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We describe an improved version of the quantum algorithm for Hamiltonian simulation

based on the implementation of a truncated Taylor series of the evolution operator. The
idea is to add an extra step to the previously known algorithm which implements an

operator that corrects the weightings of the Taylor series. This way, the desired accu-

racy is achieved with an improvement in the overall complexity of the algorithm. This
quantum simulation method is applicable to a wide range of Hamiltonians of interest,

including to quantum chemistry problems.
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1 Introduction

The problem of simulating quantum mechanical evolution was one of the main motivations for

the proposal of quantum computers [1], because the exponential growth of the Hilbert space

dimension means that it quickly becomes intractable for classical computers. Lloyd was the

first to explicitly show that a quantum computer can be used as a universal quantum simulator

[2] for local quantum systems, by decomposing the evolution operator into a set of quantum

gates. Aharonov and Ta-Shma considered the alternative scenario where the Hamiltonian

is sparse and there is an efficient procedure to calculate its nonzero entries [3]. Since then,

several improved quantum simulation algorithms were proposed [4, 5, 6, 7, 8, 9, 10, 11, 12].

Recently, nearly optimal methods for Hamiltonian simulation have been developed [10, 11,

12] which achieve an exponential improvement of the complexity in the dependence on the

simulation error, ε. For sparse Hamiltonian simulation the lower bound on the complexity of

O

(
τ +

log(1/ε)

log log(1/ε)

)
, (1)

was proven in [12], with τ = t‖H‖maxd, where d is the sparsity, ‖H‖max is the max-norm of

the Hamiltonian and t is the evolution time. This bound is for the query complexity, which

is the number of calls to oracles for calculating the positions and values of nonzero entries
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624 Improved Hamiltonian simulation via a truncated Taylor series and corrections

in the Hamiltonian (expressed as a matrix in the computational basis). The nearly optimal

method of [12] has a query complexity of

O

(
τ

log(τ/ε)

log log(τ/ε)

)
, (2)

whereas in [10] a similar complexity is achieved, where τ is replaced by τ ′ = t‖H‖maxd
2.

In these methods, the dependence on the time and error appears in the form of a product,

in contrast to the proven lower bound, where this dependence appears as a sum. Very re-

cently, the desired dependence as a sum was achieved for sparse Hamiltonian simulation with

two different approaches: one involving quantum signal processing techniques [13] and an-

other involving a corrected quantum walk [14]. However, whether this improvement could be

achieved for the simulation of Hamiltonians given by sums of local terms was an open ques-

tion. More recently, the signal processing approach was generalized to address the simulation

of Hamiltonians given by sums of local terms [15].

In this work, we apply an approach similar to that of the corrected quantum walk [14] to

improve the complexity of the Hamiltonian simulation method based on a truncated Taylor

series [11]. The original method described in Ref. [11] is applicable to Hamiltonians given by

sums of unitary terms H =
∑

` α`H`, with α` ≥ 0 and has a complexity of

O

(
T

log (T/ε)

log log(T/ε)

)
, (3)

where T :=
∑

` α`t. This complexity is in terms of controlled-H` operations (which is equiv-

alent to the query complexity if the Hamiltonian is specified by an oracle). Our approach is

based on using this method to achieve a quantum simulation with a fixed error δ, and then

applying a correction operator in order to achieve an error less than ε. This way we obtain a

complexity of

O

(
T

log (T )

log log(T )
+ log(1/ε)

)
. (4)

This leads to a close to quadratic improvement with respect to the original approach when

the error is on the order of exp (−T ). The truncated Taylor series approach is applicable to

a wide range of problems where the Hamiltonian naturally decomposes as a sum of terms.

These include, for example, the important problem of simulating quantum chemistry [16, 17],

which might be one of the first applications of quantum computers due to its relatively low

resource requirements. Another advantage of the truncated Taylor series method is that it

requires less additional gates than the algorithms based on quantum walks (that is, gates that

are additional to controlled-H` operations or calls to an oracle for the Hamiltonian).

This paper is structured as follows: in Section 2 we provide a summary of the truncated

Taylor series simulation algorithm and of the improved approach using a correction; in Section

3 we show the main result of this work regarding the complexity of the corrected approach.

Finally, we present the conclusion in Section 4.

