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Perturbative gadgets are general techniques for reducing many-body spin interactions

to two-body ones using perturbation theory. This allows for potential realization of
effective many-body interactions using more physically viable two-body ones. In par-

allel with prior work (arXiv:1311.2555 [quant-ph]), here we consider minimizing the

physical resource required for implementing the gadgets initially proposed by Kempe,
Kitaev and Regev (arXiv:quant-ph/0406180) and later generalized by Jordan and Farhi

(arXiv:0802.1874v4). The main innovation of our result is a set of methods that effi-

ciently compute tight upper bounds to errors in the perturbation theory. We show that
in cases where the terms in the target Hamiltonian commute, the bounds produced by

our algorithm are sharp for arbitrary order perturbation theory. We provide numerics

which show orders of magnitudes improvement over gadget constructions based on triv-
ial upper bounds for the error term in the perturbation series. We also discuss further

improvement of our result by adopting the Schrieffer-Wolff formalism of perturbation
theory and supplement our observation with numerical results.
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1 Introduction

Quantum many-body interactions arise in a variety of contexts in quantum information and

quantum computation, such as topological quantum computing [1, 2, 3, 4], measurement-based

model of quantum computing [5, 6, 7, 8, 9, 10], adiabatic simulation of quantum chemistry

[11], universal adiabatic quantum computationa[15, 16], as well as constructions of circuit-to-

Hamiltonian mapping for QMA-completeness [17, 18]. Given the broad range of applications

aWe note that there are also several proposals [12, 13, 14] of universal adiabatic quantum computation that
uses only simple two-body interactions, thus circumventing the need for many-body interactions. On the other
hand, some of these proposals such as [13] also involve perturbation theory for which the error estimation
algorithms of this paper may be useful for optimizing the parameters of these constructions as well.
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780 Efficient optimization of perturbative gadgets

for many-body interactions, it is then of great interest to simulate the behaviours of these

many-body systems using experimental quantum systems. However, the current technologies

for realizing controllable quantum interactions are limited to two-body interactions, implying

a need for reducing many-body interactions to two-body ones. Such reduction boils down

to constructing a two-body Hamiltonian whose low-lying eigenspace captures the eigenvec-

tors and eigenvalues of the many-body “target” Hamiltonian. The technique of perturbative

gadgets [18, 19, 20, 21] fulfills precisely this task.

The basic idea of perturbative gadget is that given a many-body “target” Hamiltonian

Htarg, we construct a two-body “gadget” Hamiltonian H̃ of the form H + V such that the

low energy effective Hamiltonian of H̃ is arbitrarily close to Htarg. The gadget Hamiltonian

H̃ acts on not only the Hilbert space of the target Hamiltonian but also an ancilla space. In

other words we are embedding the spectrum of a given many-body Hamiltonian onto the low

energy sector of a two-body Hamiltonian that acts on a larger Hilbert space. The effectiveness

of such embedding is established by using perturbation theory for computing the low-energy

effective interaction of H̃ and show that terms involving Htarg appear at the first few orders

and the total contribution from the remaining terms in the infinite series amounts to a small

quantity.

As useful as the perturbative gadgets have been in the study of the complexity of various

types of physical systems [18, 19, 22, 23], the need for convergence in the perturbation series

requires high variability in the coupling strengths that appear in the gadget Hamiltonian

[24], which impose challenges for experimentally implementating the gadget Hamiltonians.

Constructions that avoid using perturbation theory for reducing from many-body to two-

body interactions have indeed been proposed [25, 26, 27]. However, as far as the authors are

aware of, none of the non-perturbative constructions can be applied on general many-body

Hamiltonians in the same way as their perturbative counterparts, in the sense that the non-

perturbative constructions always assume that the Hamiltonian of the entire system must

take certain form, while perturbative gadgets can be applied to reduce any subset of terms

in a target Hamiltonian to two-body without concerning the form of the other terms in the

Hamiltonian.

Here we consider minimizing variability in coupling strengths in the gadget Hamiltonians.

This is important because it directly translates to reducing the physical resource required for

experimentally implementing perturbative gadgets. Prior efforts [24] have optimized gadget

constructions in [19, 20] for reducing many-body interactions to two-body. Here we are in-

terested in the gadget construction due to Kempe, Kitaev, Regev [18] and later generalized

by Jordan and Farhi [21]. The perturbative analysis of this construction is significantly more

involved than constructions analyzed previously in [24]. However, it is of interest to us due

to numerical evidence in [11] using direct diagonalization of target and gadget Hamiltoni-

ans which suggests that this construction requires less variable range of couplings than the

constructions presented in [19, 20].

The technique for optimizing the gadgets presented in this work generalizes our previous

work [24] for the gadgets in [19, 20] and applies the general framework presented in [28]. The

main innovation of our result is an efficient method for finding tight upper bounds for the

error in the perturbation series (i.e. the sum of terms from a specific finite order to infinity).

By “efficient” we mean that suppose the gadget Hamiltonian acts on n qubits, our algorithm
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finds a tight upper bound and sometimes the exact expression for perturbation terms at any

order r in time O(nr), even though each term in the perturbative expansion is of dimension

O(2n). Of course, the efficiency of our method heavily exploits the structure of the gadget

Hamiltonian [18, 21] and does not necessarily hold for general perturbation theory on spin

systems. However, in [28, 29] we argue that the assumptions needed for establishing efficiency

may apply for a broader class of physical Hamiltonians than perturbative gadgets.

2 Perturbation theory and perturbative gadgets

The basic setting that we consider for perturbative analysis is a Hamiltonian H̃ = H + V

where H is diagonal in the computational basis with an energy gap ∆ between the ground

space and the first excited space, and V is a perturbation that contains some non-zero off-

diagonal elements. The main formalism that we use for extracting the low-energy effective

Hamiltonian of H̃ is the well-known Feynman-Dyson series [30] based on self energy. There

are various other formulations of perturbation theory such as Schrieffer-Wolff transformation

[31, 32], Bloch expansion [33] and Rayleigh-Schrödinger perturbation theory (see for example

[34, Ch. 17]). However, in the context of present work we focus on self-energy expansion from

Feynman-Dyson series. In Section 5 we will apply Schrieffer-Wolff transformation onto the

gadget Hamiltonians and show a connection between Feynman-Dyson series and Schrieffer-

Wolff transformation.

Define the subspace spanned by eigenstates of H with energy lower than ∆/2 as the

low-energy subspace L− and its orthogonal complement as the high-energy subspace L+. The

projectors onto these subspaces are defined as Π− and Π+ respectively. We then introduce the

notation for projections of any operator O onto the subspaces: O+ ≡ Π+OΠ+, O− ≡ Π−OΠ−.

O−+ ≡ Π−OΠ+ and O+− ≡ Π+OΠ−. The setup of self-energy expansion Σ−(z) requires the

definition of operator valued resolvents G(z) = (zI −H)−1 and G̃(z) = (zI − H̃)−1 where z

is a scalar and I is the identity matrix. Then the expression for self energy can be written as

Σ−(z) = zI− − [G̃−(z)]−1. Using Taylor expansion we have [18]

Σ−(z) = H− + V− + V−+G+V+− + V−+G+V+G+V+− + · · ·
= H0 + V− + T2 + T3 + · · · . (1)

Note that the r-th order term is simply a matrix product

Tr = V−+G+(V+G+)r−2G+V+−, (2)

which gives rise to our later discussion (Section 4) that interprets it as a sum of walks on a

graph. The self energy expansion is useful because it approximates the low-energy sector of

the perturbed Hamiltonian H̃. This is captured precisely in [18, Theorem 3], which we restate

below. In the present paper our analyses involve mainly two types of operator norms, namely

the 2-norm ‖A‖2 = max|ψ〉 ‖A|ψ〉‖2, which is equal to the “spectral radius” for Hermitian

operators, and ∞-norm ‖A‖∞ = maxi
∑
j |〈i|A|j〉|, the “maximum row sum”, where {|i〉} is

the set of computational basis states.

Theorem 1 ([18], Theorem 3 restated) Given a Hamiltonian H̃ = H + V with H

having a spectral gap ∆ between the ground space and the first excited subspace, suppose

‖V ‖2 ≤ ∆/2. If there exists a Hamiltonian Heff whose energies are contained in the interval
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[a, b] and some real constant ε > 0 such that a < b < ∆/2 − ε and for z ∈ [a − ε, b + ε], we

have

‖Σ−(z)−Heff‖2 ≤ ε,

then the j-th eigenvalue λ̃j of H̃− and the corresponding j-th eigenvalue of Heff differ by at

most ε, for any appropriate range of j values.

Theorem 1 states that closeness in the operator norm between the self energy Σ−(z) and

Heff implies closeness in eigenvalues. In fact it also implies closeness in eigenvectors (see

[18, Lemma 11]). Hence the entire operator Heff is captured by the low energy sector of H̃.

The basic idea of perturbative gadgets is that for a given many-body Hamiltonian Htarg, one

constructs a two-body Hamiltonian H̃ = H+V with H and V matching the setting described

before Equation 1, and the self energy expansion according to Equation 1 contains Htarg in

its leading orders which constitutes the effective Hamiltonian Heff, while the remaining terms

can be bounded from above by ε. The gadget construction [18, 21] considered in this work

reduces an arbitrary many-body Hamiltonian

Htarg =

m∑
i=1

ciHtarg,i (3)

where each Htarg,i = σi,1σi,2 · · ·σi,k is a k-body term with σi,j ∈ {X,Y, Z, I} being the j-th

single-qubit operator in the i-th term in Htarg, to two-body. Here X, Y , and Z are Pauli

operators and I is the identity operator. The gadget Hamiltonian H̃ = H + V works by first

introducing a register of k ancilla qubits for each k-body term Htarg,i. Hence there are km

ancillas in total, each of which can be labelled as (i, j) with i ∈ [m] (we use [x] to denote the

set {1, · · · , x}) being the index of the register and j ∈ [k] being the index of the ancilla within

the register. For each register i we then impose a Hamiltonian H(i) which ferromagnetically

couples every pair of qubits in the register. Precisely, H =
∑m
i=1H

(i) is defined with each

H(i) having the form

H(i) =
∑

1≤s<t≤k

∆

2(k − 1)
(I − Zi,sZi,t). (4)

Here in Equation 4 the operator Zi,j acts on the ancilla qubit (i, j). Accordingly, the per-

turbation V =
∑m
i=1 V

(i) consists of the terms that couple each register of ancillas with the

corresponding qubits that the σi,j terms act on:

V (i) =

k∑
j=1

λi,jσi,j ⊗Xi,j . (5)

Note that the gadget Hamiltonian considered here is slightly different from the original con-

structions [18, 21] in that the spectral gap ∆ is introduced in H(i) in Equation 4 and λi,j
are coupling coefficients that are assigned such that the effective low energy Hamiltonian of

H̃ calculated using perturbation theory in Equation 1 gives rise to the target Hamiltonian in

Equation 3.

