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Quantum information and quantum computation are emerging research areas based on

the properties of quantum resources, such as superposition and entanglement. In the
quantum gate array version, the use of convenient and proper gates is essential. While
these gates adopt theoretically convenient forms to reproduce computational algorithms,

their design and feasibility depend on specific quantum systems and physical resources
used in their setup. These gates should be based on systems driven by physical inter-
actions ruled by a quantum Hamiltonian. Then, the gate design is restricted to the
properties and the limitations imposed by the interactions and the physical elements

involved. This work shows how anisotropic Heisenberg-Ising interactions, written in a
non-local basis, allow the reproduction of quantum computer operations based on uni-
tary processes. We show that gates can be generated by a pulse sequence of driven
magnetic fields. This fact states alternative techniques in quantum gate design for mag-

netic systems. A brief final discussion around associated fault tolerant extensions to the
current work is included.

Keywords: Gate design; Unitary matrix factorization; Heisenberg-Ising anisotropic

model; Quantum algorithms.
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1 Introduction

Quantum information is the utmost contemporary application of quantum mechanics. En-

tanglement, one of the more disruptive properties of quantum mechanics [1, 2, 3, 4, 5], plays

a central role in the improvement of storage capacity and processing speed of quantum infor-

mation [6, 7, 8] by using alternative methods to those of classical computer science. Useful

appliances are being settled up on this property: quantum computation [9, 10, 11], quantum

cryptography [12, 13], superdense coding [14] and teleportation [15].

In terms of similarity, quantum gate array computation (QGAC) is the most common and

universal approach to classical computer science. This is due to its use of controlled quantum

evolution as quantum gates, a replica of classical computer gates. However, quantum gates

should be reproduced via physical interactions and resources (ion traps and electromagnetic

cavities [16, 17], Josephson junctions [18], nuclear magnetic resonance [19] and spins [20, 21,

22]). These have no direct or immediate setup and require complex control operations, and

sometimes require iterative procedures in order to be reached. Thus, QGAC is experimental
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(in terms of noise control and reproduction of theoretical gates [16, 17, 18, 19, 20, 21, 22]),

with physical resources adapted to set certain universal gates. For implementations based on

matter, quantum dots and electronic gases are developments towards a scalable spin-based

quantum computer controlled by electromagnetic interactions to reproduce certain quantum

universal operations [23, 24, 25] to meet DiVincenzo criteria [26]: reliability in the state

preparation, well identified qubits and accurate quantum gate operations.

It is still useful to understand alternative approaches for efficient and scalable procedures

reproducing basic elements in quantum gate array computation for a couple of qubits. There

are at least two results to support this fact: a) two-level quantum channel processing is

universal in the quantum gate version of quantum computation [27], and b) universal sets of

two-level gates can be constructed, as exemplified by the Boykin et al. gates [28, 29]. Due to

the large array of qubits to be manipulated in quantum applications, gate construction departs

from operations by pairs. In this trend, several proposals to construct or introduce more

general quantum information processes have been made. As there is no general procedure for

translating multipartite processes into bipartite ones using a universal set of gates, alternative

trends have been developed. An example is the Cosine-Sine decomposition [30], which allows

a multipartite gate decompose in a nesting series of rotations, a kind of evolution easily

achievable in all bipartite qubit systems. Other proposals use efficient decomposition based

on combinations of single qubit and multiplexor gates [31], the construction of Gray codes

basis [32] or q−deformed algebras on harmonic oscillators [33]. Recent work has exploited

the natural properties of a physical system to reproduce some universal gates naturally, a

trend that relates to the topics discussed in this paper. These works tend to connect the

number of involved CNOT gates to circuit complexity. However, their main focus is the

basis on which the construction was done. Computational bases are common in QGAC, as

they chiefly relate to traditional computing rather than entanglement generation (a central

and mandatory quantum phenomenon). Thus, while physical systems require entangling

operations in their evolution, the computational basis typically departs from this behavior.

In this arena, unitary factorization is an alternative approach to quantum gate design

[34, 35, 36, 37, 38]. This approach allows the reproduction of complex or dedicated gates

(otherwise rarely constructed when departing from a universal gate set) by means of a finite

series of simpler unitary operations M (i,j)† (P− unitary operations):

U =

→
∏

1≤j<n

n>i≥j

M (i,j)† (1)

where symbol → represents the forward product, stacking factors from left to right. In this

vein, the paper aims to show how driven anisotropic Heisenberg-Ising (HI) interactions for

bipartite systems can be used to reproduce gates based on a natural unitary factorization and

a universal grammar for those systems. This construction is an example of how grammar in

quantum information systems should be adapted to reproduce physical evolution dynamics,

an aspect sometimes lost in theoretical quantum information developments.

Procedure becomes useful in quantum simulations when reproducing controlled simula-

tions for specific computational problems. The present paper is organized as follows: Section
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2 summarizes the unitary factorization process, which is useful for further development. Sec-

tion 3 presents the physical background to set the unitary factorization based on a recent

proposal of SU(2) decomposition for the driven HI Hamiltonian on a non-local basis [39].

Section 4 analyzes the feasibility of the factorization presented in terms of a set of prescrip-

tions for general implementation. The analysis includes the implementation based on single

and double external magnetic pulses to generate adequate unitary factors. Section 5 presents

the analytical solution for matrices with real entries. Section 6 presents a couple of imple-

mentations with two concrete gates reported in the literature. Section 7 sets some elements

to carry the proposal into quantum error correction theory and the fault tolerant processing

domain. This section also presents some information about the generalization of the factor-

ization process. Conclusions are presented at the end of the paper, including some ideas for

the possible generalization for bigger systems as a future work. The complex details of fea-

sibility are discussed in the appendices. In this discussion, anisotropy included in the model

is referred to a generalization of the models in the contemporary literature, though not all

results presented in this paper depend on this generalization.

2 P -unitary matrices factorization

The factorization of unitary matrices has been referred to an approach to develop programmed

quantum operations that depart from the natural evolutions under specific Hamiltonians. In

quantum processes, local SU(2) operations plus entangling operations (SU(4) or still SU(2)

non-local operations, meaning a non-local operation between a pair of entangled states) re-

produce more complex operations [28]. This procedure has been used, for example, in optics

[27] using a Mach-Zehnder interferometer and for atoms [40] using two-level systems driven by

fields properly detuned from resonance. Unitary factorization has been addressed in terms of

Householder reflections [41, 37], as well as a suitable adaptation of Gauss-Jordan factorization

[42] for unitary quantum evolution operators [38]. In this section, we state a recursive version

of this factorization.

2.1 P−unitary matrices

A two-level n−dimensional P−unitary matrix is a unitary matrix that departs from the n×n

identity matrix, In, but includes a substitution of some of its elements as follows: if P =

{j1, j2, ..., jn} is a permutation from {1, 2, ..., n}, the P−unitary matrixMn
jk,jk+1

is said of type

k ∈ {1, 2, ..., n−1} if the block defined by the entries (jk, jk), (jk, jk+1), (jk+1, jk), (jk+1, jk+1)

is substituted by the entries of an arbitrary 2 × 2 unitary matrix sjk,jk+1
. Then, Mn

jk,jk+1
=

sjk,jk+1
⊕ In−2, where In−2 is the identity matrix located in the remaining rows and columns.

For n = 4, the P−unitary matrices M4
jk,jk+1

=M4
jk+1,jk

with jk < jk+1 are:

M4
1,2 =









∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
0 0 0 1









,M4
3,4 =









1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗









∈ S1 (2)



724 Two-qubit quantum gates construction via unitary factorization

M4
1,4 =









∗ 0 0 ∗
0 1 0 0
0 0 1 0
∗ 0 0 ∗









,M4
2,3 =









1 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 1









∈ S2 (3)

M4
1,3 =









∗ 0 ∗ 0
0 1 0 0
∗ 0 ∗ 0
0 0 0 1









,M4
2,4 =









1 0 0 0
0 ∗ 0 ∗
0 0 1 0
0 ∗ 0 ∗









∈ S3 (4)

where ∗ represents the elements of a 2 × 2 unitary matrix embedded in M4
jk,jk+1

. Si ⊂

SU(4), i = 1, 2, 3 are three subgroups of P−unitary matrices. In this work we will focus on

M4
1,2,M

4
2,3 and M4

3,4.

