
Quantum Information and Computation, Vol. 17, No. 5&6 (2017) 0415–0455
c© Rinton Press

QUANTUM GATES VIA CONTINUOUS TIME QUANTUM WALKS

IN MULTIQUBIT SYSTEMS WITH NON-LOCAL AUXILIARY STATES

DMITRY SOLENOV a

Department of Physics, St. Louis University

St. Louis, Missouri 63103, USA

Received May 24, 2016

Revised March 22, 2017

Non-local higher-energy auxiliary states have been successfully used to entangle pairs
of qubits in different quantum computing systems. Typically a longer-span non-local

state or sequential application of few-qubit entangling gates are needed to produce a

non-trivial multiqubit gate. In many cases a single non-local state that span over the
entire system is difficult to use due to spectral crowding or impossible to have. At the

same time, many multiqubit systems can naturally develop a network of multiple non-
local higher-energy states that span over few qubits each. We show that continuous time

quantum walks can be used to address this problem by involving multiple such states to

perform local and entangling operations concurrently on many qubits. This introduces
an alternative approach to multiqubit gate compression based on available physical re-

sources. We formulate general requirements for such walks and discuss configurations

of non-local auxiliary states that can emerge in quantum computing architectures based
on self-assembled quantum dots, defects in diamond, and superconducting qubits, as

examples. Specifically, we discuss a scalable multiqubit quantum register constructed

as a single chain with nearest-neighbor interactions. We illustrate how quantum walks
can be configured to perform single-, two- and three-qubit gates, including Hadamard,

Control-NOT, and Toffoli gates. Continuous time quantum walks on graphs involved in

these gates are investigated.
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1 Introduction

Quantum computing rely on two-state quantum systems (qubits) to store information and

quantum gates to process it [1, 2, 3]. Although other formulations exist, e.g., optical [4],

or measurement-based quantum computing [5], this formulation has been one of the most

commonly used due to its close analogy with classical binary information processing, among

other reasons. One of the important elements of this analogy is design of quantum gates

[3], which, in many cases, can be understood in terms of classical gate procedures applied to

binary-labeled basis states. This means that quantum system must be driven by a classical

external field to perform rotations of basis [6]—the amplitudes are driven or adiabatically

carried through certain trajectories that start and end at some qubit basis states. In the

case of entanglement-manipulating gates, such trajectories must also involve states that are
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formed due to physical interactions between qubits [3]. These intermediate states, however,

do not have to belong to qubits’ computational basis [7].

While qubits are binary quantum objects, physical systems that are used to represent

them have more accessible quantum states [8, 9, 10, 11, 12, 13]. Additional higher-energy

(auxiliary) states have been used in many architectures to manipulate qubits and develop

entanglement [11, 14, 15, 10, 12]. Record coherence times and successful multiqubit manip-

ulations recently achieved in systems of superconducting qubits that are nearly harmonic

oscillators have brought this fact into focus once again [18, 19, 20, 17, 16]. In these systems

qubits are still encoded by the two lowest energy states. Yet, higher energy states are easily

accessible and are not that distinct from the qubit states [9, 20]. It has been experimentally

demonstrated that interaction via one of such higher energy states can be used to perform

two-qubit entangling quantum gates in different quantum computing architectures, including

those based on superconducting qubits [11, 14] and self-assembled quantum dots [15]. In all

these cases the physics of performing entangling quantum gates involves driving the system

through one non-local auxiliary state to accumulate a non-local phase for the wave function.

Recently we have demonstrated that a cavity-mediated interaction between multi-state

quantum systems holding qubits generates a set of auxiliary states with certain structure

of nonlocality that can be utilized to perform entangling quantum gates [7, 21, 22]. While

this approach is applicable to more then two qubits, it suffers from spectral crowding and

can become unusable for larger qubit systems [23]. In this paper we show that multiqubit

systems interacting via multiple quantum fields (cavity modes) can overcome this difficulty.

Under certain conditions local and non-local auxiliary states formed in these systems produce

complex networks of states that do not suffer from spectral crowding and can be used to

manipulate entanglement. We demonstrate that such networks can be effectively addressed

if classical driving is replaced by temporarily-enabled continuous time quantum walks—a

continuous time quantum evolution through a network of states with certain connectivity

[24, 25, 26, 27, 28, 29]. This approach gives multiqubit multi-state systems freedom to explore

multiple quantum states involved in interactions, hence, potentially enabling more effective

phase accumulation and faster quantum gates. We formulate general requirements on control

and interactions between multi-state systems that are necessary to perform quantum gates

via quantum walks in multiqubit registers. The procedure is illustrated with examples of

one-, two-, and three-qubit gates.