The spectrum of each H(i) is easy to find: the subspace of states with j qubits in |1〉
state has energy Ej = j(k−j)

k−1 ∆. The ground state subspace of each register of ancillas is

L(i)
− = span{|0〉⊗k, |1〉⊗k}. The gap between the ground state subspace and the first excited
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subspace is ∆. The perturbation terms V (i) break the degeneracy of L(i)
− and are set up such

that the perturbed subspace approximates the spectrum of Heff closely. If one applies the self

energy expansion (Equation 1) to the gadget Hamiltonian defined according to Equations 4

and 5, it is apparent that at any order r ≤ k, Tr is proportional to projection Π− onto L−,

since the only r-step transitions under V that non-trivially contribute to Tr are the ones that

start from |0〉⊗k (resp. |1〉⊗k) and return to |0〉⊗k (resp. |1〉⊗k). At the k-th order, if k is odd,

then Tk consists of only a linear combination of Htarg,i terms, since only k-step transitions

that goes from |0〉⊗k (resp. |1〉⊗k) to |0〉⊗k (resp. |1〉⊗k). If k is even, then Tk consists of

terms proportional to Htarg,i as well as a term proportional to Π−. Substituting the H and

V in Equations 4 and 5 into Equation 1 leads to a self energy of the form

Σ−(z) = γΠ− +

m∑
i=1

Htarg,i ⊗ΠX,i︸ ︷︷ ︸
Heff

+Tk+1 + Tk+2 + · · · (6)

where γ = γ1 + · · · + γk is a scalar which sums over all contributions up to the k-th order

and ΠX,i = |0〉〈1|⊗k + |1〉〈0|⊗k acts on the i-th register, where we will show that each γi is

efficiently computable by Algorithm 2 in Section 4.2. The remaining terms Tk+1 and so on

are error terms that should be suppressed to below ε by assigning ∆ to be appropriately large.

3 Improving and optimizing gadget constructions

From the construction presented in the previous section, note that here the energy gap ∆ is a

crucial parameter that decides how accurate the perturbation theory is when applied to the

gadget Hamiltonian H + V . The larger ∆ is, the more accurately the gadget Hamiltonian

captures the spectrum of the target Hamiltonian in its low energy subspace. However, larger

values of ∆ means more challenges for realizing the gadget Hamiltonian on an experimental

system. This is because realizing the gadget Hamiltonian on a physical quantum system

requires setting the coupling strengths of both the unperturbed Hamiltonian H, which is of

the magnitude of ∆, and that of the perturbation V , whose strength could differ substantially

from that of H. In other words, the requirement for variability in coupling strength becomes

more stringent as ∆ increases. For a system of n qubits with poly(n) many-body terms,

typically ∆ scales as poly(n) [19], which is unphysical for physical systems whose interactions

are local.

The scaling of ∆ as poly(n) is one of the main reasons for hesitation among researchers

in using perturbative gadgets for reducing many-body interactions to two-body ones, thus

motivating various non-perturbative constructions for special cases [25, 26, 27]. This situation

can be remedied for perturbative gadgets by either insisting on assigning ∆ independent

of system size at a cost of extensive error O(nε) [20], or substituting the current gadget

construction with one that requires arbitrarily weak interaction strengths at a cost of poly(ε−1)

qubits [35]. Whichever gadget construction one wishes to adopt, there is always a practical

optimization question: what is the minimum value of ∆ such that the error does not exceed

ε? In other words, what is the value of ∆ for which the error ‖Σ−(z)−Heff‖2 is precisely ε?

This is the question that we address in this paper, as minimizing ∆ is essentially minimizing

the physical resource needed for realizing the gadget Hamiltonian.
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Yes

Input

Target Hamiltonian Htarg Choose spectral gap ∆

Form gadget Hamiltonian
H̃ = H + V (Sec. 2)

Apply perturbation theory
(FD, Sec. 2; SW, Sec. 5)

Efficiently compute error bound ≤ ε?

Output

Optimized gad-
get Hamiltonian

No

Fig. 1. The flow chart of optimizing the gadget Hamiltonian considered in this paper. We start

by choosing a value ∆ based on simple but loose error bounds that are dependent on ε, such

as Equation 7. Then we construct the gadget Hamiltonian and use perturbation theory to find
the effective Hamiltonian up to a certain order (FD stands for Feynman-Dyson series, which is
introduced in Section 2 and SW stands for Schrieffer-Wolff transformation, which will be introduced

in Section 5). The norm of terms from the order of Hamiltonian on to infinite order are bounded
from above by efficiently computed error bounds. Techniques for producing tight error bounds

without extensive computation is the central theme of the present paper.
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In Figure 1 we present a flow chart of this optimization process. A challenge one has to

face is then how to compute the error ‖Σ−(z)−Heff‖2, which is generally hard (on a classical

computer) simply due to the exponential size of the Hilbert space as system size grows. We

pursue a different strategy, which is to seek an upper bound of the form ‖Σ−(z) −Heff‖2 ≤
‖Tk+1‖2 + ‖Tk+2‖2 + · · · , without requiring exponential-size computation in the number of

qubits. In [24] we use the upper bound

‖Tr‖2 = ‖V−+(G+V+)r−2G+V+−‖2 ≤
1

|z −∆|r−1
‖V−+‖22 · ‖V+‖r−2

2 (7)

which appears to be tight [24, Figures 2 and 4] for the case where m = 1 i.e. there is only one

target term to be reduced and one is using gadget constructions from [19]. However, when

m > 1 and multiple gadgets are applied, the upper bound in Equation 7 becomes loose [24,

Figure 3b]. This is because when perturbation theory of multiple ancilla qubits are concerned,

the crude upper bound in Equation 7 could no longer capture the fine-grained details of the

matrix product involved in Tr. Therefore we are also unable to use Equation 7 for finding

tight error bounds for the gadget constructions presented in Section 2, since we are dealing

with registers of ancillas of size k > 1.

We will show that by considering the more fine-grained details of matrix multiplication

in Tr and exploiting the structure of the construction in Equations 4 and 5, it is possible to

find a tight upper bound to ‖Tr‖2 in O(mr) time, which is polynomial in m for fixed r, thus

enabling efficient optimization of ∆ in the gadget construction.

As a final remark of the section, we note that it suffices to consider Tr for fixed r even

though in the perturbation series r goes to infinity. Let λ = maxi,j λi,j with λi,j defined in

Equation 5. Our goal for the gadget construction is that at k-th order we have the target

Hamiltonian in Equation 3 with coupling coefficients ci = O(1), while the terms at (k+ 1)-st

order should be O(ε). This implies that roughly λk/∆k−1 = O(1) and λk+1/∆k = O(ε),

which implies that ∆ = O(ε−k) and λ = O(ε−(k−1)). Hence ‖Tr‖2 = O(λr/∆r−1) = O(εr−k).

Assuming that the locality of target Hamiltonian k is fixed, as r increases the norm of ‖Tr‖2
quickly becomes small enough to justify using the crude bound in Equation 7 on the remaining

terms of the self-energy expansion. Therefore it suffices to consider r up to k + d for some

fixed d such that the total magnitude of the remaining sum is O(εd). For r > k+d, the upper

bound becomes sufficiently small (assuming ‖Tr‖∞ → 0 as r → ∞), we use Equation 7 to

bound the terms from r = k + d+ 1 to infinity.

4 Efficiently computed tight error bound

In this section we present the details of our techniques. Section 4.1 introduces the notions that

we use for reducing the amount of computation needed for the upper bound. These notions

(such as “configuration” and “reduced configuration” as will be discussed in Section 4.1) are

essentially simplified representations of H eigenstates. In Appendix 1 we provide an explicit

example for calculating the norm of T2 that illustrates the uses of these notions, hoping that

the presentation be as instructive to the reader as possible. In Section 4.2 we present general

algorithms for computing an upper bound to ‖Tr‖2 for any fixed r.

In Section 4.3 we prove that in the case where the terms Htarg,i pairwise commute, our

algorithms in fact computes the exact value of ‖Tr‖2. We accomplish this by first developing
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further properties of the notions that are introduced in Section 4.1, and then show how the

algorithms introduced in Section 4.2 use these properties to effectively collect all the terms

that contribute to ‖Tr‖.

4.1 Reducing the space of summation to polynomial size

For simplicity from here on we let λi,j = c
1/k
i ≡ λi in Equation 5 and define the vector

λ = (λ1, λ2, · · · , λm). Let E(i)(j) = j(k−j)
k−1 ∆ ≡ Ej be the energy level of H(i) in Equation

4 with j out of k ancillas in |1〉 state. For a k-local target Hamiltonian of m terms the

computational basis states of the km ancilla qubits can be represented by km-bit strings of

the form s1s2 · · · sm with each si being a k-bit string describing the state of the ancilla qubits

in the i-th register. For any φ ∈ {0, 1}km, we use the notation E(φ) = 〈φ|H|φ〉 to represent

the energy of the ancilla state |φ〉. Recall that H =
∑m
i=1H

(i) and the H(i) terms pairwise

commute. As an explicit connection between the E(φ) and E(i)(j) notations, defining h(s)

as the Hamming weight of a string s, we have

E(φ) =

m∑
i=1

E(i)(h(si)). (8)

In order to gain more insights about the structure of the r-th order term Tr in Equation

2, we insert resolutions of identity I =
∑
φ∈{0,1}km |φ〉〈φ| between the V and G operators in

Tr. From Equation 2 we get

Tr =
∑

φ0,φ1,··· ,φr∈{0,1}km

(
〈φ0|V |φ1〉

1

z − E(φ1)
〈φ1|V |φ2〉 · · ·

· · · 1

z − E(φr−1)
〈φr−1|V |φr〉

)
⊗ |φ0〉〈φr|.