2.2 P−unitary matrices factorization procedure

P−unitary matrices allow the expression of any special unitary matrix U as a product of at

most n(n−1)
2 factors (6 factors for n = 4). The procedure admits U ∈ U(n) [37, 38]. Despite

the discussion in this work will be restricted to U(4) due to the interest in the evolution

matrices U ∈ SU(4) depicting the interactions between a pair of qubits, we will state the

factorization matrix procedure for n arbitrary. Departing from the n × n unitary matrix,

U = {ai,j}, factorization can be settled as the following recursive procedure: transforming

U into In by multiplying with a series of P−unitary matrices to eliminate the elements ai,j
below the diagonal for each column j, with 1 ≤ j < n, n ≥ i > j (in this order). This

procedure resembles the Gaussian elimination procedure [42]. If U (i,j) = {ai,j} is the step

matrix obtained by eliminating the element in the row i + 1 and column j in the previous

step of this process, then a P−unitary matrix Mn
i−1,i(j) could be properly constructed to

eliminate its element ai,j = ui,j and to obtain the matrix U (i−1,j):

U (i−1,j) ≡























1 ... 0 0 ... 0
...

...
...

...
...

...

0 ... ui−1,j a
(i,j)
i−1,j+1 ... a

(i,j)
i−1,n

0 ... 0 a
(i,j)
i,j+1 ... a

(i,j)
i,n

...
...

...
...

...
...

0 ... 0 a
(n,j)
n,j+1 ... a

(n,j)
n,n























(5)

=





















1 ... 0 0 ... 0
...

...
...

...
...

...
0 ... ∗ ∗ ... 0
0 ... ∗ ∗ ... 0
...

...
...

...
...

...
0 ... 0 0 ... 1











































1 ... 0 0 ... 0
...

...
...

...
...

...

0 ... a
(i−1,j−1)
i−1,j a

(i−1,j−1)
i−1,j+1 ... a

(i−1,j−1)
i−1,n

0 ... ui,j a
(i+1,j)
i,j+1 ... a

(i+1,j)
i,n

...
...

...
...

...
...

0 ... 0 a
(n,j)
n,j+1 ... a

(n,j)
n,n























≡ Mn
i−1,i(j) · U

(i,j)
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where U (n,1) = U , and a
(i,j)
k,l is the transformed entry k, l in the matrix when element i in

column j is being eliminated. The superscript (i, j) is only a reference to set the elimination

step in the process. In each step, one entry is eliminated and only two rows modified: the

current row of that entry and the immediate above. Block si−1,i ∈ U(2) in Mn
i−1,i(j) =

si−1,i ⊕ In−2 should be:

si−1,i ≡





a
(i−1,j−1)∗
i−1,j

ui−1,j

u∗
i,j

ui−1,j

−
µi,jui,j

ui−1,j

µi,ja
(i−1,j−1)
i−1,j

ui−1,j



 (6)

where a
(i,0)
k,l = ak,l, and µi,j is an arbitrary unitary complex number, and:

ui−1,j =

{

a
(n,j−1)
n,j , i = n+ 1

√

|a
(i−1,j−1)
i−1,j |2 + |ui,j |2 , i 6= n+ 1

. (7)

With this, we get:

U (n−1,n−1) =







←
∏

1≤j<n

n>i≥j

Mn
i−1,i(j)






U (8)

where the dependence of Mn
i−1,i(j) on j appoints to the P−unitary matrix used in each

column, and the symbol ← states the backward product stacking factors from right to left

according to script order. Each Mn
i−1,i(j) and det(Mn

i−1,i(j)) = µi,j are unitary too, so

U (j,j) is unitary. In this process, each row and column are unitary; when the first column of

entries below the diagonal are set to zero, u1,1automatically equals 1. As such, the remaining

elements in row 1 become zero [38]. This repeats for each column and row j in U (j,j) in spite

of the uj,j definition:

uj,j =

√

∑

j≤i≤n

|a
(i,j−1)
i,j |2 (9)

Finally, U (n−1,n−1) is a residual diagonal matrix with 1 in all rows except for the unitary

a
(n,n−1)
n,n . With this:

det(U (n−1,n−1)) = a(n,n−1)n,n =







∏

1≤j<n

j<i≤n

µi,j






det(U) (10)
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noting that a
(n,n−1)
n,n depends on det(U) and the selections made for µi,j . The way to fulfill

(10) is open in principle, but it can be used to fit specific requirements in the construction of

each Mn
i−1,i(j). Then, the main result is:

U =







→
∏

1≤j<n

n>i≥j

Mn
i−1,i(j)

†






U (n−1,n−1) (11)

This procedure implies that a desired artificial evolution matrix could be reproduced by

a series of P−unitary matrices Mn
i−1,i(j)

†
if natural evolutions can be fitted to them. If

U (n−1,n−1) = In, then (11) becomes (1) by identifying Mn
i−1,i(j) with M (i,j). When any

original entry in (11) is zero, the process skips it with Mn
i−1,i(j) = In or equivalently si−1,i =

I2.

3 Analytic evolution of anisotropic HI model in three dimensions

Magnetic systems are potential environments for quantum applications. They are susceptible

matter for quantum memories and quantum processors. HI Hamiltonian is a simple inter-

action model that brings an easy setup to analyze the manipulation of quantum processing,

particularly under adequate magnetic control as shown in Figure 1. Here, two qubits in-

teract via HI model under additional local magnetic fields as driven elements. This model

[43, 44, 45, 46] has been used as an approach for the interaction of magnetic quantum objects.

Here, entanglement is naturally achievable. Despite the extensive research for this interac-

tion, most developments in multipartite systems are numerical due to the growing number of

elements. In this trend, different HI interaction models (XX, XY, XYZ depending on physical

systems and arrays being considered) have been used to model bipartite and multipartite

systems [47, 48, 49, 50, 51]. In this section, we examine some useful results to explore gate

design using unitary factorization.

Fig. 1. HI interaction between two qubits including local magnetic fields to drive the information
exchange in the system. A non-local description exhibits a block form in the evolution operator,
which can be used to reproduce unitary factorization.

A recent analysis for the anisotropic HI model reveals an underlying algebraic structure

when it is analyzed in the Bell basis [39] as a natural grammar. Following that work, we focus

on the next bipartite Hamiltonian, including an inhomogeneous driven magnetic field in the

h-direction (h = 1, 2, 3 corresponding to x, y, z):
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Hh =

3
∑

k=1

Jkσ1kσ2k −B1hσ1h −B2hσ2h (12)

comprising several models discussed in the literature. [39] has shown that Ising interaction

is diagonal in this basis, and Hh has a 2× 2 block structure when it is expressed in the Bell

basis. This structure is passed on the evolution matrix Uh(t). Denoting the Bell basis as

|β−−〉 ≡ |β00〉 , |β−+〉 ≡ |β01〉 , |β+−〉 ≡ |β10〉 , |β++〉 ≡ |β11〉, this work obtains the generic

block form for the evolution operator Uh(t) = Uα,β;γ,δ |βαβ〉 〈βγδ| (Einstein summation con-

vention assumed):

Uh(t) = sh1
⊕ sh2

∈ Sh (13)

where shj
∈ U(1)×SU(2) ⊂ U(2) is a 2×2 block. Sh ⊂ SU(4) is the corresponding subgroup

of unitary block matrices containing each Uh(t) structure (corresponding to Sjk,jk+1
given in

the previous section). shj
has the general structure for the time independent case [39, 52]:

shj = ei∆h
+
α

(

eh
β
α
∗

−qihdhα
qi∗hdhα eh

β
α

)

(14)

The complete reference of each parameter in the last expression is given in [39], and a brief

description has been included in Appendix A. The explicit form for Uh(t) will be seminal in this

work (note that each row and column is labeled with a pair of scripts αβ ∈ {−−,−+,+−,++}

in this order). Uh(t) has a 2 × 2 block structure preserved under multiplication in each Sh.