The paper is organized as follows: Section 2 introduces continuous time quantum walk

approach for multiqubit systems with multiple auxiliary states and interactions. In this sec-

tion we formulate general requirements on control (driving) field—breaking of symmetry—

needed to perform quantum gates on qubits via continuous time quantum walks. In Sec. 3 we

discuss realization of this symmetry breaking in scalable multiqubit architectures involving

self-assembled quantum dots, defects in diamond, and superconducting transmon qubits. In

Sec. 4 we show how this symmetry breaking can be utilized to perform quantum gates. We

begin with the case of single-qubit gates in subsection 4.1. In subsection 4.2 we formulate a

class of quantum walk solutions representing Control Z gates (CZ, see Ref. [3]). In subsec-

tions 4.3-4.5, systems of quantum walks performing diagonal Toffoli gates (Control Control

Z, see Refs. [3, 30]) are obtained. Subsection 4.6 is devoted to analysis of performance of

walk-based gates. Detailed analytical investigation of continuous time quantum walks on all
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related graphs is given in the subsequent sections (Secs. 5-7). Specifically, in Sec. 5 we inves-

tigate quantum walks on non-symmetric linear chain graphs with two to five nodes. In Sec. 6

we discuss quantum walks on single-level tree graphs. In Sec. 7 we investigate quantum walks

on symmetric and non-symmetric square graphs. Finally, concluding remarks are presented

in Sec. 8.

2 Quantum walks in qubit systems with states beyond boolean domain

Qubits are defined as binary (two-state) quantum systems [3]. A distinction is often made

between logical qubits used in quantum algorithms [31, 32, 33, 34, 35, 36] and hardware-

defined (physical) qubits that are parts of the physical system used for quantum computing.

While this distinction is important because logical qubits can incorporate error correction

procedures [37, 38, 39, 40, 41] based on operations involving multiple physical qubits, having

a reliable set of entangling operations (gates) is crucial in both cases. Here we focus on physical

qubits formed as parts of a larger quantum system [22], each defined via Hamiltonian

H
(n)
QB = E

(n)
0 |0〉〈0|+ E

(n)
1 |1〉〈1| (1)

Although not a matter of necessity [42], qubits are typically constructed such that they are

well isolated from each other

HQBs =

N⊗
n=1

H
(n)
QB (2)

to facilitate simpler error correction and algorithms development [3]. We will focus on such

case as it is relevant to many existing advanced qubit designs [10, 11, 12, 13, 14]. All of

these physical systems naturally incorporate a set of well defined states beyond states |0〉
and |1〉 of each qubit. For many quantum computing designs these states are relied on for

single-qubit rotations and initializations, and, in some cases, simple two-qubit manipulations

[10, 12, 13, 14]. When physical interaction between systems that encode qubits is present,

these auxiliary states

Haux =
∑

ij... 6= mod 2

εij...|ij...〉〈ij...| (3)

are not necessarily local to each qubit [22], i.e., |ij...〉 6= |i〉⊗ |j〉⊗ ... for ij... that have at least

one non-binary digit (hence notation ij... 6= mod 2). However, we will assume that states

|ij...〉 approach local states in the limit of no interaction between (physical) qubit systems.

In that latter limit εij... → E
(1)
i + E

(2)
j + .... This adiabatic connection will allow us to use

the same labeling for interacting and non-interacting states to simplify further discussion.

We will also assume that qubit states are not participating in any interaction (except with

external control pulses) and remain local.

The overall Hamiltonian of the system incorporating all relevant states is

H = HQBs +Haux + V (t) (4)

where V (t) represents external classical control [6] of the form

V (t) = 2Φ(t)
∑

ij,ξξ′...

Ωiξξ′...,jξξ′...|iξξ′...〉〈jξξ′...| cos(ωiξξ′...,jξξ′...t) + i.p.+ h.c. (5)
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where i.p. stands for index permutations, Φ(t) is a dimensionless pulse envelop function, and

Ω are constant amplitudes of the corresponding harmonic of the control field. We assume that

Φ(t) is slow relative to the carrier frequencies and has a single maximum, i.e., it represents

the envelope function of a single multicolor pulse.