(9)

Note that in the basis of |φ〉 states, each matrix block 〈φ0|Tr|φr〉 is a sum of 2kmr terms, which

is an enormous amount of computation. However, we note that a majority of summants are

in fact zero. In order for a sequence of states (φ0, φ1, · · · , φr) to have non-zero contribution

to the sum in Equation 9, there are certain conditions that must be satisfied:

1. Because the self-energy Σ−(z) is restricted to the low energy subspace L− of the un-

perturbed Hamiltonian H, both |φ0〉 and |φr〉 must be restricted to L− =
⊗m

i=1 L−.i =

span{|0k〉, |1k〉}⊗m. In other words, they must be of the form s1s2 · · · sm with each

si ∈ {0k, 1k};

2. Because each V (i) contains only single Pauli X operators acting on the ancilla qubits,

for any pair of ancilla states |φi〉, |φj〉, the matrix block 〈φi|V |φj〉 is nonzero iff φi and

φj differ by one and only one bit;

3. Because the V+ and G+ terms in Tr are projections onto the high energy subspace L+

of H, all the intermediate states φ1 through φr−1 must also belong to L+. In other

words, they must not be of the form s1s2 · · · sm with each si ∈ {0k, 1k}.

Conditions 1 and 3 are reminiscent of Goldstone’s theorem in quantum many-body physics

[30, 36], where all non-zero contributions to the spectral difference between the perturbed
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and the unperturbed systems is a summation of “connected diagrams” i.e. the state with

no particles or holes present can never occur as an intermediate state because the resulting

matrix element will contain disconnected parts. For condition 2 above if φi and φj differ at

bit which belongs to the p-th register of k ancilla qubits, then

‖〈φi|V |φj〉‖∞ = λp. (10)

Let Wr be the set of sequences (φ0, φ1, · · · , φr) that satisfy the above three conditions. Then

the summation in Equation 9 can be replaced by a summation overWr. The following Lemma

states that to find an upper bound to ‖Tr‖2 from Equation 9 it suffices to consider a subset

of sequences with fixed φ0 = 0km, which is a string of km zeros. For convenience from here

on we use “φ ∈ L−” to as a shorthand for “φ ∈ {0, 1}mk : |φ〉 ∈ L−”.

Lemma 1 For the r-th order term Tr as written in Equation 2, we have

‖Tr‖2 ≤
∑
φr∈L− ‖〈0

mk|Tr|φr〉‖∞. (11)

Proof. Let the operator Si =
⊗k

j=1Xi,j , recalling the subscript notation “i, j” means the

j-th ancilla in the i-th register (Equation 5). Then for a state |φ〉 of the mk ancillary qubits,

Si acting on |φ〉 flips all the bits in the i-th register. From Equation 5 it is clear that for any

sequence of Si operations

S = Si1Si2 · · ·Si` (12)

with i1, i2, · · · , i` ∈ [m], we have SV S = V . Additionally, the set of all ancilla states |φ〉 ∈ L−
with φ ∈ {0, 1}mk is invariant with respect to Si for any i. Finally, substituting V with SV S

in Equation 9 leads to

〈φ0|STrS|φr〉 = 〈φ0|Tr|φr〉. (13)

Because we could express any φ ∈ L− as |φ〉 = S|0mk〉 for some S with the form in Equation

12, we could further write Tr as

Tr =
∑

φr∈L−

∑
S

〈0km|STr|φr〉S|0km〉〈φr|

=
∑

φr∈L−

∑
S

〈0km|TrS|φr〉S|0km〉〈φr|

=
∑

φr∈L−

〈0km|Tr|φr〉 ⊗

(∑
S

S|0km〉〈φr|S

)
︸ ︷︷ ︸

(∗)

.

(14)

Here the summation
∑
S is over all operators of the form in Equation 12. Going from the

first line to the second we have used Equation 13. Going from the second line to the third is

a substitution of variable |φr〉 → S|φr〉. Note that the term (∗) in Equation 14 is a sum of

projectors that are orthogonal to each other (i.e. each pair multiply to zero), implying that

the norm of (∗) is always one. Therefore to find an upper bound to ‖Tr‖2 from Equation 9

it suffices to consider a fixed φ0 = 0km, which is a string of km zeros (For convenience from

here on we use “φ ∈ L−” to as a shorthand for “φ ∈ {0, 1}mk : |φ〉 ∈ L−”):

‖Tr‖2 ≤ ‖Tr‖∞ ≤ max
φ0∈L−

∑
φr∈L−

‖〈φ0|Tr|φr〉‖∞ =
∑

φr∈L−

‖〈0mk|Tr|φr〉‖∞. (15)
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Here in Equation 15 the first ≤ uses ‖Tr‖∞ = ‖Tr‖1 implied by the hermiticity of Tr and the

property ‖Tr‖22 ≤ ‖Tr‖1 · ‖Tr‖∞, where ‖ · ‖1 is the 1-norm of a matrix defined as “maximum

column sum” ‖A‖1 = maxj
∑
i |〈i|A|j〉|. The second ≤ uses the definition of the ∞-norm.

The final equality in Equation 15 comes from the invariance property described in Equation

14. �

We further partitionWr into subsets according to different combinations of φ0 and φr. Denote

Wr(φ0, φr) as the subset of sequences in Wr that starts from φ0 and ends at φr. For a given

sequence (φ0, φ1, · · · , φr), let pi ∈ [m] be the index of the ancilla register that contains the

bit where φi differs from φi−1. Using Equation 10, the norm of each matrix block 〈φ0|Tr|φr〉
can be bounded from above by

‖〈φ0|Tr|φr〉‖∞ ≤
∑

Wr(φ0,φr)

λp1 ·
1

|z − E(φ1)|
· λp2 · · ·λpr−1

· 1

|z − E(φr−1)|
· λpr︸ ︷︷ ︸

≡tφ(φ0,··· ,φr)

(16)

where the weight function tφ describes the contribution, or the “weight” of a specific sequence

in the sum. Regardless of the restriction to Wr, evaluating the upper bound in Equation 16

with brute-force enumeration of all possible intermediate steps φ1, · · · , φr−1 would still lead to

a computational cost that is exponential in the number of registers m. However, by exploiting

the structure of the gadget Hamiltonian we could reduce it to poly(m) for any fixed order

r of perturbation theory. Such reduction is accomplished by introducing a sequence of two

mappings c and c̃ (Figure 2) which we will introduce in the following discussion.

Definition 1 (Configuration) For a state |φ〉 with φ = s1s2 · · · sm where each si describes

the state of a k-qubit register, we define the vector c(φ) = (j1, j2, · · · , jm) with ji = h(si) as

the configuration of a state |φ〉. Each element ji of the configuration corresponds to energy

level E(i)(ji) of the term H(i).

Previously we have defined the set Wr as the set of r-step sequences (φ0, φ1, · · · , φr) that

contribute non-trivially to Tr. Since each bit string φ is associated with a configuration c, each

sequence of ancilla states (bit strings) is naturally associated with a sequence of configurations

(c0, c1, · · · , cr). Similar to Wr, we define Wc
r as the set of r-step sequences (c0, c1, · · · , cr)

that correspond to the r-step sequences in Wr. We then let Wc
r (c0, cr) be the set of r-step

configuration sequences that starts from specific values of c0 and cr. With the Definition 1

we could rewrite the sum in Equation 16 as

‖〈φ0|Tr|φr〉‖∞ ≤
∑

Wc
r (c0,cr)

∑
c(φi)=ci

tφ(φ0, · · · , φr) =
∑

Wc
r (c0,cr)

tc(c0, · · · , cr) (17)

where tc(c0, · · · , cr) is the total weight of all sequences (φ0, · · · , φr) for which c(φi) = ci.

Note that unlike Equation 16 which sums over states that dwell in a space of dimension

2mk, the summation in Equation 17 sums over configurations, which dwells in a space of

dimension O(km). This is an exponential reduction with respect to k, but the dimension is

still exponential in m nonetheless. To reduce the dimension further, we first note that the

energy of a configuration is invariant with respect to permutations of the ancilla registers.

We would like to exploit this permutation invariance by restricting to a class of configuration

vectors that are sorted. Specifically, we put forward the following definition.
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L−|anc

H|anc

|φ〉anc = |s1s2 · · · sm〉 ji = h(si)

C−

c = (j1, j2, · · · , jm)

C

sorting

C̃−

c̃

C̃

Fig. 2. Relationship between elements of the various spaces that are relevant to our discussion in

Section 4.1. We use the notation |anc to represent the restriction of the Hibert spaces on which

the gadget Hamiltonian acts to the ancilla registers. Here the si’s are k-bit strings, and h(·) is
the Hamming weight of a string. We highlight the subspaces (or subsets) that correspond to the

low energy subspace of the unperturbed Hamiltonian H. C− consists of all the configurations of

ancilla states in L−|anc and C̃− consists of the reduced configurations of those in C−.

Definition 2 (Reduced configuration) For a configuration c as in Definition 1, we define

the reduced configuration of c, denoted as c̃(c), as the vector obtained by sorting a configu-

ration c in non-decreasing order.

Then by definition any set of configurations that differ by only permutations of the ancilla reg-

isters share the same reduced configurations. With an elementary inductive argument we can

show that while there are O(km) configurations, there are only O(mk) reduced configurations

[37].