As has been shown [39], by fixing the parameters {|jh∓α|} and {sbh∓α
}, we get a subgroup

in Sh. Thus, identity, inverses and product closure properties are fulfilled in each one. The

full group structure [39] is essential in the current work because it assures the existence of

factorization solutions in terms of finite products of Uh(t). The last structure allows the

tentative achievement of the factor matrices’ forms in the unitary factorization on SU(4).

4 Unitary factorization based on HI model evolution

The 4×4 evolution matricesM4
i−1,i ∈ Si−1,i (2) have the form of HI evolution matrices written

in the Bell basis. In the described process, only U1(t) and U2(t) are reducible to the matrices

M4
i−1,i

†
. This is notable because the process can be managed by two-dimensional systems

as anyons. Thus, the challenge is to fit shj in (14) to si−1,i
† in (6) to obtain the adequate

prescriptions. We develop this analysis in the following subsections, giving the mathematical

details in the appendices.

4.1 Getting P−unitary matrices through one magnetic pulse

The present section analyzes the fitting of the evolution for (12) to the unitary factorization

process of section 2. First, sector j is reduced to the identity shj
= Ihj

= I2. As reported in

[52, 53] for control purposes, the prescriptions to reduce shj to Ihj
(2× 2 identity matrix) at

time t are:



728 Two-qubit quantum gates construction via unitary factorization

t =
2mα + nα

αJh
π > 0, Bh

2
−α = (

Jhnα
2mα + nα

)2 − J{h}α
2 (15)

with nα,mα ∈ Z. This form will be useful later and should be compatible with the restrictions

to construct the required P−unitary matrices in the other block to eliminate each entry. A

brief review reveals µi,j = e−2i∆h
+
α as a necessary condition for the consistency of the equations

settled by shj
= s†i−1,i for the remaining unitary sector. In addition, due to (10), the following

global restriction should be fulfilled:

∆x
+
+,(4,1) +∆y

+
−,(3,1) +∆x

+
−,(2,1) +∆x

+
+,(4,2) +∆y

+
−,(3,2) +∆x

+
+,(4,3) = Nπ (16)

with N ∈ Z. Here, the subscripts (i, j) relate to the entry being eliminated. The first equation

in (15) fits one block to I2 (changing α by −α in (15), thus using the parameter α to label

the remaining unitary non-diagonal sector), then ∆h
+
α,(i,j) becomes a multiple integer of π,

satisfying (16) automatically. Because Uh(t) ∈ SU(4), then µi,j = 1; thus, (16) is fulfilled

and reduced to a
(n,n−1)
n,n = det(U) (thus, U (n−1,n−1) = I4 in (1) if U ∈ SU(4)). From (6) and

(14), only two equations should be solved for the remaining block (as instance, for the entries

1, 1 and 2, 1):

1, 1 : eh
β
α

∗
ei∆h

+
α =

a
(i−1,j−1)
i−1,j

ui−1,j
(17)

2, 1 : qi∗hdhαe
i∆h

+
α =

ui,j
ui−1,j

.

Unfortunately, one single magnetic pulse is unable to generate solutions in most cases

(concretely for those factors needed for the h = 1 case, despite h = 2 solutions are easily

reached, especially for real entries matrices). The details of this analysis are included in

Appendix B. To summarize, one pulse solutions are in most cases unable to generate evolutions

to work as factors of a general unitary operation. Thus, more complex schemes should be

analyzed to combine at least two magnetic pulses.

4.2 Getting P−unitary matrices through two magnetic pulses

Evolution prompted by (13) allows any U(2) element to be obtained for each block by com-

bining two adequate pulses [39] (more precisely, any U(2) element can be generated by two

consecutive shj blocks). As before, one block (−α) should be driven to I2 while the remaining

block (α) reproduces the P−unitary matrix as part of the factorization presented previously.

When two pulses are combined into s′hjshj , the generic form of the resulting block [39] should

be fitted to I2 in block −α (see Appendix C). Thus, the process to fit each matrix M4
i−1,i(j)

†

into the evolution matrix for two pulses is based on equations (C.1) to obtain t′, Bhα, B
′
hα in

terms of t:

t′ = −
Jh
J ′h
t−

α(2m−α + n−α)π

J ′h
(18)
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Bhα = ±

√

(

n−απ

t+ Sαt′

)2

− J2
{h}−α

where : Sα =
J ′{h}−α
J{h}−α

=
B′hα
Bhα

.

Note that equation (16) is still required. Due to ∆h
+
−α +∆′h

+
−α = −(∆h

+
α +∆′h

+
α ) and the

second equation in (17), this condition is again fulfilled automatically. As for the single pulse

case, the relevant equations for non-diagonal block α in U ′h(t
′)Uh(t) are:

1, 1 : (e′h
β
α

∗
eh

β
α

∗
− d′hαdhα)e

i(∆′
h
+
α
+∆h

+
α ) =

a
(i−1,j−1)
i−1,j

ui−1,j
(19)

2, 1 : qi∗h(e′h
β
αdhα + eh

β
α

∗
d′hα)e

i(∆′
h
+
α
+∆h

+
α ) =

ui,j
ui−1,j

(20)

and as before, it is now required that µi,j = e−2i(∆
′
h
+
α
+∆h

+
α ) to automatically fulfill those

equations for entries 1, 2 and 2, 2. Despite their complexity (see Appendix C), the solution is

warranted due to the connectivity of the block elements shj in (13) through of finite products

as part of the group U(2) = U(1) × SU(2)2 when those blocks are adequately combined

[39]. In some cases, the solutions could correspond to non-physical or experimentally complex

situations, such as |bh±α|, |b
′
h±α| = 1. The development of this analysis has been included

in Appendix C. Because there are many direct and indirect parameters involved, the best

strategy is to generate a computational procedure to solve this problem. First, the procedure

states the form of each P -unitary matrix factor,M4
i−1,i(j)

†
, then applies a numerical procedure

to solve equations (18,C.9-C.12) together. In it, parameters zjh , zbh , cα, c
′
α, N−α, introduced

in Appendix C, should be selected. Because there are multiple roots, a stochastic procedure

to find a specific solution through the correspondent graphs (as those in Figure C.1) becomes

more practical. This procedure seeks out solutions to the factorization problem for special

unitary evolution matrices U with complex entries based on HI interaction pulses.

5 Special case: Factorization of unitary matrices with real entries

A specific, but very common case can be addressed easily: special unitary matrices U with

real entries. This case exhibits an analytical solution depicted in this section in terms of the

previous results.

5.1 Analytical solution for P−unitary matrix factors with h = 1

For M4
3,4(1)

†
,M4

1,2(1)
†
,M4

3,4(2)
†
and M4

3,4(3)
†
, we cannot the single-pulse case described in

section 4.1 due to the factors i∗h, ih on the antidiagonal entries limit to obtain real antidiagonal

entries. A possible alternative is to view all entries as imaginary rather than real, and select

∆h
−
α = 2nα+1

2 π. Thus, for the non-diagonal block:

shj = −iei∆h
+
α (−1)nα

(

βjh−α qbh−α
qbh−α −βjh−α

)

. (21)
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Unfortunately, the impossibility remains because factor i cannot be eliminated to register

ei∆h
+
α as imaginary, as it must be real to fit the remaining block to I2. However, a case with

two-pulse solutions does not have this restriction. In stating Rϕ = Iφ = 0, we find several

analytic solutions. An easier solution can be found by taking two-pulse shj , s
′
hj with the form

(21) to obtain:

shj = ei(∆
′
h
+
α
+∆h

+
α )(−1)n

′
α+nα+1

(

A+ −qβA−
qβA− A+

)

(22)

with : A+ = jh−αj
′
h−α + bh−αb

′
h−α

A− = jh−αb
′
h−α − bh−αj

′
h−α

A2
+ +A2

− = 1

where the uncomfortable factor i has disappeared. Here, ∆h
−
α = 2nα+1

2 π ≡ Nα

2 π,∆
′
h
−
α =

2n′
α+1
2 π ≡

N ′
α

2 π. Still, the following equations should be solved to get bh−α, b
′
h−α:

m
(i,j)
1,1 ≡

a
(i−1,j−1)
i−1,j

ui−1,j
= (−1)S(jh−αj

′
h−α + bh−αb

′
h−α) (23)

m
(i,j)
2,1 ≡

ui,j
ui−1,j

= βq(−1)S(jh−αb
′
h−α − bh−αj

′
h−α)

where S ≡ 2m−α + n−α + nα + n′α + 1 retrieves some integer constants appearing in the

procedure. Terms m
(i,j)
1,1 ,m

(i,j)
2,1 , for short, correspond to entries in each matrix M4

i−1,i(j)
†
.