2 Background and summary of the method

2.1 Simulating Hamiltonian dynamics with a truncated Taylor series

In Ref. [11], a method is presented to perform a quantum simulation of the unitary operator

U = exp(−iHt), for a given Hamiltonian H, up to accuracy δ. The main advantage of this
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method is that the dependence of the number of gates on the precision is ≈ log(1/δ), whereas

methods based on a Suzuki-Trotter expansion have a polynomial dependence on 1/δ.

The algorithm is as follows. First, decompose the Hamiltonian as

H =

L∑
`=1

α`H` , (5)

where each H` is unitary. This decomposition is general, since any Hamiltonian can be

written in such form. In fact, in many problems of interest the interactions are local and

the Hamiltonian can be decomposed into a small number of easy to implement terms. Also,

without loss of generality, we can define H` such that α` > 0. Furthermore, we define

T :=
∑L

`=1 α`t. This Hamiltonian simulation method is based on the implementation of an

approximate version of the unitary

V := exp(−iHt/r) , (6)

where r is the number of segments into which the time is divided. This operator can be

approximated by the truncated Taylor series

Ṽ :=

K∑
k=0

1

k!
(−iHt/r)k. (7)

In this work, we take the order K to be at least 2. If ‖V − Ṽ ‖ < δ/r, then we ensure that

‖U−Ṽ r‖ < δ. It can be shown that, if T/r is a constant, the error δ/r is bounded by O(K−K)

and thus the truncation of the Taylor series at

K = O

(
log(r/δ)

log log(r/δ)

)
(8)

is enough to achieve the desired accuracy.

The implementation of Ṽ is achieved as follows. The unitary Ṽ can be expanded as a sum

of unitaries as

Ṽ =
K∑

k=0

L∑
`1...`k=1

(−it/r)k

k!
α`1 ...α`kH`1 ...H`k

=
∑
j∈J̃

βjVj , (9)

where we define the truncated index set

J̃ := {(k, `1, ..., `k) : k ∈ {0, ...,K}, `1, ..., `k ∈ {1, ...L}} , (10)

such that Vj is a unitary and βj is a positive coefficient, and are given by

Vj := (−i)kH`1 . . . H`k , βj :=
(t/r)k

k!
α`1 ...α`k . (11)

To implement this operator on a quantum computer, the following mechanism is introduced

select(V )|j〉|ψ〉 = |j〉Vj |ψ〉 , (12)
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which is an operation controlled on the ancilla states |j〉, and |ψ〉 is some quantum state.

This operator can be implemented using K controlled-H` operations that act on a state of

the form |b〉|`〉|ψ〉 and give |b〉|`〉(−iH`)
b|ψ〉 [11]. Henceforth in this paper, when we refer

to the complexity of the algorithm or a certain operation, it will be in terms of the number

of controlled-H` operations used. The cost of this operation in terms of universal gates was

analyzed in Ref. [11].

Furthermore, a unitary transformation B acting on the ancillas as

B|0〉 =
1√
s

∑
j∈J̃

√
βj |j〉 , (13)

is defined, where s =
∑

j∈J̃ βj is the normalization factor. It can be shown that the operator

W given by

W := (B† ⊗ 1) [select(V )] (B ⊗ 1) , (14)

acts as

W |0〉|ψ〉 =
1

s
|0〉Ṽ |ψ〉+

√
1− 1

s2
|φ〉 , (15)

where the ancillary state of |φ〉 has no support in |0〉. The component of the wavefunction that

we are interested in is the one flagged by the ancilla qubit being in state |0〉. This amplitude

decreases with s but can be amplified to 1 using Oblivious Amplitude Amplification (OAA)

[11]. When s < 2, it is trivial to include an ancilla qubit to increase s to 2, as discussed in

[11]. For simplicity in the following discussion, if s would otherwise be < 2, we will assume

that the ancilla qubit is added to increase s to 2. When s = 2, one step of OAA is enough

to amplify the amplitude of the component with |0〉Ṽ |ψ〉 in Eq. (15) to ≈ 1. It can be shown

that

s =
∑
j∈J̃

βj = eT/r −
∞∑

k=K+1

(T/r)k

k!
= eT/r +O(δ/r) . (16)

Hence, we would like the number of segments r to scale as T so that OAA only gives an O(1)

overhead to the algorithm. In Ref. [11], r is taken to be the smallest integer such that s ≤ 2,

which corresponds to r ≈ T/ ln(2). Here we choose r to be a larger integer satisfying r > 4T .