Since each sequence of configurations (c0, c1, · · · , cr) has a corresponding sequence of

reduced configurations (c̃0, c̃1, · · · , c̃r), we define W̃c
r as the set of reduced configuration

sequences derived from all sequences of configurations in Wc
r . We then let W̃c

r (c̃0, c̃r) be

the set of r-step configuration sequences that starts from specific values of c̃0 and c̃r. The

sum in Equation 17 could then be further rewritten as

‖〈φ0|Tr|φr〉‖∞ ≤
∑

W̃ c
r (c̃0,c̃r)

∑
c̃(ci)=c̃i

tc(c0, · · · , cr) =
∑

Wc
r (c0,cr)

t̃c(c̃0, · · · , c̃r) (18)

where t̃c(c̃0, · · · , c̃r) sums over all sequences (c0, c1, · · · , cr) for which c̃(ci) = c̃i. Figure

2 summarizes the relationship between the space of H eigenstates (restricted to the ancilla

qubits), configurations and reduced configurations.

Let C̃− be the set of reduced configurations corresponding to basis states in L−. Then

since for each ancilla register the low energy subspace is spanned by states with 0 or k qubits

in |1〉 state, we have

C̃− = {i ∈ [m]|(k, k, · · · , k︸ ︷︷ ︸
i times

, 0, 0, · · · , 0)}. (19)

This property will become useful in our later discussion of Algorithm 2 in Section 4.2. Com-

bining Lemma 1 and Equation 18 yields an upper bound to ‖Tr‖2 with fixed c̃0 = (0, 0, · · · , 0)
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as

‖Tr‖2 ≤
∑

c̃r∈C̃−

∑
W̃c
r (c̃0,c̃r)

t̃c(c̃0, c̃1, · · · , c̃r) (20)

with the function t defined in Equation 18. Equation 20 is the basis of our main algorithms

for finding an upper bound to ‖Tr‖2 to be presented in Section 4.2. In order to illustrate the

definitions and their properties introduced in this section, in Appendix 1 we present a detailed

example showing the procedure for estimating ‖T2‖2. The algorithms for general ‖Tr‖2 are

discusssed in the subsequent Section 4.2.

4.2 Algorithm for computing the upper bound

An upper bound to the right hand side of Equation 20 can be efficiently evaluated and

expressed using monomial symmetric polynomials in the λi coefficients [28]. A monomial

symmetric polynomial mb(x1, x2, · · · , xn) =
∑
π x

b1
π(1)x

b2
π(2) · · ·x

bk
π(k) where b ∈ Nk is the par-

tition of the symmetric polynomial and π : [n] 7→ [k] is an arrangement of k elements among

n elements. In order to address the combinatorics involved in summing over c̃ sequences, we

also need a (k + 1)× (k + 1) matrix M with element Mij being the number of possible ways

to cause a transition from an H eigenstate with energy Ei to an eigenstate with energy Ej by

one application of the perturbation V . For the unperturbed Hamiltonian defined according

to Equation 4, we have

Mij =

 i if j = i− 1
k − i if j = i+ 1
0 otherwise.

(21)

With the above definition in place, here we present a simple method for evaluating the

sum in Equation 18. Consider a fixed sequence of reduced configurations c̃0, c̃1, · · · , c̃r with

c̃0 = (0, 0, · · · , 0). We compute w = t̃c(c̃1, c̃2, · · · , c̃r), the term in Equation 18 corresponding

to c̃0, c̃1, · · · , c̃r, by Algorithm 1, which can be considered as a procedure for computing

the symmetric polynomial that is an upper bound to the right hand side of (22) for general

r. The discussion in Appendix 1 may be used as an example for bounding the second order

termb.

In Algorithm 1, we assume (step 1) that c̃0 is the all-zero vector, as a consequence of the

discussion that leads to Equation 15. Then in step 2 we check if the input sequence of reduced

configurations would actually produce a non-zero contribution to Tr by examining the three

criteria listed in Section 4.1 after Equation 9. Step 2a, 2b and 2c examines violation of each

of the three criteria respectively. If any of the criteria is violated, return w = 0 since the input

sequence does not contribute non-trivially to Tr. Step 3 introduces the data structure used

for representing a monomial symmetric polynomial, which includes 1) a partition vector b, 2)

a reduced configuration c̃ as given by the input sequence and 3) an injective partial function

b From (A.3) in Appendix 1 we can see that M01 = 3. The sequences in (A.3) give rise to the term whose
norm is 3(λ2

1 + λ2
2) · 1

z−E1
, which can be interpreted as a symmetric polynomial (recall that we have fixed

c̃0 = (0, 0))
1

|z − E1|
· Ω1Ω2m(2)(λ1, λ2) =

∑
c̃1, c̃2 such that

(c̃0,c̃1,c̃2)∈W̃c
2

t(c̃0, c̃1, c̃2) (22)

with Ω1 = M01 = 3 and Ω2 = M10 = 1. Note that the right hand side of (22) matches with that of Equation
20 for r = 2.
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Algorithm 1 : w =WalkBound(c̃1, c̃2, · · · , c̃r)

1. Let c̃0 = (0, 0, · · · , 0︸ ︷︷ ︸).
2. Check if the following holds:

(a) c̃r /∈ C̃−;

(b) there is any pair of reduced configurations c̃i = c̃i+1.

(c) any of the reduced configuration c̃i with i ∈ [r − 1] satisfies n(c̃i) /∈ N+;

If either of the conditions hold, w = 0 and return.

3. For each i = 0, · · · , r, introduce a partition vector bi of length at most i and a mapping
µi : c̃i 7→ bi that maps some elements of c̃i to bi. We would like each element in bi to
have a unique pre-image in ci, because intuitively, the q-th element of bi, denoted as
bi,q, represents how many times the register µ−1(bi,q) has been acted on by V during
the sequence.

4. Start from b0 = ∅ and µ0 = ∅. We scan from c̃1 through c̃r and update the µ and b
assignments in the following way. Suppose we have already computed µi and bi. Then
we find the element c̃i+1,s in c̃i+1 that differs from the corresponding element c̃i,s in c̃i.

(a) If c̃i,s is not in the domain of µi (implying c̃i,s = 0 since the s-th element of c̃
has not been modified by the algorithm before), let bi+1 = bi ∪ {bt} with bt = 1,
c̃i+1,s = 1 and µi+1 = µi ∪ {c̃i+1,s 7→ bt};

(b) If c̃i,s is in the domain of µi, then first let bi+1 = bi and µi+1 = µi and then
increment µi+1(c̃i+1) by 1;

(c) Compute and store Ωi = Mxy with x = c̃i,s and y = c̃i+1,s.

5. Return w(c̃1, c̃2, · · · , c̃r−1) =
(

Πr−1
i=1 |z − E(c̃i)|−1

)
(Πr

i=1Ωi)mbr (λ1, λ2, · · · , λm).
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µ : c̃ 7→ b. The partition b is needed for computing the symmetric polynomial mb(λ), while

c̃ and µ are needed for guiding the computation of b. As shown in step 4, depending on

how the reduced configuration changes from the current i-th step to the (i + 1)-st, the data

structure for the new step is updated. Because at this point of the algorithm c̃i and c̃i+1 differ

by exactly one element (step 2 has excluded all invalid sequences of reduced configurations),

what matters is then the position of the differing element, which we call c̃i,s. There are two

possibilities, each handled by step 4a and 4b. Recall that the value of each element in a

reduced configuration stands for the energy level of an ancilla register. Making a transition

from energy level x = c̃i,s to y = c̃i+1,s induces a combinatorial factor Mxy which is handled

in step 4c.

The steps for computing µr and br takes O(r) time. In the final step, evaluating the

symmetric polynomial in w takes O(mr) time. Hence for a fixed r, the total time needed for

computing the upper bound w for a fixed sequence of reduced configurations is polynomial in

m. We outline the algorithm for computing the tight error bound in Algorithm 2. Recall the

definition of λ at the beginning of Section 4.1.

Algorithm 2 : τr =PerturbBound(r,k,λ,M)

1. If r ≥ k, compute integers p = br/kc and q = r − p. Otherwise let p = 0, q = 0.

2. If q is odd, let γr = 0. Otherwise, compute

γr =
∑

c̃1, · · · , c̃r−1 such that

(c̃0,··· ,c̃r−1,c̃0)∈W̃c
r

WalkBound(c̃1, · · · , c̃r−1, c̃0). (23)

3. If r ≥ k, then for each i from 1 to min{p,m}

(a) Let c̃r = (k, k, · · · , k︸ ︷︷ ︸
i times

, 0, 0, · · · , 0︸ ︷︷ ︸
m− i times

);

(b) Compute γi,r =
∑

c̃1, · · · , c̃r−1 such that

(c̃0,··· ,c̃r−1,c̃r)∈W̃c
r

WalkBound(c̃1, · · · , c̃r−1, c̃r).

Otherwise let γi,r = 0 for all i.

4. Return τr = γr +
∑min{p,m}
i=1 γi,r.

Algorithm 2 essentially computes the right hand side of Equation 20. Step 1 computes

parameters p and q that are relevant to the the general structure of Wr introduced in the

beginning of Section 4.1. Recall the three criteria for sequences (φ0, φ1, · · · , φr) in Wr: φ0

and φr must be of the form s1s2 · · · sm with each si ∈ {0k, 1k} while φ1, · · · , φr−1 must not be

of this form and φi, φi+1 must differ by one and only one bit for i = 0, · · · , r − 1. For r < k,

clearly Wr could only contain sequences where φ0 = φr, resulting in Tr being proportional to

the identity operator in L− with the proportional constant being γr (Equation 6). For r ≥ k,

it is then possible that φr = s1s2 · · · sm with at most p = br/kc substrings si = 1k. Therefore



Y. Cao and S. Kais 793

one needs to also take sequences with these φr possibilities into account. Step 2 computes the

magnitude of the term in Tr that is proportional to identity in the low energy subspace L−,

by summing over all sequences of reduced configurations that starts from c̃0 and ends at c̃0.