Those equations can be reduced to the first one by noting m
(i,j)
1,1

2
+m

(i,j)
2,1

2
= 1. In the end,

both equations only require a review about their signs’ concordance in adequately selecting

the parameters in S. Still, it is required to write t, t′ in terms of 2nα+1
2 ,

2n′
α+1
2 and Rhα, R

′
hα.

Then, they may be substituted in the first equation in (18):

jh−α
Nα

2cα
+ j′h−α

N ′α
2c′α

= −α(2m−α + n−α) (24)

in terms of jh−α, j
′
h−α. As before, while we do not focus explicitly on time here, the defini-

tions introduced in (C.12) for non-dimensional time τ = jh−α
Nα

2 π, τ
′ = j′h−α

N ′
α

2 π are useful

for reporting specific results regarding the parameters jh±α, j
′
h±α, bh±α, b

′
h±α, τ, τ

′, without

involving the physical parameters J{h}±α, J
′
{h}±α

, Jh, J
′
h. For the identity block, second and

third equation in (12), this becomes:

|jhα| = |j′hα| =
1

n−απ
(τ
c−α
cα

+ τ ′
c′−α
c′α

) (25)

|bhα| = |b′hα|

where similarly to cα, c
′
α, we define c−α =

J{h}−α

Jh
, c′−α =

J ′
{h}−α

J ′
h

. Signs in jhα, j
′
hα are physical

prescriptions, but not restrictions in the signs of bhα, b
′
hα. For further applications, we assume
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these formulas to obtain the diagonal block prescriptions for the two pulses case, which will

not be reported explicitly as it requires c±α, c
′
±α.

Equations (23) and (24) must be solved simultaneously for jhα and j′hα. This problem is

reduced to quadratic equations, whose solutions can be expressed as:

jh−α =
C(A+D)± |B|

√

B2 − C2 + (A+D)2

B2 + (A+D)2
(26)

j′h−α =
E(A+ F )± |B|

√

B2 − E2 + (A+ F )2

B2 + (A+ F )2

with : A = (−1)Sm
(i,j)
1,1 , B = m

(i,j)
2,1

C =
2N−αc

′
α

N ′α
, E =

2N−αcα
Nα

D = F−1 =
Nαc

′
α

N ′αcα

where solutions still should be selected by reviewing the correct signs in both equations (23),

together with the election of signs in bh−α, b
′
h−α. There is no mandatory correspondence

between signs in both formulas (26). Ultimately, it is possible to find all parameters involved

to generate M4
i−1,i(j)

†
with U2(t). Formula (25) should be analyzed more carefully, due to

|jhα|, |j
′
hα| ≤ 1. A detailed view shows that the existence of solutions in (26) depends on

greater values for Nα, N
′
α, while |jhα|, |j

′
hα| values simultaneously increase. Thus, there are

restrictions achieving lower c−α, c
′
−α and Bh−α

values.

5.2 Analytical solution for P−unitary matrix factors with h = 2

This case offers an easy solution for single-pulse selection of jh−α = 0, |bh−α| = 1 for the

non-diagonal block (requiring strict control on J{h}α value):

shj = (−1)n−α

(

cosBh−αt qsign(bh−α) sinBh−αt
−qsign(bh−α) sinBh−αt cosBh−αt

)

(27)

This involves the acquisition of t and Bhα from (15), to obtain I2 for the remaining

diagonal block, at which point we solve:

Bh−α =
1

t
cos−1

(−1)n−αa
(i−1,j−1)
i−1,j

ui−1,j
(28)

with :

sign(Bh−α) = (−1)n−α+1qsign(
ui,j
ui−1,j

sinBh−αt)

to obtain Bh−α. This equation is equivalent to (B.5). This procedure works to obtain

M4
2,3(1)

†
,M4

2,3(2)
†
. Two-pulse practical solutions are not possible because they require the

same condition jh−α = 0 to have the form (6). Because jh−α = 0, variables as τ are not

appropriate. Instead, we introduce the variables τ0 ≡ Jht and b0 ≡
Bh−α

Jh
(the equivalent
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expression for (28) in these terms is immediate) to report results for non-diagonal block

α. For the identity block, −α, the use of jhα is still appropriate and can be written as

jhα = N−αc−α

n−α
, where, as for the two-pulse case: N−α = −α(2m−α +n−α), c−α =

J{h}−α

Jh
. As

usual, |bhα| =
√

1− jh
2
α with the sign selected arbitrarily. We will assume these formulas to

report the diagonal block prescriptions for the single-pulse case (with the exception of bhα).

5.3 Existence of solutions for U with real entries

Formulas for h = 2 are simple; their only issue is the restriction of jh−α = 0, which implies

some control of the interaction strength in (12). In addition, the correct election of signs

depicted in formula (28) is a trivial aspect in spite of trigonometric function properties. For

h = 1, several parameters appear, but analytical solutions are possible. As for the values of

cα, c
′
α, the signs of jh−α, j

′
h−α are not eligible because they are physical constants from the

system. Still, by example, if |B| > |C|, C > 0, A + D > 0 then jh−α > 0; here, however,

if |B| > |C|, C > 0, A + D < 0 then jh−α < 0. Conditions are similar for j′h−α. A brief

analysis shows these expressions acquire both signs for jh−α, j
′
h−α with an adequate selection

of N−α ∈ Z and Nα, N
′
α (both odd). Typically, a change of signs in Nα, N

′
α implies a

change of signs in jh−α, j
′
h−α solutions. In addition, solutions are physically meaningful

(|jh−α|, |j
′
h−α| ≤ 1) if we select higher values for |Nα|, |N

′
α| because they reduce C,E values.

By this reason, typically large values in N−α do not give physical solutions; this election could

give |jh−α|, |j
′
h−α| > 1 because D and F values increase. This can be avoided only if cα, c

′
α

can be manipulated.

6 Application to dedicated gates

As stated previously, quantum gate design can be approached as a product of successive gates

selected from a universal set [28]. Such is the case for the Shor basis {H,σ
1/2
z , CaNOTb} and

the Boykin basis {H,σ
1/4
z , CaNOTb}, which have been shown to be fault tolerant [54, 55,

29]. The main limitation with this approach is the difficulty in constructing arbitrary gates

in such terms. A factorization approach, despite having complex prescriptions, avoids this

limitation and could be useful to dedicated gates (as opposed to gates for universal-purpose

quantum computers). This is the main reason to not discuss how to construct the first kind

of basic universal sets in terms of HI interaction, despite they can be obtained under unitary

factorization. These aspects have been reviewed for equivalent gates to CaNOTb and others

(evolution loops and exchange operations) [39, 52, 56]. Similarly, it is easy to realize that σ
1/2
z

and σ
1/4
z can be generated (based on the Bell basis grammar) from the block (14) for a single

pulse by choosing bh−α = 0, |jh−α| = 1, at least if interaction strengths can be controlled. The

following cases demonstrate applications for the factorization procedure for some standard or

dedicated gates under specific processing tasks.

