulating the quantum adiabatic
algorithm,” Quantum Information & Computation, vol. 13, pp. 1038–1076, 2013.

33. S. Morita and H. Nishimori, “Convergence theorems for quantum annealing,” J. Phys. A: Math-
ematical and General, vol. 39, no. 45, p. 13903, 2006.

34. S. V. Isakov, G. Mazzola, V. N. Smelyanskiy, Z. Jiang, S. Boixo, H. Neven, and M. Troyer, “Un-
derstanding quantum tunneling through quantum Monte Carlo simulations,” arXiv:1510.08057,
2015.

35. T. Albash, T. F. Rønnow, M. Troyer, and D. A. Lidar, “Reexamining classical and quantum
models for the D-Wave One processor,” arXiv:1409.3827, 2014.

36. L. T. Brady and W. van Dam, “Quantum Monte Carlo simulations of tunneling in quantum
adiabatic optimization,” Phys. Rev. A, vol. 93, no. 3, p. 032304, 2016.

37. S. W. Shin, G. Smith, J. A. Smolin, and U. Vazirani, “How ‘Quantum’ is the D-Wave Machine?,”
arXiv:1401.7087, 2014.

38. M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko, “Quantum Boltzmann ma-
chine,” arXiv:1601.02036, 2016.

39. M. Born and V. Fock, “Beweis des Adiabatensatzes,” Zeitschrift fur Physik, vol. 51, pp. 165–180,
1928.

40. T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,” Phys. Rev.
E, vol. 58, pp. 5355–5363, 1998.

41. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum Computation by Adiabatic Evo-
lution,” arXiv:quant-ph/0001106, 2000.

42. M. H. Amin, “Searching for quantum speedup in quasistatic quantum annealers,” Phys. Rev. A,
vol. 92, no. 5, p. 052323, 2015.

43. S. M. Anthony Brabazon, Michael O’Neill, Natural Computing Algorithms. Springer-Verlag Berlin
Heidelberg, 2015.

44. R. Martoňák, G. E. Santoro, and E. Tosatti, “Quantum annealing by the path-integral Monte
Carlo method: The two-dimensional random Ising model,” Phys. Rev. B, vol. 66, no. 9, p. 094203,
2002.

45. S. Yuksel, “Control of stochastic systems.” Course lecture notes, Queen’s University (Kingston,
ON Canada), Retrieved in May, 2016.

46. R. S. Sutton, “Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming,” in In Proceedings of the Seventh International Conference on Machine

74 Reinforcement learning using quantum Boltzmann machines

Learning, pp. 216–224, Morgan Kaufmann, 1990.
47. R. Bellman, “Dynamic programming and Lagrange multipliers,” Proceedings of the National

Academy of Sciences, vol. 42, no. 10, pp. 767–769, 1956.
48. M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley

& Sons, 2014.
49. M. Suzuki, “Relationship between d-dimensional quantal spin systems and (d+1)-dimensional Ising

systems equivalence, critical exponents and systematic approximants of the partition function and
spin correlations,” Progr. Theor. Exp. Phys., vol. 56, no. 5, pp. 1454–1469, 1976.

50. G. Hinton, “A practical guide to training restricted Boltzmann machines,” Momentum, vol. 9,
no. 1, p. 926, 2010.

51. J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochas-
tic optimization,” JMLR, vol. 12, no. Jul, pp. 2121–2159, 2011.

52. Y. Matsuda, H. Nishimori, and H. G. Katzgraber, “Ground-state statistics from annealing algo-
rithms: quantum versus classical approaches,” New. J. Phys., vol. 11, no. 7, p. 073021, 2009.

53. L. C. Venuti, T. Albash, M. Marvian, D. Lidar, and P. Zanardi, “Relaxation versus adiabatic
quantum steady-state preparation,” Phys. Rev. A, vol. 95, p. 042302, 2017.

54. E. Farhi and A. W. Harrow, “Quantum Supremacy through the Quantum Approximate Opti-
mization Algorithm,” arXiv:1602.07674, 2016.

55. F. Abtahi and I. Fasel, “Deep belief nets as function approximators for reinforcement learning,”
Frontiers in Computational Neuroscience, 2011.

56. S. Elfwing, E. Uchibe, and K. Doya, “Scaled free-energy based reinforcement learning for robust
and efficient learning in high-dimensional state spaces,” Value and Reward Based Learning in
Neurobots, p. 30, 2015.

57. R. Martoňák, G. E. Santoro, and E. Tosatti, “Quantum annealing by the path-integral Monte
Carlo method: The two-dimensional random Ising model,” Phys. Rev. B, vol. 66, no. 9, p. 094203,
2002.

58. M. Otsuka, J. Yoshimoto, and K. Doya, “Free-energy-based reinforcement learning in a partially
observable environment.,” ESANN 2010 proceedings, European Symposium on Artificial Neural
Networks – Computational Intelligence and Machine Learning, 2010.

59. S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, J. M. Martinis, and
H. Neven, “Characterizing quantum supremacy in near-term devices,” arXiv:1608.00263v2, 2016.

60. J. Raymond, S. Yarkoni, and E. Andriyash, “Global warming: Temperature estimation in anneal-
ers,” arXiv:1606.00919, 2016.

61. P. M. Long and R. Servedio, “Restricted Boltzmann machines are hard to approximately evaluate
or simulate,” in Proceedings of the 27th International Conference on Machine Learning, pp. 703–
710, 2010.

62. D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for Boltzmann machines,”
Cogn. Sci., vol. 9, no. 1, pp. 147–169, 1985.

63. S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, “Convergence results for single-step
on-policy reinforcement-learning algorithms,” Machine learning, vol. 38, no. 3, pp. 287–308, 2000.

64. N. Frémaux, H. Sprekeler, and W. Gerstner, “Reinforcement learning using a continuous time
actor-critic framework with spiking neurons,” PLoS Comput. Biol., vol. 9, no. 4, p. e1003024,
2013.

65. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

66. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

	Introduction
	Preliminaries
	Adiabatic Evolution of Open Quantum Systems
	Simulated Quantum Annealing
	Markov Decision Process
	Maze Traversal as a Markov Decision Process

	Value Iteration
	Q-functions
	Temporal-Difference Gradient Descent
	Clamped Boltzmann Machines
	Reinforcement Learning Using Clamped Boltzmann Machines

	Algorithms
	Reinforcement Learning Using RBMs
	Reinforcement Learning Using DBMs
	Reinforcement Learning Using QBMs

	Numerical Results
	Discussion