For r ≤ k, the γr computed here is precisely the leading coeffcients γr in Equation 6. Looping

over all viable sequences (c̃0, c̃1, · · · , c̃r−1, c̃0) induces O(mk(r−1)) in the computational cost.

Step 3 completes the remainder of the outer summation in Equation 20 over the space C̃−
for c̃r. In the case where r < k this step is entirely skipped and there will be no γi,r values

computed. There are in total at most m iterations in the step and each iteration sum over

at most O(mkr) sequences (c̃0, c̃1, · · · , c̃r). Hence the total runtime of Algorithm 2 scales as

O(mkr+1), which is polynomial in the number m of ancilla registers.

4.3 Sharpness of the upper bound

Algorithm 2 is useful for computing the exact value of γr in Tr with r < k (Equation 6). Here

we show that for the special case where the terms Heff,i pairwise commute, Algorithm 2 also

allows one to efficiently compute the exact value of ‖Tr‖2 for any r ≥ k. This is a stronger

claim than the one implied by Equation 20 and we state it precisely in the following Theorem

2.

Theorem 2 Given the k-body target Hamiltonian Htarg =
∑m
i=1 ciHtarg,i as defined in

Section 2, the gadget Hamiltonian H̃ = H + V as defined in Equations 4 and 5, and the self

energy expansion Σ−(z) shown in Equation 6. If for any i, j ∈ {1, · · · ,m}, [Htarg,i, Htarg,j ] =

0, then for any r ≥ 2 and k ≥ 3, we have

‖Tr‖2 = PerturbBound(r,k,λ,M) (24)

where λ is defined in Section 4.1 and M is defined in Equation 21.

Before proving Theorem 2, we would like to first establish a few properties of the setsWr,

Wc
r , and W̃ c

r , which are introduced in Section 4.1. Recall that Wr is a collection of sequences

(φ0, φ1, · · · , φr) with each φi being a km-bit string which we write as s1s2 · · · sm, sj ∈ {0, 1}k.

Let ζ be a permutation that only involves permuting bits inside the same k-bit substrings

sj . In other words, for any bit b ∈ φ = s1s2 · · · sm, let j be such that b ∈ sj , then ζ(b) ∈ sj
always holds. We call such ζ a local permutation. For any sequence W = (φ0, φ1, · · · , φr), we

use the notation ζ(W ) = (ζ(φ0), ζ(φ1), · · · , ζ(φr)) to mean a sequence produced by applying

the permutation ζ onto the string at every intermediate step. We further say that for two

sequences A and B inWr, A ∼ B if there is a local permutation ζ such that A = ζ(B). Clearly

the relation ∼ is symmetric, reflexive and transitive. Hence ∼ is an equivalence relation that

partitionsWr into equivalence classes (Figure 3). Because local permutations do not alter the

Hamming weight of any k-bit substrings si, each equivalence class in Wr corresponds to an

element inWc
r since a configuration c is constructed based on Hamming weights of substrings

in a state |φ〉 (Figure 2). In the set Wc
r we could also define an equivalence relation ∼c based

on permutation over the ancilla registers i.e. the elements of the configuration vector. For A,

B inWc
r , we say A ∼c B if there is a permutation π over ancilla registers such that A = π(B).

Here the definition of π acting on a sequence of configurations is analogous to ζ on a sequence

of ancilla states and we omit the details. Since by definition reduced configurations are

obtained from sorting the elements of configurations, each equivalence class in Wc
r naturally

corresponds to a sequence of reduced configuration in W̃c
r .



794 Efficient optimization of perturbative gadgets

Proof of Theorem 2. Because we could express any φ ∈ L− as |φ〉 = S|0mk〉 for some S

with the form in Equation 12, we could write Tr as (cf. Equation 14)

Tr =
∑
S1,S2

〈0km|S1TrS2|0km〉S1|0km〉〈0km|S2 (25)

where the summation is over any pair of operators S1, S2 of the form in Equation 12. We

could further split Tr as a sum of diagonal and off-diagonal components:

Tr =
∑
S

〈0km|STrS|0km〉+
∑
S1

∑
S2 6=S1

〈0km|TrS1S2|0km〉S1|0km〉〈0km|S2

=
∑
S

〈0km|Tr|0km〉S|0km〉〈0km|S +
∑
S1

∑
S 6=I

〈0km|TrS|0km〉S1|0km〉〈0km|S1S

= 〈0km|Tr|0km〉
∑
S

S|0km〉〈0km|S +
∑
S 6=I

〈0km|TrS|0km〉
∑
S1

S1(|0km〉〈0km|S)S1

=
∑
S

OS,r ⊗ΠS

(26)

where going from the first line to the second we have used Equation 13 on the first term and

applied the substitution S2 = S1S to the second term. Going from the second line to the

third is merely a relocation of the summation so that the form of the expression can be more

easily recognized as the last line with

OS,r = 〈0km|TrS|0km〉 and ΠS =
∑
S′

S′(|0km〉〈0km|S)S′. (27)

Note that the projectors ΠS have unit norms and they are orthogonal, namely ‖ΠS1ΠS2‖ =

δS1,S2
. Since each Htarg,i is a tensor product of Pauli operators and we assume that the set

of Htarg,i terms pairwise commute, we have

‖Tr‖2 =
∑
S

‖OS,r‖2 =
∑
S

‖OS,r‖∞. (28)

Because the operator S flips all of the qubits in a certain subset F ⊆ {1, 2, · · · ,m} of ancilla

registers, the operator OS,r is proportional to
∑
i∈F Htarg,i (see Equation 3 for the definition

of Htarg,i). Therefore the problem of evaluating ‖Tr‖2 becomes the problem of finding the

coefficients for all of the OS,r operators. These coefficients are precisely given by Algorithm

2. We show that in fact the quantities γr computed at step 2 and γi,r computed at step 3b

satisfy
γr = ‖〈0km|Tr|0km〉‖∞
γi,r =

∑
S acting
on i regs

‖〈0km|TrS|0km〉‖∞. (29)

Here in the expression for γi,r the summation is over all S operators of the form in Equation

13 that acts non-trivially on i ancilla registers. The collection of all states of the form S|0km〉
acting non-trivially on i registers is then the set of all states |φ〉, φ ∈ {0, 1}km such that its

reduced configuration is c̃ = (k, · · · , k︸ ︷︷ ︸
i times

, 0, · · · , 0).
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(φ0, φ1, · · · , φr)

(φ′
0, φ

′
1, · · · , φ′

r)
ζ· · ·

ζ ′

ζ ′′
ζ ′′′

· · ·

· · ·

Wr

Wc
r

(c′
0, c′

1, · · · , c′
r)

(c0, c1, · · · , cr)

π

· · ·

(c̃0, · · · , c̃r)

· · ·

W̃c
r

Fig. 3. The hierarchy of equivalence classes that relates the sets Wr, Wc
r , and W̃c

r . Each light

shaded circle represents an equivalence class inside the set. For Wr, each node represents a

sequence and sequences in the same equivalence class are related by a “local permutation” (defined
formally in Section 4.3) ζ that only permutes qubits in the same ancilla register. Each equivalence

class in Wr then maps to a sequence of configurations in Wc
r , as shown with the dashed lines, and

each sequence of configurations in Wc
r also belongs to an equivalence class where the sequences

are related by permutation π of the elements of the configuration i.e. ancilla registers. Each

equivalence class in Wc
r then corresponds to an element in W̃c

r .

We show Equation 29 by taking advantage of the hierarchical structure of equivalence

classes in the sets Wr, Wc
r , and W̃ c

r (Figure 3). Observing Equation 9 and Equation 16

we see that tφ(φ0, φ1, · · · , φr) is in fact the norm of the |φ0〉〈φr| block of Tr. For a specific

|φr〉 = S|0km〉 for some S, we could evaluate ‖OS,r‖2 by summing over the weight tφ of

all sequences in Wr(0
km, φr). We partition the set Wr(0

km, φr) into equivalence classes as

discussed before and each equivalence class is associated with an element in Wc
r (c0, cr) with

c0, cr being the configurations of |0mk〉 and S|0mk〉 respectively. We could evaluate the

weight tc of a configuration sequence (c0, c1, · · · , cr) ∈ Wc
r as the sum of the weights of all

the elements in the equivalent class in Wr associated with it. Specifically, starting with any

sequence (φ0, · · · , φr) in the equivalence class, we could calculate the weight tc by summing

over all the local permutations ζ that produces the elements in the class:

tc(c0, c1, · · · , cr) =
∑
ζ

tφ(ζ(φ0), ζ(φ1), · · · , ζ(φr)). (30)

At each step of a sequence in Wr going from φi−1 to φi, suppose the number of |1〉 ancilla

qubits in the register pi changes from xi to yi. To evaluate Equation 30, we need to sum over

all possible ways in which a k-qubit state with Hamming weight xi can make a transition

to a state with Hamming weight yi through the action of the perturbation V . Because local

permutations do not change the weight of the sequence (φ0, · · · , φr), the weight tc(c0, · · · , cr)
differs from tφ(φ0, · · · , φr) by a multiplicative factor. With the specific construction of V in

Equation 5, such multiplicative factor can be calculated using Mij in Equation 21. Let

Ωi = Mxiyi , which is the number of possible ways for an ancilla register to go from a state
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with xi qubits in |1〉 to one with yi qubits in |1〉. Then we have

tc(c0, c1, · · · , cr) =

(
r∏
i=1

Ωi

)
tφ(φ0, φ1, · · · , φr) (31)

with (φ0, φ1, · · · , φr) being any sequence with the configuration of φi being ci. Similar to

Equation 30, we could also evaluate the weight of a sequence of reduced configuration by

summing over all permutations of m registers:

t̃c(c̃0, c̃1, · · · , c̃r) =
∑

π:[m]7→[m]

tc(π(c0), π(c1), · · · , π(cr))

=

r−1∏
i=1

1

|z − E(c̃i)|

r∏
i=1

Ωi
∑

π:[m]7→[m]

λπ(p1)λπ(p2) · · ·λπ(pr)︸ ︷︷ ︸
(∗)

. (32)

Here the term (∗) is essentially a monomial symmstric polynomial over the variables λ =

(λ1, λ2, · · · , λm). We can rewrite it as mbr (λ) with br being the partition of the symmetric

polynomial that keeps track of “how many registers have been acted on by how many times”.