In order to eliminate local accumulation of phases due to, possibly distinct, qubit state

energies E
(n)
i=0,1, we define qubits and focus on evolution in the rotating frame of reference

(interaction representation [3, 43, 44])

HI(t) = ei(HQBs+Haux)tV (t)e−i(HQBs+Haux)t (6)

In this case, V (t) = 0 corresponds to trivial evolution (idling) of qubits, because qubit states

do not participate in interaction. If V (t) 6= 0 for some period of time from t1 to t2, a non-

trivial evolution (quantum gate) that involve one or more qubits and, possibly, interacting

higher energy auxiliary states can occur. The corresponding evolution operator is

Ug = P

[
T exp−i

∫ t2

t1

dtHI(t)

]
P (7)

where T is time-ordering and P is projection operator that projects onto qubit (boolean)

domain defined by Hamiltonian (2). The projection signifies the fact that, ultimately, only

qubit evolution is of interest: a leak from the qubit subspace can be a source of strong

decoherence that is not addressable with standard error correction procedures. It is, therefore,

crucial to ensure that Ug is unitary

U†gUg = 1 (8)

In this paper we will focus on the case in which frequencies ωiξξ′...,jξξ′... are in exact

resonance with transitions in the system. In this case, dynamics leading to Ug can be evaluated

analytically: when rotating wave approximation is appropriate, the system can be mapped

onto continuous time quantum walks on a graph with time-independent edges and nodes. To

demonstrate this, note that within rotating wave approximation [43, 44]

HI(t)/Φ(t)→ Λ = const (9)

and that the gate operator simplifies to

Ug → Pe−iτΛP (10)

where

τ =

∫ t2

t1

dtΦ(t) (11)

is the effective time.

Quantum computing is based on the principle that qubit amplitudes remain hidden (un-

known) during the evolution (gates). As the result, quantum gates are designed to perform

deterministic (classical) rotations of the basis, rather than change of amplitudes,

UgΨ =
∑

ij...∈0,1

Ψij... [Ug|ij...〉] (12)
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Therefore, if we define ψ(0) ≡ |ij...〉 and ψ(τ) ≡ Ug|ij...〉, quantum gate Ug maps onto a set

of continuous time quantum walks

ψ(τ) = e−iτΛψ(0) (13)

propagating in effective time τ , where Λ plays the role of a constant Hamiltonian or adjacency

matrix (diagonal entries are zero in most cases) corresponding to a graph that defines each

walk. This is in contrast with typical realizations of continuous time quantum walks discussed

earlier [26, 27, 28, 45], where propagation takes place in real time. Note that when rotating

wave approximation is not appropriate, Λ can still be defined, but it will become a function

of time as well [46, 47], in which case time-ordering must be honored.

To ensure conservation of probability within boolean (qubit) domain we must restrict

ourselves only to a sub-set of graphs that satisfy

Qe−iτΛP = 0 (14)

where P+Q = 1. In the trivial case when PΛP = Λ the walk never leaves the boolean domain

(qubit subspace). Another important subgroup of graphs that satisfy condition (14) is a set

of graphs that enable “return” quantum walks—walks that return the population back to the

initial state with probability 1 at some finite time τ . In what follows we investigate graphs

with PΛP 6= Λ that satisfy (14). Particular emphasis is made on two types of return quantum

walks: (i) walks that accumulate no phase when the population is returned to the original

state (trivial return walks), and (ii) walks that accumulate a phase of π when return to the

initial state (non-trivial return walks). The simplest example of such walks is the evolution

of a driven two-state quantum system [48].

The above description can be easily generalized to include multiple multi-color pulses,

each performing its own kind and set of quantum walks. In this case Eq. (5) is replaced with

V (t) = V (t; {Φ1,Ω1}) + V (t; {Φ2,Ω2}) + ... (15)

where a different set of Rabi frequencies, Ωn, can be chosen for each pulse V (t; {Φn,Ωn})
to provide a more complex time-depended control. Examples of both single- and multi-pulse

control will be given in later sections. Note that quantum walks corresponding to each pulse

propagate in their own times

τn =

∫ tn2

tn1

dtΦn(t) (16)

independently from each other. The gate operator is a product

Ug → Pe−iτ
1Λ1

× e−iτ
2Λ2

× ... P (17)

with projection, P , applied only twice—amplitudes in between the pulses do not have to

reside in the qubit subspace. The total physical time span of the gate is

∆ttotal = (t12 − t11) + (t22 − t21) + ... (18)