The next special unitary matrices in SU(4) are not achievable for exclusive interactions

in only one Sh, but are so through a combination of elements from at least two groups

showing the factorization approach. The use of the non-local basis of Bell states as a common

grammar for the three Hamiltonians (12) is seminal [39], and current results establish that an

operation U ∈ SU(4) can be reproduced by a finite product of elements in S1, S2 via unitary

factorization. In the following analysis, we assume that factorization is being developed by a

system with some physical properties as: a) interaction strength constants positive (or zero
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if it is required), jh±α, j
′
h±α, and b) relative strength ratios settled as cα, c

′
α = 1, cα, c

′
α =

0.5. Note that these settings are selected only to report concrete results, they are not real

restrictions. Because of the multiplicity of solutions in terms of the parameters involved

m−α, n−α, nα, n
′
α (or some of their associated values as N±α, N

′
α), we will select the lowest

ones possible. Due to τ, τ ′ definitions, they can become negative (but not in the actual case

with jh±α, j
′
h±α positive), remembering that they are non-physical times (positiveness of t, t′

is always recovered). In the following section, a couple of applications will be developed to

show how the factorization procedure is carried out for unitary matrices with real entries.

6.1 Equivalent gate to C1NOT2 gate in Bell basis

C1NOT2 gate in the computational basis is a very common and useful gate in quantum

computation. An equivalent gate with a determinant equal to one is the controlled gate

C1(iY2). This gate can be reproduced in the factorization scheme, noting that in the Bell

basis it is:

U =
1

2









1 −1 1 1
1 1 −1 1
1 1 1 −1
−1 1 1 1









(29)

= (H1 ⊗ I2)C
1NOT2(C

1(iY2))C
1NOT2(H1 ⊗ I2).

This gate can be generated using the current procedure through magnetic pulses. Quan-

tum algorithms using C1NOT2 gates could be translated in terms of C1(iY2). The Bell basis

version of this gate was used to design control gates to mimic the traditional teleportation

quantum algorithm using HI interaction [39, 53] (there, the treatment is a little different

because C1(iY2) operates on a grammar based on Bell states instead of the typical com-

putational basis). It suggests that specialized gates can be constructed via factorization in

magnetic systems through HI interaction.

We can decompose the process described in the previous sections in several P−unitary

factors achievable by physical interactions. They and their respective design parameters are

reported in Table 1 in the terms presented previously and in the order in which they should

be applied.

6.2 Characterization process

The preparation of quantum states requires the ability to change their properties. A char-

acterization process [57] is a unitary operation by which to change the superposition ratios

and entanglement amount in an initial state. The importance of this operation lies in the

DiVincenzo criteria for the reliability of quantum states preparation. The current example

shows that for a real characterization matrix (α2 + β2 + γ2 + δ2 = 1):

U =









α β γ −δ
β −α δ γ
γ −δ −α −β
δ γ −β α









(30)
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Table 1. Factorization in P−unitary matrices for C1(iY2) and design parameters for the non-
diagonal block.

P−unitary factors Design parameters

M4

3,4(1)
†







1 0 0 0
0 1 0 0
0 0 1√

2
− 1√

2

0 0 1√
2

1√
2







N−α = −1
jα = j′α = 0.681
Nα = 3, N ′

α = −3
j−α = 0.120, b−α = 0.993
j′−α = 0.787, b′−α = 0.617

τ = 0.568, τ ′ = 3.709

M4

2,3(1)
†







1 0 0 0

0 1√
3

−
√

2

3
0

0
√

2

3

1√
3

0

0 0 0 1







m−α = −2, n−α = 3
jα = 0.167
b0 = 0.696
τ0 = 3.142

M4

1,2(1)
†







1

2
−

√
3

2
0 0√

3

2

1

2
0 0

0 0 1 0
0 0 0 1







N−α = −1
jα = j′α = 0.968
Nα = 3, N ′

α = −3
j−α = 0.312, b−α = 0.950
j′−α = 0.978, b′−α = 0.205

τ = 1.471, τ ′ = 4.613

M4

3,4(2)
†







1 0 0 0
0 1 0 0

0 0 1

2
−

√
3

2

0 0
√
3

2

1

2







N−α = −1
jα = j′α = 0.692
Nα = 3, N ′

α = −3
j−α = 0.128, b−α = −0.992
j′−α = 0.795, b′−α = 0.607

τ = 0.603, τ ′ = 3.745

M4

2,3(2)
†







1 0 0 0

0 − 1√
3

−
√

2

3
0

0
√

2

3
− 1√

3
0

0 0 0 1







m−α = −2, n−α = 3
jα = 0.167
b0 = 0.696
τ0 = 3.142

M4

3,4(3)
†







1 0 0 0
0 1 0 0
0 0 1√

2
− 1√

2

0 0 1√
2

1√
2







N−α = −1
jα = j′α = 0.681
Nα = 3, N ′

α = −3
j−α = 0.120, b−α = 0.993
j′−α = 0.787, b′−α = 0.617

τ = 0.568, τ ′ = 3.709

there exist a process of quantum modeling based on factorization. A rich research field for the

powers for these unitary characterization matrices is still open in terms of their convergence.

The following matrix represents one of these operations (numbers are casual to illustrate the

factorization process depicted here):

U =
1

10









7 1 7 −1
1 −7 1 7
7 −1 −7 −1
1 7 −1 7









(31)

This operation based on the Bell basis allows some initial Bell states (or a superposition of

them) to be transformed into other states on demand. Following the process to find the design

parameters for their P−unitary factors, we can reproduce this operation by factorization. For
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Table 2. Factorization in P−unitary matrices for a characterization matrix U and design param-
eters for the non-diagonal block.

P−unitary factors Design parameters

M4

3,4(1)
†







1 0 0 0
0 1 0 0
0 0 7

5
√
2

− 1

5
√
2

0 0 1

5
√
2

7

5
√
2







N−α = −1
jα = j′α = 0.500
Nα = −3, N ′

α = −3
j−α = 0.400, b−α = 0.916
j′−α = 0.267, b′−α = 0.964

τ = 1.886, τ ′ = 1.256

M4

2,3(1)
†







1 0 0 0

0 1√
51

−5
√

2

51
0

0 5
√

2

51

1√
51

0

0 0 0 1







m−α = −2, n−α = 3
jα = 0.167
b0 = 0.548
τ0 = 3.142

M4

1,2(1)
†







7

10
−

√
51

10
0 0√

51

10

7

10
0 0

0 0 1 0
0 0 0 1







N−α = −1
jα = j′α = 0.968
Nα = −3, N ′

α = 3
j−α = 0.978, b−α = 0.205
j′−α = 0.312, b′−α = 0.950

τ = 4.612, τ ′ = 1.471

M4

3,4(2)
†







1 0 0 0
0 1 0 0

0 0 7

10
−

√
51

10

0 0
√
51

10

7

10







N−α = −1
jα = j′α = 0.704
Nα = −3, N ′

α = 3
j−α = 0.802, b−α = 0.596
j′−α = 0.136, b′−α = 0.991

τ = 3.783, τ ′ = 0.641

M4

2,3(2)
†







1 0 0 0

0 − 1√
51

−5
√

2

51
0

0 5
√

2

51
− 1√

51
0

0 0 0 1







m−α = −2, n−α = 3
jα = 0.167
b0 = 0.455
τ0 = 3.142

M4

3,4(3)
†







1 0 0 0
0 1 0 0
0 0 7

5
√
2

− 1

5
√
2

0 0 1

5
√
2

7

5
√
2







N−α = −1
jα = j′α = 0.500
Nα = −3, N ′

α = −3
j−α = 0.400, b−α = 0.916
j′−α = 0.267, b′−α = 0.964

τ = 1.886, τ ′ = 1.256

the specific case (31), these factors and parameters are reported in Table 2.

7 Remarks around fault-tolerant implementation and generalization for N−qubits

7.1 Natural structure for fault-tolerant implementation and quantum error cor-

rection

An additional treatment associated with quantum error correction is recommended for the

factorization presented, so we drafted some ideas for further development in that direction.

Quantum gate design based on physical interactions should consider more than the possible

quantum state errors in the form of flips generated from environmental noise, as has been ana-

lyzed under quantum error correction theory based on codification [54, 11, 58]. Fault-tolerant

operations are still useful where environmental noise does not generate errors in the exact gate
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prescriptions. Thus, in order for quantum error correction schemes to work, we must conduct

a more delicate analysis of malfunctioning for the gate factors in the factorization process.