For example, if there are three registers that are acted on (i.e. have one or more bits flipped

in them) once and one register acted on twice, in which case the order of perturbation theory

is r = 3× 1 + 1× 2 = 5, then br = (2, 1, 1, 1). In general one could compute br for a reduced

configuration sequence in W̃c
r .

From the arguments so far, it should be clear that Algorithm 1 computes t̃c correctly.

Because for any S of the form in Equation 12, S|0km〉 is the only state with its configuration

and reduced configuration, summing the weights of all sequences (0km, φ1, · · · , φr) with |φr〉 =

S|0km〉 in Wr is equivalent to summing the weights of all sequences of reduced configurations

with c̃ = (0, 0, · · · , 0) and c̃r = (k, · · · , k, 0, · · · , 0) with the number of elements equal to k

being the number of registers that S acts on. Therefore Equation 29 holds and the main

statement of the theorem is proven. �

5 Potential improvement using Schrieffer-Wolff transformation

Theorem 2 presented in Section 4.3 shows the sharpness of the bounds provided by our

algorithm for difference in norm ‖Σ−(z) − Heff‖2 between the self-energy Σ−(z) and the

effective Hamiltonian Heff in Equation 6. However, the quantity ‖Σ−(z)−Heff‖2 is itself an

upper bound to the actual spectral difference between the gadget and target Hamiltonian

(see Theorem 1 as well as numerics in Section 6) because ‖Σ−(z) − Heff‖2 ≤ ε is only a

sufficient condition that guatantees that the spectral difference is small, namely maxj |λj(H̃)−
λj(Htarg)| ≤ ε with λj(H) being the j-th lowest eigenvalue of H. In practice one typically

is more concerned about the spectral difference between the target and gadget Hamiltonian

than ‖Σ−(z)−Heff‖2. Therefore to obtain a tighter upper bound to the actual spectral error

than the norm difference ‖Σ−(z)−Heff‖2 based on Feynman-Dyson (FD) series, we need to

adopt a different formalism of perturbation theory. Here we consider using the Schrieffer-

Wolff (SW) transformation. As we will prove in this section, the SW series generates all the

terms in the FD series but also includes more terms that are beyond FD. In Section 6 we
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numerically show an improved bound for the spectral error based on the SW transformation

over ‖Σ−(z)−Heff‖2.

The Schrieffer-Wolff transformation is a formalism of degenerate perturbation theory

where the low energy effective Hamiltonian Heff is obtained from the perturbed Hamilto-

nian by a unitary transformation that makes the perturbed Hamiltonian block diagonal with

respect to low and high energy subspaces [31]. Using the same setting as Section 2, we con-

sider a perturbed Hamiltonian H̃ = H + V which is a sum of some unperturbed Hamiltonian

H that is diagonal in the basis we are assuming and a perturbation V = Vd+Vod that contains

both diagonal Vd and off-diagonal Vod components. The basic idea of SW transformation is

to find an anti-Hermitian operator R such that eR(H +V )e−R is block diagonal with respect

to the high energy subspace L+ and the low energy subspace L−. The effective low energy

Hamiltonian is then Heff = Π−e
R(H + V )e−RΠ− with Π− being the projector to L−.

We denote the adjoint operation of an operator Y onX as Ŷ (X) = [Y,X]. LetO be a super

operator that extracts the off-diagonal component of an operator. For example Vod = O(V ).

Let K be a super operator such that

K(X) =
∑
i,j

〈i|O(X)|j〉
Ei − Ej

|i〉〈j| (33)

where the |i〉, |j〉 states are the eigenstates of H and the summation is over any i, j such that

either |i〉 ∈ L−, |j〉 ∈ L+, or |i〉 ∈ L+, |j〉 ∈ L−.

The anti-Hermitian operator R admits an expansion R =
∑∞
n=1Rn. To ensure that the

transformed Hamiltonian eR̂(H + V ) = eR(H + V )e−R is block diagonal, the Rn terms are

given byc

R1 = K(Vod)

R2 = K(R̂1Vd)

Rn = −KV̂d(Rn−1) +
∑
j≥1 a2jKR̂2j(Vod)n−1

(34)

where am = 2m

m!Bm, Bm being the m-th Bernoulli number and

R̂k(Vod)m =
∑

n1+···+nk=m
n1,··· ,nk≥1

R̂n1
R̂n2
· · · R̂nk(Vod). (35)

The effective Hamiltonian Heff,SW is then given by

Heff,SW = H− + V− +

∞∑
r=2

∑
j≥1

b2j−1Π−R̂
2j−1(Vod)r−1Π−︸ ︷︷ ︸

Heff,r

(36)

where the coefficients bn = 2(22n−1)
(2n)! B2n. Note that the summation in Heff,r over j ≥ 1 is not

infinite, because from Equation 35 we see that R̂k(Vod)m = 0 if k > m. From the definition

of Heff,r it is clear that for any r, the r-th order effective Hamiltonian Heff,r must contain a

term of the form

− b1Π−V̂od(−KV̂d)r−2R1Π−. (37)

cIn [31] the authors consider a setting where H̃ = H + εV and R is a Taylor expansion R =
∑∞

n=1 Rnεn.
Here we absorb the ε parameter into V and replace ε with 1.
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There are of course other terms appearing at any order r and in [31] the authors have created

an elegant diagrammatic technique for enumerating the terms. However, here we focus on the

terms of the form in (37) (which correspond to tree diagrams that are simply a linear chain of

nodes) and show that at any order n, in some sense (37) is equivalent to the entire r-th order

term Tr in the FD series (Equations 1 and 2). We state it precisely in the following theorem.

Theorem 3 If H has a unique eigenvalue E0 that is below the cutoff between low and

high energy subspaces L− and L+, then for any r ≥ 2

Tr(E0) = −b1Π−V̂od(−KV̂d)r−2R1Π−. (38)

Here we write Tr explicitly as a function of z, namely Tr(z) = V−+(G+(z)V+)r−2G+V+−.

For simplicity, we denote the eigenstates of H as |i〉 with H|i〉 = Ei|i〉. To prove the statement

we first show that for any r ≥ 1,

(KV̂d)rR1 =
∑
i∈L−

∑
j1∈L+

· · ·
∑

jr+1∈L+

〈i|V |j1〉
1

Ei − Ej1
〈j1|V |j2〉 · · ·

· · · 〈jr|V |jr+1〉
(

1

Ejr+1
− Ei

|jr+1〉〈i|+
1

Ei − Ejr+1

|i〉〈jr+1|
)
.

(39)

We prove (39) inductively on r. The base case is r = 1, By straightforward calculation

KV̂dR1 =
∑
i∈L−

∑
j∈L+

∑
k∈L+

〈i|V |j〉 1

Ei − Ej
〈j|V |k〉

(
1

Ek − Ei
|k〉〈i|+ 1

Ei − Ek
|i〉〈k|

)
. (40)

The case for general k can be proved by similar calculations using the definitions of K and

Vd.

Proof of Theorem 3. Rewriting the projected operators V−+, G+ etc into a summation

over |i〉〈j| blocks, we have for example

V−+ =
∑
i∈L−

∑
j∈L+

〈i|V |j〉|i〉〈j|, G+(z) =
∑
i∈L+

1

z − Ei
|i〉〈i| (41)

and similar for V+ and V+−. Hence we could rewrite Tr(z) as

V−+(G+(z)V+)r−2G+(z)V+− =
∑
i∈L−

∑
j1∈L+

· · ·
∑

jr−1∈L+

∑
`∈L−

〈i|V |j1〉
1

z − Ej1
〈j1|V |j2〉 · · ·

· · · 1

z − Ejr−1

〈jr−1|V |`〉|i〉〈`|.

(42)

Using Equation 39 and Π− =
∑
i∈L− |i〉〈i|, we have

−b1Π−V̂od(−KV̂d)r−2R1Π− =
1

2

∑
i∈L−

∑
j1∈L+

· · ·
∑

jr−1∈L+

∑
`∈L−

〈i|V |j1〉
1

Ei − Ej1
〈j1|V |j2〉 · · ·

· · · 1

Ei − Ejr−1

(|`〉〈i|+ |i〉〈`|).

(43)

Comparing Equations 43 with 42 and the main equation (38) follows. �
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6 Numerical example

6.1 PerturbBound vs. Simple upper bound

Here we compare the tightness of bounds obtained by PerturbBound and simple upper

bounds (from the right hand side of Equation 7). Consider applying the gadget construction

in Section 2 on the 3-body target Hamiltonian is Heff = α1X1X2X3+α2X2Y4Z5 where α1 and

α2 are real coefficients (Figure 4b). The resulting gadget Hamiltonian is described in Figure

4a, which can be expressed in form of the general setting H̃ = H + V . Here the unperturbed

Hamiltonian H and perturbation V are defined as

H = H(1) +H(2), H(1) =
∆

4
(3I− Zu1

Zu2
− Zu2

Zu3
− Zu1

Zu3
)

H(2) =
∆

4
(3I− Zv1Zv2 − Zv2Zv3 − Zv1Zv3)

V = V (1) + V (2), V (1) = µ1(X1Xu1
+X2Xu2

+X3Xu3
)

V (2) = µ2(Y4Xv1 +X2Xv2 + Z5Xv3)

(44)

where spins with ui and vi labels belong to the two unperturbed subsystems. Here we let ∆

be orders of magnitude larger than µ1 and µ2 and keep the coefficients µ1 and µ2 as

µ1 =

(
α1∆2

6

)1/3

, µ2 =

(
α2∆2

6

)1/3

(45)

where α1 and α2 are parameters related to the low energy effective Hamiltonian (see Equation

49). In Figure 4c we explicitly partition the Hamiltonian in terms of H and V .