For s = 2, after one step of OAA, we obtain the state

|Ψ〉 = |0〉Voaa|ψ〉+ |⊥〉 , (17)

where the ancilla components of the state |⊥〉 are orthogonal to |0〉, and

Voaa = Ṽ

(
3

2
1− 1

2
Ṽ †Ṽ

)
. (18)

Using Lemma 6 of [12] we have that ‖V − Voaa‖ = O(δ/r), which implies that ‖|Ψ〉 − |0〉V |ψ〉‖ =

O(δ/r). By repeating this process r times using fresh ancillas, we obtain the state

|Ψr〉 = |0〉⊗r ⊗ V r
oaa|ψ〉+ |⊥2〉 . (19)

This way, we achieve the desired accuracy since

‖V r
oaa − U‖ = O(δ). (20)
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The complexity of the algorithm stems from the fact that the implementation of a truncated

Taylor series at order K has a complexity of O(K). Since this must be done r times and

r = O(T ), the overall complexity in Ref. [11] is

O

(
T

log (T/δ)

log log(T/δ)

)
. (21)

In the next subsection we summarize the idea of how a better scaling can be achieved by

applying a correction operator at the end of this simulation procedure.

2.2 Summary of the corrected Taylor series approach

In the corrected Taylor series approach we consider δ to be a constant less than 1/2, which

is the accuracy of the first part of the Hamiltonian simulation algorithm, and we would like

to achieve a final accuracy of the simulation algorithm of ε < δ. To do so, we implement a

correction operator ṼC such that ∥∥∥ṼCV r
oaa − U

∥∥∥ < ε . (22)

In order to choose ṼC we first define the perfect correction operator VC such that

VCV
r
oaa = U. (23)

Since V r
oaa is a function of Ṽ , which is a series of powers of the Hamiltonian H, VC can also

be expanded as a Taylor series

VC =

∞∑
k=0

akHk, (24)

where H = −iH. We define ak to be the coefficients in this Taylor series. In practice, only

a finite number of terms of the Taylor series can be implemented. Thus, we define ṼC as the

truncated Taylor series of VC ,

ṼC =

Q∑
k=0

akHk. (25)

The order Q of the truncation is chosen so as to achieve the desired accuracy ε.

The implementation of ṼC can be achieved in an analogous way as for Ṽ . That is, after

obtaining the state in Eq. (19), another ancilla is appended of dimension Q + 1, and the

procedure for implementing sums of unitaries is followed in order to obtain the corrected

state

|ΨC〉 = |0〉⊗r+1 ⊗ 1

sC
ṼCV

r
oaa|ψ〉+ |⊥3〉 , (26)

with sC =
∑Q

k=0 |ak|Ak, for A =
∑L

`=1 α`. We show in Lemma 1 of Sec. 3 that sC ≤ 2

and so it is possible to use a single step of OAA to amplify the component of the state with

ṼCV
r
oaa|ψ〉. Let us define Ũ = ṼCV

r
oaa. After OAA, we have implemented the operator

Ũoaa = Ũ

(
3

2
1− 1

2
Ũ†Ũ

)
, (27)

which is analogous to Eq. (18). From Eq. (22) and Lemma 6 of [12], this operator is within

O(ε) of the desired operator U , so the desired accuracy is achieved.
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The other crucial factor for the complexity is the order Q at which ṼC is truncated. We

show that the desired accuracy ε is achieved for

Q = O (T + log(1/ε)) , (28)

which gives the complexity of the implementation of the correction. The final algorithmic

complexity after the correction is thus

O

(
T

log (T )

log log(T )
+ log(1/ε)

)
. (29)

This is an improvement over the complexity from Ref. [11] of

O

(
T

log (T/ε)

log log(T/ε)

)
, (30)

since the dependence on the error and time appear as a sum and not as a product. In

particular, if ε ≈ exp (−T ), which can happen if we need a very low error and/or the simulation

time is small, the complexity from Eq. (29) gives a close to quadratic improvement over the

complexity in Eq. (30).

When applied to the problem of sparse Hamiltonian simulation, we have T ≤ τ ′ =

t‖H‖maxd
2, where d is the sparsity. Hence, the bound obtained with the corrected Taylor

series approach is closer to the proven lower bound from Ref. [12] of

O

(
τ +

log(1/ε)

log log(1/ε)

)
, (31)

with τ = t‖H‖maxd. Although the dependence on the sparsity is in general worse, for partic-

ular applications there is often a known decomposition of the form of Eq. (5), so the square

in the dependence on d can be eliminated. A better dependence on sparsity can be obtained

using other approaches [14, 13].