Malfunctioning is understood here as the effect of a tiny variation or error δpi in at least

one of the several prescribed parameters p = (p1, ..., pm) (t, Bh±α, Jh, J{h}±α in the present

context) to blocks of the form (14). Due to the SU(4) decomposition in U(1)× SU(2)2:

Uh =

2
⊕

j=1

shj , |ψ0〉 =

2
⊕

j=1

αj

∣

∣ψ0j

〉

⇒ |ψ〉 = Uh |ψ0〉 =

2
⊕

j=1

αjshj
∣

∣ψ0j

〉

(32)

emphasizing the direct sum form of matrix evolution, with j appointing to each block in

the whole matrix. Thus, each
∣

∣ψ0j

〉

is a linear combination of different pairs of Bell states

depending on h. Thus, we can focus just on each shj ≡ eiφu (φ ∈ R, u ∈ SU(2)) for the

current analysis. If we define the operator (linear in the parameters errors):

D ≡ δp · ∇ =

m
∑

i=1

δpi
∂

∂pi
(33)

then, developing until the first non-trivial order in δp:

shj = sh
0
j +Dsh

0
j +

1

2
D2sh

0
j + ... (34)

∣

∣

∣φf j

〉

= (1 + (Dsh
0
j )sh

0
j
†
)
∣

∣

∣ψf j

〉

= (1 + iDφ+ (Du)u†)
∣

∣

∣ψf j

〉

(35)

F2
j =

∣

∣

∣

〈

φf j |ψf j

〉∣

∣

∣

2

(36)

= 1 +
∣

∣

∣

〈

ψf j

∣

∣

∣Dsh
0
jsh

0
j
†
∣

∣

∣ψf j

〉∣

∣

∣

2

−
〈

ψf j

∣

∣

∣ sh
0
jDsh

0
j
†
Dsh

0
jsh

0
j
†
∣

∣

∣ψf j

〉

where sh
0
j corresponds to the evolution with the correct parameters in the gate design;

∣

∣ψ0j

〉

,
∣

∣

∣
ψf j

〉

= sh
0
j

∣

∣ψ0j

〉

,
∣

∣

∣
φf j

〉

are the initial, the final desired and the final obtained states;

and Fj is the fidelity in the subspace j for the final state. Additionally, in spite of sim-

plicity, Dsh
0
j ≡ Dshj

∣

∣

∣sh0
j
. The unitary properties of sh

0
j have been used to simplify (35) to

D(sh
0
j
†
sh

0
j ) = 0. One notable aspect is the quadratic dependence on errors for the fidelity

and the probability, suggesting a controllable impact on them.

As in (14), each block operator shj can be expressed on a proper Pauli basis for SU(2)

subspace [39]: Ihj ,Xhj ,Yhj ,Zhj . As for the computational basis, they require a language for

discrete quantum operations in each block, with natural syndromes present (for h = 2, j = 1,

subspace is generated by |β−−〉 , |β++〉, then X21 is a bit flip in the second qubit followed by a

phase flip in the first one; Y21 is a phase flip followed by a bit flip in the second qubit; while,

Z21 is a phase flip or a bit flip in both qubits). This identification conducts to the possible

quantum errors and their associated probabilities. These errors can be solved by traditional

quantum error correction methods with the adequate codification.
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7.2 Generalization of unitary factorization for N−qubits

The generalization of unitary factorization for N qubits under the conditions stated here

requires the fulfillment of several restrictions. We discuss briefly the central aspects appearing

there in subsections to follow. Nevertheless, note that the procedures presented in this work

for two qubits will work properly, still considering quantum systems with more than two qubits

because the universality of bipartite processing. The interest in such generalization is useful

for designing more complex gates that can to process more than two qubits simultaneously.

7.2.1 Hamiltonian restrictions in the generalization for the 2× 2 block decomposition

The 2× 2 block structure will not be easy to present in the general case for N−qubits in the

nearest-neighbour HI chains (reduction to 2 × 2 block structure is always possible, but it is

not evident how to select a realistic basis departing from the Bethe Ansatz approach to get

the eigenstates). Despite, still some alternative architectures could be addressed to recover

that structure in the Hamiltonian and consequently in the evolution for some achievable basis.

For N = 2d, d ∈ Z, a kind of weakly interactive chains via entanglement, could be realized

(those where HI interaction is only allowed at the time between each one of the d pairs of

the chain), recovering then the 2 × 2 structure in the Hamiltonian [63]. Still, a convenient

basis should be allocated to reveal it. In this case, the basis becomes the generalized Bell

basis [64], making this configuration the best generalization for the scheme presented in [39].

Hamiltonian is diagonal in this basis, and the block structure is recovered through some

local or non-local additional interactions; one of them is the local control in just one pair of

the qubits interacting already via the HI model. In other cases, further discussion will be

applicable in general if an adequate basis can be found.

7.2.2 General structure underlying quantum information dynamics

Because the previous structure is typically expressed on a non-local basis, local interactions

can generate multiple transformations in each term of a general quantum state (except in

those where the pair possessing HI and local interactions can separate from the remaining

system). In this sense, the formalism actually operates on the quantum information grammar

settled on the system more than in its physical parts. As such, the structure of the evolution

matrix is no longer reduced to P−unitary matrices because only two kinds of blocks can be

achieved through the entire matrix evolution, each one operating on one half of the overall

generalized Bell basis states. Here, a more complex structure appears and factorization should

be addressed in different terms. Depending on the direction of the local interactions and the

selection of the pair where it is applied, the position of the 2×2 blocks in the evolution matrix

can be selected. The options for these selections grow as 3d while the number of generalized

Bell basis states grows exponentially as 4d. Although other interactions could be used under

this scheme [63], particularly those non-local and able to generate extended entanglement, if

this set of interactions can combine to form arbitrary quantum states in the chain, represents

an ongoing problem.

8 Conclusions

Quantum storage and quantum information processing allow the fulfillment of computational

tasks impossible to achieve using conventional information technologies or with quantum
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optical systems exclusively. In this arena, magnetic systems based on trapped ions, nuclear

magnetic resonance, doped silicon and quantum dots have exhibited the potential to make

stable and efficient developments for spin-based quantum processing [59]. All of them exploit

HI interactions in several approaches together with quantum states control and, in particular,

with entanglement control [60].

QGAC was the first approach developed for quantum computation, but quantum an-

nealing [61] and measurement-based quantum computation [62], in which magnetic systems

modeled by HI interactions can manage a controlled manipulation, now offer alternatives. In

addition to traditional quantum algorithms based on classical-like computing gates, several

applied problems have been addressed as goals (pattern matching, folding proteins and other

particular NP-complete problems [60]). These specific problems require complex dedicated

quantum algorithms not always easy to decode in terms of a universal gates set. Here, unitary

factorization brings general procedures to construct complex processing rules.

In this work, solutions (25-28) set a concrete theoretical method to generate gates with

real entries based on HI interaction for two qubits. More generally, procedure (C.9-C.12)

states a numerical strategy to solve the same problem for complex entry gates. An important

extension of SU(2) decomposition for SU(2n) could be achievable for multiqubit systems [63].

Then it would be possible to draw the evolution in terms of manipulation blocks on a grammar

of natural states (as Bell states were in this work) extending the current unitary factorization

to systems [38] based on two-level interactions or a higher number of qubits to be processed

simultaneously. This generalization could be achieved by stating specific rotations in pairs

of eigenstates to set the SU(2) blocks. The challenge would be to adapt those rotations to

well-known and reproducible states.

As has been demonstrated, SU(2) block decomposition allows the easy recovery of tradi-

tional quantum error correction for the unitary factorization procedure, possibly with more

complex error syndromes than in SU(2) for single qubits while remaining controllable and

discrete. Clearly, error correction is tightly linked to the control of physical parameters (mag-

netic field, time measurement, precise knowledge of interaction strengths, etc.). In this line of

research the inclusion of processing at a finite temperature is an extension by which to con-

sider decoherence effects in the procedures. Despite the theoretical and experimental claim

that rectangular magnetic pulses are easily managed when under tight control, an improved

analysis using alternative continuous pulses is in order to generate equivalent effects and then

effects and factorization procedures equivalent to those developed here. SU(2) decomposi-

tion is not exclusive from constant magnetic fields. The use of continuous fields, such as

Bi(t) = Bi0 +Bi sinωit) [52] for each magnetic field in (12), suggests that we apply directed

waves on matter to generate controlled quantum operations based on unitary factorization.