The low-energy subspace of the total Hamiltonian H̃ is then L− = L(1)
− ⊗L

(2)
− . Inspecting

the expressions H(1) and H(2) gives the low energy subspaces for each subsystem: L(1)
− =

span{|000〉u1u2u3
, |111〉u1u2u3

} and L(2)
− = span{|000〉v1v2v3 , |111〉v1v2v3}. For each subsystem

i ∈ {1, 2}, the subspaces of H(i) and their corresponding energies are

P0 = span{|000〉}, E0 = 0
P1 = span{|001〉, |010〉, |100〉}, E1 = ∆
P2 = span{|011〉, |101〉, |110〉}, E2 = ∆
P3 = span{|111〉}, E3 = 0.

(46)

In Figure 4d we show the spectrum of each subsystem. The matrix M defined in Equation

21 is also involved in the computation of the upper bound to ‖Tr‖. We could interpret M

from Figure 4d. One could regard Mij as the maximum, over all eigenstates of H in Pi,
number of possible transitions from a particular |u〉 ∈ Pi to an eigenstate in Pj . Precisely,

Mij = max
|u〉∈Pi

Card{|v〉 ∈ Pj |‖〈v|V |u〉‖ 6= 0} (47)

where Card{·} stands for cardinality (number of distinct elements) of a set. We could then

determine that

M =


P0 P1 P2 P3

P0 3
P1 1 2
P2 2 1
P3 3

 (48)



800 Efficient optimization of perturbative gadgets

where the row and column indices start from 0 because the subspaces P0, P1, · · · , have indices

that start from 0.

From Figure 4a and 4c we can see that the unperturbed system H essentially consists of

two identical 4-level systems with energy levels E0, E1, E2 and E3. This gives rise to in total

9 possible energy combinations.

With the matrix M worked out as in Equation 48, we could use the algorithm Walk-

Bound in Section 4.2 to find a tight upper bound for ‖Tr‖∞ at any order r. After a certain

order p, when the upper bound becomes less than the tolerance 10−8, we use Equation 7 to

bound the terms from p+ 1 to infinity.

Using the perturbation series in Equation (1) we could show that if we truncate the series

at the 3rd order, namely Σ−(z) = Heff+T4+T5+· · · , we have the effective 3-body Hamiltonian

Heff = α1X1X2X3 + α2X2Y4Z5 + γI (49)

with γ being the magnitude of the spectral shift. Here we let α1 = 0.1 and α2 = 0.2. Then

the entire Hamiltonian H̃ = H + V in Equation 44 is only dependent on a free parameter ∆.

In order to test our algorithm for bounding perturbative terms, we treat terms from 4th order

onward as errors in the perturbation series. This amounts to estimating ‖Σ−(z) − Heff‖2.

We could compute this value by explicitly computing Σ−(z) by its definition zI − (G̃−(z))−1

and then evaluating ‖Σ−(z) − Heff‖2. This method is inefficient since it requires inverting

an exponentially large matrix with respect to system size, but yields an accurate estimation

for the error ‖Σ−(z)−Heff‖2. We will use it as a benchmark for comparison with the upper

bound computed by the new algorithm developed here. As shown Figure 5, the upper bounds

computed by PerturbBound are tight with respect to the exact calculation. For the purpose

of comparison we also compute the error bound due to triangle inequality (see Equation 7).

We explicitly computed ‖V ‖2 (while in practice one may use some upper bound for ‖V ‖2
which could loosen the bound further but here for comparison we use the exact value) and

bounded ‖G+‖2 from above by 1/E1. Hence the simple bound of error terms from a certain

order to infinity based on Equation 7 becomes
∑∞
r=4 ‖V ‖r2/E

r−1
1 = ‖V ‖42/(E2

1(E1 − ‖V ‖2)).

When implementing our algorithm for the numerical example concerned in this section, we

compute τr = PerturbBound(r,λ,M) for r from 4 to a value p such that τp ≤ 10−20. Then

we resort to Equation 7 for computing an upper bound to ‖Tp+1 + Tp+2 + · · · ‖2.

The ultimate purpose for finding tight error bound in the perturbation theory is to find

lower assignments to ∆ while maintaining the spectral error between the target and the gadget

Hamiltonian within ε. As mentioned in Section 3, with an algorithm for computing an upper

bound to the spectral error we could find the optimal ∆ assignment based on this algorithm

by using binary search to find a ∆ such that the error bound is ε. In Figure 6 we show the

result of implementing such binary search for three means for estimating the spectral error:

1) crude upper bound based on geometric series described in Equation 7; 2) upper bound

computed using the algorithms presented in Section 4.2; 3) brute-force diagonalization of

both the target and gadget Hamiltonian to get the exact eigenvalues. The third option is

impractical for general quantum systems of many qubits due to the exponential size of the

Hilbert space, though it provides the exact spectral error. The first option is computationally

trivial but yields extremely large assignments of ∆ (Figure 6). Our algorithm strikes a balance

between the two cases by avoiding intense computation while generating ∆ assignments that
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Fig. 4. A numerical example for demonstrating our algorithm estimating the perturbative error.

(a) The 11-spin gadget Hamiltonian. Each node corresponds to a spin-1/2 particle and each edge
represents an interaction term in the Hamiltonian between two spins. (b) The target 3-body

Hamiltonian Heff = α1X1X2X3 +α2X2Y4Z5. (c) Rearranging and partitioning the system in (a)

according to the setting of perturbation theory used. Here each unperturbed system H(i) consists
of three ferromagnetically interacting spins. (d) Spectrum of each subsystem H(i) in (a), i ∈ {1, 2}.
Here each node represents an eigenstate of H(i). Nodes on a same horizontal dashed line belong

to the same energy subspace Pj . There is an edge (φ1, φ2) iff ‖〈φ1|V |φ2〉‖ 6= 0. For example, if we
consider this diagram as representing H(1), since V (1)|001〉u1u2u3 ∝ (|101〉+ |011〉+ |000〉)u1u2u3

we connect the |001〉 with the nodes representing |101〉, |011〉 and |000〉.
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∑∞

r=4 ‖V ‖r/Er−1
1

Spectral difference between Htarg and H̃|L−

Fig. 5. Comparison between the upper bounds computed using the PerturbBound and the norm

computed using (inefficient) explicit matrix-matrix multiplication. The “actual spectral error” in
this plot shows the maximum difference between the eigenvalues of Heff and their counterparts in

H̃, which are the energies of its 2N lowest eigenstates with N = 5 being the number of particles that

Heff acts on (Figure 4b). The actual spectral error is always lower than the error computed based
on ‖Σ−(z) − Heff‖2 because ‖Σ−(z) − Heff‖2 ≤ ε is only a sufficient condition that guarantees

the spectral difference between H̃ and Heff being within ε (see [28, Theorem 1]).
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Fig. 6. Comparison between the optimized ∆ based on crude error bounds using geometric series

(“simple upper bound” in Figure 5), the optimized ∆ based on the PerturbBound algorithm

presented in Section 4.2 and optimized ∆ based on spectral error between the target and the
gadget Hamiltonian computed by brute-force diagonalizing both Hamiltonians. Here we use the

target Hamiltonian in Figure 4b with α2 = 0.2 fixed and α1 varying from 0.1 to 0.6. It can be

observed that our algorithm significantly improves the assignments for ∆. The gap between the
brute force case and the PerturbBound case is due to the fact that ‖Σ−(z)−Heff‖2 ≤ ε is only

a sufficient condition that guarantees the spectral error to be within ε.

are orders of magnitude more practical than the first alternative.

6.2 Error bounds based on Feynman-Dyson (FD) and Schrieffer-Wolff (SW)

series

In Section 5 we showed that the Schrieffer-Wolff expansion includes more terms than Feynman-

Dyson series. Could one potentially improve estimation on the spectral error by adopting

Schrieffer-Wolff instead of Feynman-Dyson formalism? Here we show numerical evidence

that one indeed could signaficantly improve the error bound. Consider an example where the

target Hamiltonian is Htarg = αX1X2X3 with α = 0.1 and the gadget Hamiltonian H̃ = H+V

is constructed by adding three ancilla qubits u1, u2 and u3 and defining the Hamiltonians as

the following:

H =
∆

4
(3I− Zu1Zu2 − Zu1Zu3 − Zu2Zu3)

V = µ(X1Xu1
+X2Xu2

+X3Xu3
).

(50)
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where µ =
(
α∆2

6

)1/3

. Because Htarg is 3-body our effective Hamiltonian is truncated at the

third order and the remaining terms in the expansion are considered as error:

Σ−(z) =
3µ2

z −∆
Π− +

∆2

(z −∆)2
αX1X2X3 ⊗ (|000〉〈111|u1u2u3

+ |111〉〈000|u1u2u3
)︸ ︷︷ ︸

Heff=T1(z)+T2(z)+T3(z)

+ T4(z) + T5(z) + · · · .

(51)

Applying Schrieffer-Wolff transformation to the gadget Hamiltonian yields the low-energy

effective Hamiltonian

Heff,SW = b1Π−R̂1(Vod)Π−︸ ︷︷ ︸
2nd order

+ b1Π−R̂2(Vod)Π−︸ ︷︷ ︸
3rd order

+ b1Π−R̂3(Vod)Π− + b3Π−R̂
3
1(Vod)Π−︸ ︷︷ ︸

4th order

+ · · · .