Before proceeding with the technical proofs in the next section, we summarize the proposed

algorithm. We assume we are given a state |ψ〉 which represents the initial state of the

quantum system whose dynamics we want to simulate.
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Algorithm 1: Hamiltonian simulation with a corrected Taylor series

1. For segments 1 to r with r ∈ Θ(T ), perform the following steps.

(a) Append an ancilla of dimension K + 1 in state |0〉 and apply the operator B as
in Eq. (13).

(b) Perform the controlled unitary operation select(V ) given in Eq. (12).

(c) Apply the operator B† to the ancilla to obtain the state described in Eq. (15).

(d) Apply one step of OAA, as described in Lemma 5 of Ref. [12]. This results in the
implementation of the operation Voaa, as defined in Eq. (18), with success flagged
by a zero in the ancilla.

2. Apply the correction ṼC defined in Eq. (25) via an ancilla of dimension Q+ 1 and the
unitary select(V ), following an analogous procedure to 1 (a)-(c). This yields the state
in Eq. (26).

3. Apply a single step of OAA on steps 1 and 2 above.

3 Hamiltonian simulation with a corrected Taylor series

In this section we present and prove the main result of this work.

Theorem 1 A Hamiltonian H =
∑L

`=1 α`H`, where H` are unitary matrices and α` > 0

can be simulated for time t within error ε > 0 with an overall complexity in terms of controlled-

H` gates of

O

(
T

log T

log log T
+ log(1/ε)

)
, (32)

where T :=
∑L

`=1 α`t.

To prove this result we first need the following Lemma.

Lemma 1 When simulating Hamiltonian evolution using Algorithm 1, given that ‖V − Ṽ ‖ <
δ/r, the correction operator ṼC

ṼC =

Q∑
k=0

akHk =
∑
j

ηj Ṽj , (33)

satisfies
∑

j |ηj | ≤ 1 + 2δ +O(δ2/r).

Before proceeding with the proof of this Lemma, it is useful to define the functional sA
which acts on a function F of a matrix X, with F (X) =

∑
n FnX

n, as

sA(F ) =
∑
n

|Fn|An , (34)

where A is a positive number. The motivation for this definition comes from the method of

implementing an operator given by sums of unitaries, explained briefly in Sec. 2.1 and in more
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detail in [11]. Expressing Ṽ as a function of H, the state after implementing Ṽ (H) before

OAA given in Eq. (15) can be written as

1

sA(Ṽ )
|0〉Ṽ (H)|ψ〉+

√
1− 1

sA(Ṽ )2
|φ〉 , (35)

where in this case A =
∑L

`=1 α`. This is the value of A that will be used throughout this

paper. The quantity sA(F ) is thus related to the number of steps of OAA needed to amplify

the component of |0〉F (H)|ψ〉 to ≈ 1. The definition here is slightly different from the one

in Ref. [14], because we include the factor A which comes from the decomposition of H in

terms of unitary operators as in Eq. (5). It is simple to show that the functional sA obeys

the following properties for functions F and G and scalars α, β ∈ C,

sA(αF + βG) ≤ |α|sA(F ) + |β|sA(G) , (36)

sA(FG) ≤ sA(F )sA(G) . (37)

These are the same properties as in Ref. [14]. The proofs are identical, so will not be given

here. These properties will be useful in what follows.

Proof of Lemma 1. This proof is similar to that for Lemma 2 of Ref. [14]. The operator

implemented by the algorithm before the correction is applied can be written as

V r
oaa = Ṽ r

(
3

2
1− 1

2
Ṽ †Ṽ

)r

. (38)

The perfect correction operator VC , defined in Eq. (23), can be written as

VC = UṼ −r
(

3

2
1− 1

2
Ṽ †Ṽ

)−r
. (39)

If we now define

∆ := V − Ṽ , (40)

then in the same way as in Ref. [14] we can express VC as

VC = (1−W )
−r

=

∞∑
k=0

(
r + k − 1

k

)
W k , (41)

with

W =
1

2

[
Ṽ †∆−∆†Ṽ + ∆†∆ + (Ṽ †)2∆2 + (∆†)2∆2 + 2Ṽ †∆†∆2 + Ṽ †Ṽ∆∆† + Ṽ∆(∆†)2

]
.