The presented procedure assumes coherence and stability. For experimental applications

to be set up using the current proposal regarding these technologies, a defined position and

strict strength interaction controls should be developed. Currently, the capacity to induce and

control gate processing on matter is still far-off, but it is emerging with the fast development

of quantum technologies.
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Appendix A: 3D anisotropic Ising model and notation

As in [39]: Greek scripts for −,+ (or −1,+1, as better they adapt to the mathematical

expressions), associated with the components of states and operators in the Bell basis as

they were settled before; Latin scripts for h, i, j, k, ... and for spatial directions x, y, z or

1, 2, 3. We use · to emphasize some products to avoid misconceptions in script expressions. If

{Ihj
,Xhj

,Yhj
,Zhj

} is the local Pauli basis for each corresponding SU(2) block j, then the

2× 2 block structure in Hh and Uh(t) arises:

shj = ei∆h
+
α e−i∆h

−
αnj(α)·Shj (A.1)

= ei∆h
+
α (cos∆h

−
α Ihj

− isin∆h
−
αnj(α) · Shj

)

where : nj(α) = (qbh−α
sin

hπ

2
, qbh−α

cos
hπ

2
, βjh−α

)

Shj
= (Xhj

,Yhj
,Zhj

)

explicitly revealing the U(2) = U(1) × SU(2) nature. This corresponds to the expression

for the mixing matrix given in (14), where h is the magnetic field direction; j = 1, 2 is an

ordering label for the blocks as they appear consecutively in the rows of the evolution matrix;

kj , lj are the labels for its rows in Uh(t) (in s21, k2 = 2, l2 = 3 are the labels for the rows of

the second block, j = 2, in Uh=2(t)). Note that det(shj) = e2i∆h
+
α is unitary. In addition,

α = (−1)h+j+1, β = (−1)j(h+lj−kj+1) and q = β(−1)h+1. The reduced parameters are [39]:

bh± =
Bh±

Rh±

, jh± =
J{h}∓
Rh±

∈ [−1, 1], ∆h
ν
µ =

t

2
(Ehµ+ + νEhµ−) (A.2)

eh
β
α = cos∆h

−
α + iβjh−α sin∆h

−
α , dhα = bh−α sin∆h

−
α

depending on the energy eigenvalues Ehµν = µJh + νRh−µ (Eh±±,Eh±∓) and the physical

parameters in Hh:

Rh± = ≡
√

B2
h±

+ J2
{h}∓

, J{h}± ≡ Ji ± Jj , Bh± = B1h ±B2h (A.3)

where h, i, j are a cyclic permutation of 1, 2, 3; then, {h} is said equivalent to the pair i, j. In

this terms, as was stated in [39]:

Uh(t) =

2
⊕

j=1

shj =
⊕

α∈{−,+}

ei∆h
+
α e
−i∆h

−
αnj(α)·Shj(α) (A.4)

This expression states the block structure of Uh, which, due to the independence of the blocks

(in terms of the physical parameters involved) lets to set the desired P−unitary forms.

Appendix B: Solutions for unitary factorization with one magnetic pulse

If a
(i−1,j−1)
i−1,j ≡ |a

(i−1,j−1)
i−1,j |eiφ

(i−1,j−1)
i−1,j and ui,j ≡ |ui,j |e

iϕi,j (note that a non-zero phase applies

only for un,j , the first element to be eliminated in the bottom of each column), then by
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splitting the restrictions for phases and magnitudes, we find the next equivalent conditions

to (17), where χ ≡ bh−α sin∆h
−
α :

|χ| =
|ui,j |

ui−1,j
= |bh−α sin∆h

−
α | (B.1)

φ
(i−1,j−1)
i−1,j = ∆h

+
α − tan−1(jh−αβ tan∆h

−
α ) (B.2)

ϕi,j = ∆h
+
α −

π

2
(h− 1 + sign(qχ)) (B.3)

This procedure purports to solve these equations for the non-diagonal block in each

P−unitary matrix of (1) in combination with the identity block requirements (15) (changing α

by −α). It fits Uh(t) to the forms (2). Thus, each matrix becomes an evolution boost through

a magnetic field pulse with specific strength and duration. Unfortunately, this procedure

sometimes fails to give solutions in spite of (B.3), which cannot always be fulfilled ∆h
+
−α =

−∆h
+
α = (2m−α + n−α)π [52] and ∆h

−
−α = n−απ with m−α, n−α ∈ Z. Then, for h = 1,

ϕi,j = 0 or the specific value ϕn,j is usually impossible. For h = 2, (B.3) is easily fulfilled for

U (i,j) with real entries selecting sign(qχ) adequately: ϕi,j = −((2mα − nα)+
1
2 (1+sign(qχ))π.

By defining θ ≡ J{h}αt and due to |χ| ≡ |ui,j |/ui−1,j ∈ [0, 1], (B.1) can be written as:

χ = sign(bh−α)

√

1−
θ2

∆2
h
−

α

sin∆h
−
α . (B.4)

Fig. B.1. Solutions of (B.1) for different values of χ ∈ [−1, 1], shown with gray levels in the χ-scale

on the right. They are limited to the lower diagonal half in the first quadrant.

Some solutions are shown in Figure B.1 for values χ ∈ [−1, 1] (note 0 ≤ χ ≤ 1 because

|ui,j | ≤ ui−1,j). They are reported as a gray scale in the graphs. The range for ∆h
−
α becomes
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limited while |χ| increases. Due to (B.4), ∆h
−
α values when θ = 0 determines the range of

∆h
−
α by continuous sections. These ranges are fixed for each value of χ and are located in the

intervals [(n − 1)π, nπ], n ∈ Z+. When |χ| increases, (B.2) and (B.3) can be fulfilled hardly

because the range of ∆h
−
α shrinks. In addition, for the real entries case, the equation (B.2)

requires tan∆h
−
α = 0 or jh−α = 0 (then |bh−α| = 1). The first restriction is impossible except

for |χ| = 0 (which is seldom useful), and second is only applicable in partially anisotropic or

isotropic interactions (J{y}α = Jz −Jx = 0). In the last case, |χ| = | sin∆h
−
α |, so M

4
2,3(1) and

M4
2,3(2) can be constructed with driven magnetic fields in the y−direction in only one pulse.

Additional prescriptions are given by (15) by changing α by −α = +1, in agreement with (13)

for the diagonal block in U2(t) to fit it toM4
2,3. For the non-diagonal block (with α = −1), it is

required that sign(a
(i−1,j−1)
i−1,j ) = (−1)n−αsign(cos∆h

−
α ), sign(ui,j) = (−1)n−α−

1
2 (1+sign(qχ)) =

(−1)n−α−
1
2 (1−sign(χ)) (which could be a strong restriction due to ϕi,j) and:

Bh− =
1

t
sin−1

ui,j
ui−1,j

(B.5)

where the election of the inverse for sine function should be selected to fulfill the previous

relations for the signs of a
(i−1,j−1)
i−1,j , ui,j .