(52)

Because the ground state energy of the unperturbed Hamiltonian is 0, the zeroth order term

in the expansion (52) vanishes. From Equation 50 the projection of V in the low energy

subspace L− is 0, thus the first order term also vanishes. The second order term could be

rearranged as −b1Π−V̂odR1Π−, which according to Theorem 3 is equivalent to the second

order term in the Feynman-Dyson series in Equation 51 for z → 0. At third order, Schrieffer-

Wolff expansion gives b1Π−V̂odKV̂dR1Π−. Applying Theorem 3 with r = 3 we see that this

is equivalent to the third order term in the Feynman-Dyson series. Hence up to third order,

both formalisms of perturbation theory match up. However, at the fourth order, which is the

leading term for the error, difference between the two formalisms starts to show. From the

recursive relationship for Rn in Equation 34 we see that R3 contains a term −KV̂d(R2). So

the fourth order term in Equation 52 must contain a term

− b1Π−V̂od(−KV̂d(R2))Π− = −b1Π−V̂od(−KV̂d)2R1Π−, (53)

which is equivalent to the entire fourth-order term of the Feynman-Dyson series (Theorem 3

with r = 4). The other terms at the fourth order in Equation 52 are beyond Feynman-Dyson

series. For example the second term at the fourth order b3Π−R̂
3
1(Vod)Π− corresponds to

virtual transitions that switches between L− and L+ multiple times. This violates conditions

1 and 3 in Section 4.1 for sequences (φ0, · · · , φr) that contribute non-trivially to Tr, which

results in such terms being excluded from the Feynman-Dyson series.

For varying values of ∆, we calculate the error estimates based on both formulations of

perturbation theory and compare them in Figure 7. We have also explicitly diagonalized

the target and gadget Hamiltonian and plotted the difference between the low-lying energy

levels. The results in Figure 7 shows that Schrieffer-Wolff perturbation theory clearly yields

tighter error bounds. The error bounds using Schrieffer-Wolff transformation in Figure 7 are

computed by explicit enumeration and evaluation of the terms in the perturbative expansion

following Section 5, which is clearly not scalable due to the exponential size of the Hilbert

space. The algorithms that we have developed in Section 4.2 could efficiently bound only a

subset of the terms in the Schrieffer-Wolff series, namely those of the form in Theorem 3.

Bounding the remaining terms in the Schrieffer-Wolff series with similar effectiveness as our

algorithms for Feynman-Dyson series requires additional insight and is beyond the scope of

our present study.
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Fig. 7. Comparison between the error bounds computed based on Feynman-Dyson series (Section

4) and Schrieffer-Wolff transformation (Section 5). Here we also show the maximum difference

between the lowest 23 = 8 energy levels of the gadget Hamiltonian and the corresponding level of
the target Hamiltonian.

7 Summary and conclusion

Perturbative gadgets are the only technique available (as of now and as far as the authors

are concerned) for reducing arbitrary many-body Hamiltonian to two-body ones. One of

the disadvantages of this technique is the large energy gap ∆ needed in the construction of

the gadget Hamiltonian, rendering it unnatural in the context of physical systems. Here we

address this issue by considering the optimization problem of finding the minimum value of

∆ that yields error no greater than a prescribed threshold ε (Figure 1). A crucial component

of this optimization program is to find tight upper bounds to error terms arising at arbitrary

order perturbation theory. In this sense our work is a generalization of [24] to include the

gadget constructions in [18, 21].

The problem of computing the error exactly is hard in general because of the exponential

size of the Hilbert space. Alternatively, crude upper bounds are trivially attainable via for

instance submultiplicativity of operators (‖AB‖ ≤ ‖A‖·‖B‖). These bounds are hardly useful

for the purpose of optimizing the gadget parameters. However, by exploiting the structure of

the Hamiltonian we are able to find error bounds that are both orders of magnitude tighter

than the crude alternatives (Section 6.1) and efficiently computable (Section 4.2). Each term

in the perturbative expansion at a given order is a summation of exponentially many terms.

We start from reducing the size of the set of summation from exponential to polynomial in

the number of ancilla registers by taking advantage of the structure in the perturbation. We

show that there is a hierarchy of equivalence classes (Section 4.1) that allows us to accomplish

the reduction. The algorithms for computing the error bounds presented in Section 4.2 take
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advantage of such hierarchical structure. In the special case where the target terms Htarg,i

pairwise commute, we show that our error bounds are sharp (Section 4.3).

However, a gap still exists (Figure 6) between the output of our algorithm and the result

of brute-force optimization. This gap is due to the machinery of perturbation theory that

we use (illustrated in Figure 5), which is based on the Feynman-Dyson series. In Section 6.2

we observe numerically that using the Schrieffer-Wolff transformation [32, 31] instead may

enable one to get closer to the brute-force results (Figure 7). This improvement may be

explained by Theorem 3 which says that a specific class of terms in the Schrieffer-Wolff series

already captures all of the terms in the Feynman-Dyson series (Section 5). It is tempting to

consider whether our technique can be applied to obtain efficient error bounds for Schrieffer-

Wolff series. One challenge in this regard is that our efficient algorithm is built on the

observation that the terms at each order is essentially a summation of walks in the eigenspace

of the unperturbed Hamiltonian, per Equation 9. This combinatorial picture of summing over

walks comes from the matrix product structure of the self-energy expansion (Equation 1).

Whether this same structure exists in Schrieffer-Wolff transformation (and other formalisms

of perturbation theory) remains to be assessed.
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Appendix A: An example for illustrating notions introduced in Section 4.1

This example is essentially the one considered in Section 6 but here we abstract out only the

revelant aspects of the example without going into full detail. Suppose our target Hamiltonian

Htarg is a sum of two 3-local terms that need to be reduced to 2-local using the gadget

construction (Section 2). Our gadget Hamiltonian H̃ = H + V has the unperturbed part

H = H(1) +H(2) acting on two registers of three ancilla qubits (because the target terms are

3-local). The perturbation V couples to each register of ancillas with interaction strengths

λ1 and λ2 (as a reminder, see Equation 5 and the restriction that λi,j = λi introduced at the

beginning of Section 4.1). Hence m = 2 and k = 3 in this example and the low energy level

of H satisfies E(φ) = E(1)(j1) +E(2)(j2) = 0 with j1, j2 being either 0 or 3. At second order,

from previous discussion we see that the sequences of reduced configurations that contribute

non-trivially to T2 are

c̃0 =

(
0
0

)
→ c̃1 =

(
0
1

)
→ c̃2 =

(
0
0

)
c̃0 =

(
0
3

)
→ c̃1 =

(
1
3

)
→ c̃2 =

(
0
3

)
c̃0 =

(
0
3

)
→ c̃1 =

(
0
2

)
→ c̃2 =

(
0
3

)
c̃0 =

(
3
3

)
→ c̃1 =

(
2
3

)
→ c̃2 =

(
3
3

)
.

(A.1)

Accordingly, the set Wc
2 consists of the following sequences of configurations

c0 =

(
0
0

)
→ c1 =

(
1
0

)
→ c2 =

(
0
0

)
; c0 =

(
0
0

)
→ c1 =

(
0
1

)
→ c2 =

(
0
0

)
;

c0 =

(
0
3

)
→ c1 =

(
1
3

)
→ c2 =

(
0
3

)
; c0 =

(
3
0

)
→ c1 =

(
3
1

)
→ c2 =

(
3
0

)
;

c0 =

(
0
3

)
→ c1 =

(
0
2

)
→ c2 =

(
0
3

)
; c0 =

(
3
0

)
→ c1 =

(
2
0

)
→ c2 =

(
3
0

)
;

c0 =

(
3
3

)
→ c1 =

(
2
3

)
→ c2 =

(
3
3

)
; c0 =

(
3
3

)
→ c1 =

(
3
2

)
→ c2 =

(
3
3

)
.

(A.2)
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Note that the configuration sequences on each row of (A.2) is formed by permuting elements

of the reduced configuration sequence on the corresponding row in (A.1). Finally, each con-

figuration sequence in (A.2) can be replaced with sequences of states, forming the set W2

which consists of the following sequences of states φ0 → φ1 → φ2 (Here | separates the two

ancilla registers and each block of 3 sequences corresponds to the configuration sequence in

the associated row and position in (A.2)):

000|000→ 100|000→ 000|000 000|000→ 000|100→ 000|000
000|000→ 010|000→ 000|000 000|000→ 000|010→ 000|000
000|000→ 001|000→ 000|000 000|000→ 000|001→ 000|000

000|111→ 100|111→ 000|111 111|000→ 111|100→ 111|000
000|111→ 010|111→ 000|111 111|000→ 111|010→ 111|000
000|111→ 001|111→ 000|111 111|000→ 111|001→ 111|000

000|111→ 000|011→ 000|111 111|000→ 011|000→ 111|000
000|111→ 000|101→ 000|111 111|000→ 101|000→ 111|000
000|111→ 000|110→ 000|111 111|000→ 110|000→ 111|000

111|111→ 011|111→ 111|111 111|111→ 111|011→ 111|111
111|111→ 101|111→ 111|111 111|111→ 111|101→ 111|111
111|111→ 110|111→ 111|111 111|111→ 111|110→ 111|111

(A.3)

We observe that the first (top left) block of three sequences in (A.3) sums up to a term

3λ2
1 · 1

z−E1
|000〉〈000|, with each sequence contributing a term λ1 · 1

|z−E1| · λ1 in the final

upper bound (Equation 18). Similarly we see that the top right block of (A.3) sums up to

3λ2
2 · 1

z−E1
|000〉〈000|. Recall that Π− is the projector onto the low energy subspace L− =

L(1)
− ⊗ L

(2)
− with each L(i)

− = span{|000〉, |111〉}. Adding up the terms in all the sequences in

(A.3) gives a term 3(λ2
1 + λ2

2) · 1
z−E1

Π−, which is symmetric with respect to the permutation

of registers.

Also observe that we are able to calculate the coefficient 3(λ2
1 + λ2

2) · 1
z−E1

in the sum

over all blocks of sequences in (A.3) by only inspecting the first row, gleaning two terms with

coefficients 3λ2
1 · 1

z−E1
and 3λ2

2 · 1
z−E1

. This is because the set Wr is invariant with respect to

the operation of flipping all the bits of any set of registers (recall discussion prior to Equation

15). Examining A.3 one could find that for instance flipping all the bits in the first register

of the top left block yields the block on the right of third row. Flipping all the bits in the

second register of the top left block yields the block on the left of the second row. Flipping

all the bits in both registers yields the bottom right block, etc. Therefore in order to find the

coefficients to T2 it suffices to focus on only the sequences φ0 → φ1 → φ2 where φ0 = 000|000

(Equation 15).
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