(42)

The coefficients ak of the Taylor series of VC can thus be obtained from the Taylor series of W .

In turn, the Taylor series of W can be calculated by expanding Ṽ and ∆ in their respective

Taylor series.
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Using the properties of the functional sA given in Eqs. (36) and (37), and regarding VC ,

∆, W and so forth as functions of H, we obtain

sA(VC) ≤
∞∑
k=0

(
r + k − 1

k

)
sA(W )k = [1− sA(W )]−r . (43)

Furthermore, we have that

sA(∆) = sA(Ṽ − V ) =

∞∑
k=K+1

(T/r)k

k!
≤ δ/r . (44)

Using Eq. (16) and the choice of r ≈ T/ log 2 discussed in Sec. 2.1, we obtain sA(Ṽ ) ≤ 2.

Hence, using Eq. (42) we have

sA(W ) ≤ 2sA(∆) +
9

2
[sA(∆)]2 + 3[sA(∆)]3 +

1

2
[sA(∆)]4 . (45)

This implies that sA(W ) ≤ 2δ/r +O(δ2/r2), and hence

sA(VC) ≤ [1− sA(W )]−r

≤ [1− 2δ/r +O(δ2/r2)]−r

= 1 + 2δ +O(δ2/r) . (46)

The actual correction operator implemented, ṼC , satisfies sA(ṼC) < sA(VC). The value of

sA(ṼC) corresponds to the sum of the absolute values of ηj . Hence we obtain
∑

j |ηj | ≤
1 + 2δ +O(δ2/r), as required .

Next, we prove a Lemma regarding the value of Q needed in order for the correction

operator to be sufficiently accurate.

Lemma 2 When simulating a Hamiltonian using Algorithm 1, there exists a truncation

Q = O(T + log(1/ε)) such that the correction operator ṼC yields final error no greater than ε.

Proof. From Eq. (23), we obtain∥∥∥ṼCV r
oaa − U

∥∥∥ =
∥∥∥(VC − ṼC)V r

oaa

∥∥∥ , (47)

so we need to choose a Q such that ‖(VC − ṼC)V r
oaa‖ < ε. We can bound this expression as∥∥∥(VC − ṼC)V r

oaa

∥∥∥ ≤ ∥∥∥VC − ṼC∥∥∥× ‖V r
oaa‖ ≤

∥∥∥VC − ṼC∥∥∥ , (48)

since ‖Voaa‖ ≤ 1 so ‖V r
oaa‖ ≤ 1. In order to bound ‖ṼC−VC‖ it is useful to define the operator

V∆ := V †∆ , (49)

such that we can write W as

W =
V∆

2
−
V †∆
2

+ V †∆V∆ +
V 2

∆

2
−
V †∆V

2
∆

2
(50)
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which comes from Eqs. (39), (40), (41) and the fact that U = V r. We can bound ‖ṼC − VC‖
using the following trick (also used in [14]) valid for a constant x ≥ 1:

∥∥∥ṼC − VC∥∥∥ =

∥∥∥∥∥∥
∞∑

k=Q+1

akHk

∥∥∥∥∥∥
≤

∞∑
k=Q+1

|ak| ‖H‖k

≤
∞∑

k=Q+1

|ak| Ak

≤ 1

xQ+1

∞∑
k=Q+1

|ak| (Ax)k

≤ 1

xQ+1
V +
C (x) , (51)

where we used the fact that ‖H‖ ≤
∑L

`=1 α` = A and defined

V +
C (x) :=

∞∑
k=0

|ak| (Ax)k . (52)

Also, let us define the coefficients bk and ck as the Taylor coefficients of V∆ andW , respectively,

so that

V∆ =

∞∑
k>K

bkHk , W =

∞∑
k>K

ckHk . (53)

Then we define the series with positive coefficients

V +
∆ (x) :=

∞∑
k>K

|bk|(Ax)k , W+(x) :=

∞∑
k>K

|ck|(Ax)k . (54)

Using Eq. (41) we have

V +
C (x) ≤

[
1−W+(x)

]−r
. (55)

From Eq. (50) we can bound W+(x) as

W+(x) ≤ V +
∆ (x) +

3

2
[V +

∆ (x))]2 +
1

2
[V +

∆ (x)]3 . (56)

At this point, we need to upper bound the coefficients bk of V∆. We have that

V∆ = V †(V − Ṽ )

=

∞∑
k=0

∞∑
k′>K

(−t/r)k

k!