Appendix C: Solutions for unitary factorization with two magnetic pulses

Prescriptions to obtain I2 in the block −α using two pulses are [52]:

∆h
−
−α + sign(J{h}−αJ

′
{h}−α

)∆′h
−
−α = n−απ (C.1)

∆h
+
−α +∆′h

+
−α = (2m−α + n−α)π

B′
hα

J ′
{h}−α

= Bhα

J{h}−α

with m−α, n−α ∈ Z giving (18). For the non-diagonal block, we can divide equations (19-20)

into four equations: two for the magnitudes and two for the phases. Because each block is

unitary, equations for magnitudes become equivalent. For example, taking the 2, 1 entry:

|χh| ≡
|ui,j |

ui−1,j
= |e′h

β
αdhα + eh

β
α

∗
d′hα| (C.2)

ϕi,j = ϕ′i,j + (∆′h
+
α +∆h

+
α )−

π

2
(h− 1 + sign(q)) (C.3)

φ
(i−1,j−1)
i−1,j = φ

′(i−1,j−1)
i−1,j + (∆′h

+
α +∆h

+
α ) (C.4)

for the non-diagonal block α. Here, φ
′(i−1,j−1)
i−1,j = arg(e′h

β
α

∗
eh

β
α
∗
− d′hαdhα) and ϕ′i,j =

arg(e′h
β
αdhα + eh

β
α
∗
d′hα). Note that phase (C.3) makes a difference with respect to the im-

possibility in the one-pulse case (shj ∈ U(2) by itself cannot generate completely U(2)).

Meanwhile, a
(n,n−1)
n,n = (−1)P det(U), where P is the global parity for the sum of the n−α

values used in each Mn
i−1,i(j)

†
in (1) (thus, U (n−1,n−1) = I4 in (1) if U ∈ SU(4) and P = 0).
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Next, (19-20) or (C.2-C.4) should be solved together with (18) to obtain t, Bh−α, B
′
h−α.

These are more easily solved if they are expressed in terms of the parameters jh−α, j
′
h−α, bh−α, b

′
h−α,

∆h
−
α ,∆

′
h
−
α . Separating the real and the imaginary parts in e′h

β
αdhα + eh

β
α
∗
d′hα, we define:

Rϕ ≡ bh−α sin∆h
−
α cos∆′h

−
α + b′h−α cos∆h

−
α sin∆′h

−
α (C.5)

Iϕ ≡ β sin∆h
−
α sin∆′h

−
α (j
′
h−αbh−α − jh−αb

′
h−α)

and for e′h
β
α

∗
eh

β
α
∗
− d′hαdhα:

Rφ ≡ cos∆h
−
α cos∆′h

−
α − (C.6)

(j′h−αjh−α + b′h−αbh−α) sin∆h
−
α sin∆′h

−
α

Iφ ≡ −β(j′h−α sin∆′h
−
α cos∆h

−
α + jh−α sin∆h

−
α cos∆′h

−
α )

noting R2
ϕ + I2ϕ +R2

φ + I2φ = 1. The procedure will require to solve (C.2) as:

χh
2 = Rϕ

2 + Iϕ
2 =

|ui,j |
2

u2i−1,j
(C.7)

together with equations (C.3-C.4), but rewritten as:

arctan ξϕ = ϕi,j −
π

2
(h− sign(Rϕ) + sign(q)) + (2m−α + n−α)π (C.8)

arctan ξφ = φ
(i−1,j−1)
i−1,j −

π

2
(1− sign(Rφ)) + (2m−α + n−α)π

with : ξϕ ≡
Iϕ
Rϕ

, ξφ ≡
Iφ
Rφ

The previous equations show that if χh
2 covers [0, 1] independently of ξϕ, ξφ values, then

(14) can be adapted to (6) in two pulses. Note particularly the sign in Rϕ,Rφ, which

can be easily adapted (if cos∆h
−
α , sin∆h

−
α change their signs but not cos∆′h

−
α , sin∆

′
h
−
α , or

vice versa, then it is easily achievable with selective displacements in ∆h
−
α ,∆

′
h
−
α ). Thus,

the last requirements are based on the free ranges for ξϕ, ξφ in R independently from χh.

Additionally, these equations depend on the relative signs among jh−α, j
′
h−α, bh−α, b

′
h−α:

zjh ≡ sign(jh−αj
′
h−α), zbh ≡ sign(bh−αb

′
h−α). The resulting equations are:

ξϕ =
β sin∆h

−
α sin∆′h

−
α (j
′
h−αbh−α − jh−αb

′
h−α)

bh−α sin∆h
−
α cos∆′h

−
α
+ b′h−α cos∆h

−
α sin∆′h

−
α

(C.9)

ξφ =
−β(j′h−α sin∆′h

−
α cos∆h

−
α + jh−α sin∆h

−
α cos∆′h

−
α )

cos∆h
−
α cos∆′h

−
α
− (j′h−αjh−α + b′h−αbh−α) sin∆h

−
α sin∆′h

−
α

(C.10)

χh
2 = (1 + ξ2ϕ)(bh−α sin∆h

−
α cos∆′h

−
α + b′h−α cos∆h

−
α sin∆′h

−
α )

2 (C.11)
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involving several parameters, but stating the general procedure for obtain matrix factors.

This suggests that these equations can be fulfilled by any χh, ϕi,j and φ
(i−1,j−1)
i−1,j , together

with (C.1,18) by setting the concrete values for bh±α, b
′
h±α,∆h

−
α ,∆

′
h
−
α (or their equivalent

parameters Bh±α, B
′
h±α, t, t

′).

Fig. C.1. Colored maps of a) arctan(ξϕ) ∈ (−π/2, π/2), b) arctan(ξφ) ∈ (−π/2, π/2) and c)

χ2

h
∈ [0, 1]. All graphs are represented in (jh−α, j

′
h−α

, τ) ∈ [−1, 1]× [−1, 1]× [0, 6] for zjh = zbh =

1, cα = c′α = 1, N−α = 2 as an example. Dark colors correspond to lower values in their respective

range and brighter to higher ones.

The previous equations are a non-linear equation system because ∆h
−
α ,∆

′
h
−
α contain

Bh−α, B
′
h−α. Parameters should be uncoupled regardless of (C.1,18) because there are only

three remaining free parameters to solve them (C.7-C.8): t, Bh−α, B
′
h−α. Thus, the equation

for t′ (C.4) should be used explicitly in (C.7-C.8). ∆h
−
α ,∆

′
h
−
α should be written conveniently:

∆h
−
α =

Rh−α

J{h}α
J{h}αt ≡

τ

jh−α
(C.12)

∆′h
−
α =

R′h−α
J ′{h}α

J ′{h}αt
′ ≡

τ ′

j′h−α

τ ′ = −τ
J ′{h}α
J ′h

Jh
J{h}α

− α(2m−α + n−α)π
J ′{h}α
J ′h

≡ −τ
c′α
cα

+ c′αNαπ

where cα denotes the ratio between the transverse strengths Jh{α} and the parallel strength

Jh. N−α = −α(2m−α + n−α) ∈ Z. Parameters jh−α ∈ [−1, 1], j′h−α ∈ [−1, 1], τ ∈ R

appear together with zjh , zbh , cα, c
′
α, N−α in the equations. The signs in jh−α, j

′
h−α cannot

be selected because they depend on the quantum system’s nature; nevertheless, it is not an

obstacle because the properties of trigonometric functions warrant multiple solutions with

signs changed in ξϕ, ξφ. The non-linear nature of equations requires a numerical treatment to

find general solutions. Still, each set of required values is expected to have multiple solutions

(χh, ξϕ, ξφ reproduce a specific P−unitary factor matrix for U ∈ SU(4)).

The numerator and the denominator in the expressions (C.9-C.10), in terms of (C.12), have

many opportunities to nullify independently and not simultaneously. Due to continuity, ξϕ, ξφ
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runs over R. In addition, χ2
h lies on [0, 1]. Here, we take care about the apparent correlation

between a null denominator in ξϕ and a null numerator in χh, only due to the written form

for χ2
h in (C.11). Unfortunately, equations (C.9-C.11) conform families depending on physical

parameters zjh , zbh , cα, c
′
α, N−α considering (C.12), which cannot be integrated easily in a

unique non-dimensional parameter. To illustrate, Figure C.1 shows colored maps representing

arctan(ξϕ), arctan(ξφ) and χ
2
h in terms of jh−α, j

′
h−α, τ for the particular case of zjh = zbh =

1, cα = c′α = 1, N−α = 2. Dark colors represent lower values and bright colors higher values in

their respective ranges ((−π/2, π/2) for arctan(ξϕ), arctan(ξφ) and [0, 1] for χ2
h). These maps

show the non-linear complexity of the equations.