(t/r)k
′

k′!
Hk+k′

=

∞∑
m>K

(t/r)m

m!
Hm

m∑
k>K

(−1)m−k
(
m

k

)
. (57)
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Hence, we obtain for k > K,

|bk| =
(t/r)k

k!

k∑
j>K

(−1)k−j
(
k

j

)

≤ (t/r)k

k!

k∑
j>K

(
k

j

)

≤ (2t/r)k

k!
. (58)

For k ≤ K we have bk = 0. Using this bound, we obtain

V +
∆ (x) =

∞∑
k>K

|bk|(Ax)k

≤
∞∑

k>K

(2tAx/r)n

n!

≤
∞∑

n>K

(2Tx/r)n

n!

≤
∞∑

n>K

(x/2)n

n!
. (59)

In the last line we have used the fact that we have chosen r ≥ 4T . We also restrict to K ≥ 2.

Choosing x = 2, we obtain V +
∆ (x) . 0.22 and W+(x) . 0.29. Then Eq. (55) implies that

V +
C (x) ≤ 2r . (60)

Using Eq. (51) we obtain the bound∥∥∥ṼC − VC∥∥∥ ≤ 2r−Q−1 . (61)

Thus, to ensure that the error in the whole quantum simulation algorithm is less than ε, we

choose Q such that

2r−Q−1 ≤ ε . (62)

Because r = O(T ), this inequality can be achieved with

Q = O(T + log(1/ε)) (63)

.

Using the results of Lemma 1 and Lemma 2 we can finally prove the main result of our

paper.

Proof of Theorem 1. The second part of the algorithm requires the implementation of

a correction operator

ṼC =

Q∑
k=0

akHk. (64)
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Since H is given by a sum of unitary matrices H`, we can write ṼC as a sum of unitaries∑
j ηj Ṽj , where each Ṽj is given by a product of some of the unitary operators H`. The

coefficients ak can be calculated from Eq. (41) since the Taylor expansion of W can be

calculated from Eq. (42). The implementation of ṼC is analogous to that of Ṽ from Eq. (7),

and so it requires O(Q) operations controlled on ancilla qubits [11] and a number of steps of

OAA which depends on the quantity

sA(ṼC) =
∑
j

|ηj | . (65)

In Lemma 1, we have shown that sA(ṼC) is bounded by 1 + 2δ + O(δ2/r). Therefore, by

choosing δ to be slightly less than 1/2, we find that sA(ṼC) ≤ 2, and therefore the OAA

can be achieved in a single step. Moreover, in Lemma 2 we have shown that the correction

can yield error < ε with Q = O(T + log(1/ε)). The complexity of the correction is therefore

O(T + log(1/ε)).

The first part of the quantum simulation algorithm consists of implementing V r
oaa, which

gives an approximation of the operator U up to accuracy δ. Using the results of [11], the

complexity is

O

(
T

log (T/δ)

log log(T/δ)

)
. (66)

Above we have found that we can take δ ≈ 1/2. Therefore the complexity of the full algorithm

is

O

(
T

log (T )

log log(T )
+ log(1/ε)

)
(67)

.

4 Conclusions

We have improved on the complexity of the truncated Taylor series method for Hamiltonian

simulation by adding a new step to the procedure which involves the application of a correction

operator. We have shown that this operator can be written as a sum of unitaries and that it

can be implemented via Oblivious Amplitude Amplification. In general, the ideas presented

in this paper and in [14], as well as the proof techniques used, are versatile enough to be

applied to any implementation of sums of unitaries in a quantum computer. Furthermore,

the truncated Taylor series method is applicable to the simulation of many Hamiltonians of

interest, including quantum chemistry problems [16, 17]. For this reason, the improvement to

the complexity of the method presented in this work could be significant, particularly in the

early stage of quantum computers where the number of qubits and quantum gates available

is highly limited.

Further improvement could, in principle, be possible by considering multiple rounds of

correction as discussed in [14]. This would slightly improve the dependence of the complexity

on the simulation time, but the proofs become much more intricate and so we leave that for

future exploration.
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