Because quantum walk pulses can involve multiple non-equal Rabi frequencies that are effec-

tively “multiplied” by the time duration tn2 − tn1 of each pulse, some specific convention must
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be adopted to compare the duration of gates performed this way to the duration of gates or

gate decompositions performed by single-frequency pulses [7, 21, 22]. For this purpose, it is

natural to limit the maximum Rabi frequency of each pulse (pulse field amplitude) to some

value accessible to specific experimental setup (and the same for all pulses) and adjust tn2 − tn1
to produce entries of the desired magnitude in each τnΛn matrix.

3 Graphs and connectivity in scalable multiqubit systems

In the system introduced in Sec. 2, the adjacency matrix is a collection of complex Rabi

frequencies originating from the single control pulse (5)

Λ =
∑
i,i′

Ωi,i′ |i〉〈i′| i = ij... (19)

The graph corresponding to this adjacency matrix is a set of vertices representing states |ij...〉,
connected via complex hopping amplitudes Ωi,i′ . Because these hopping amplitudes represent

strengths of Fourier harmonics of external control field, they are adjustable parameters of the

problem and can be chosen to perform the desired quantum walks and, ultimately, quantum

gate. Not all these amplitudes, however, are independent.

When multi-state systems that hold qubits are well isolated from one another, a set of

Rabi frequencies describing transitions in the system obeys strict symmetry relations. All

graph node states |ij...〉 = |i〉 ⊗ |j〉 ⊗ ... are product states, and external control field can

rotate each individual isolated multi-state system independently of the state of other such

systems, i.e.,

Ωijk...,i′jk... = Ωij′k′...,i′j′k′... ∀jj′kk′...
Ωjik...,ji′k... = Ωj′ik′...,j′i′k′... ∀jj′kk′... (20)

...

Note that all Rabi frequencies Ω in each row correspond to the same physical harmonic of

the external control field resonantly driving transition |i〉↔|i′〉 in the respective isolated qubit

system.

This symmetry can be partially or completely lifted when there are physical interactions

between parts of the system that encode different qubits, i.e., graph vertex states |ij..〉 are

no longer separable (factorisable) for some or any i, j, .... The degree of symmetry reduc-

tion depends on the strength of interactions as will be illustrated below for specific cases.

Nevertheless, groups of indistinguishable Ω-s may still exist if the spectrum has degenerate

transitions corresponding to specific symmetries in the interacting system. In addition, degen-

eracy in graph edges (values of Ω) can be artificially introduced, even if not present originally,

by choosing appropriate amplitudes for the harmonics of the external control pulse.

The structure of the symmetry breaking that results in violation of relations (20) depends

on the structure of interaction and also its strength. Particularly, in the case of small number

of qubit systems coupled via a single quantum field, such as two qubits interacting via a

single cavity, a specific dependence on the interaction strength was demonstrated [22]—an

“intermediate resonance regime”. It is realized when the cavity-induced interaction is weak

to split degeneracy in some transitions as compared to pulse widths, but already sufficiently



D. Solenov 421

strong to lift it for other transitions in the system, hence partially lowering symmetry (20).

As the result, local single-qubit gates and non-local entanglement manipulations can be per-

formed by pulses without changing the strength of interactions or shifting qubits’ energy

levels dynamically [7, 21, 22]. Unfortunately, the intermediate resonance regime in the single-

cavity system is not scalable beyond several qubits due to spectral crowding that hinders the

distinguishability of states for realistic values of pulse bandwidth [23].

In the following subsections we will show how symmetry breaking in relations (20) can

occur for a scalable multiqubit register. We will focus on the approach that relies on multiple

(orthogonal) cavity modes to carry interaction between qubit systems in the register, and will

use principles of the intermediate resonance regime developed in our earlier work[22]. In order

to provide examples, we will investigate three different qubit architectures that have demon-

strated substantial experimental progress recently: self-assembled quantum dots, NV-center in

diamond, and superconducting transmon qubits. The first system will be discussed in greater

details introducing principles that will also be useful for the other two qubit architectures.

3.1 Self-assembled quantum dots

We begin with qubit systems based on self-assembled InAs/GaAs quantum dots [7, 13]. In this

systems qubits are encoded by an electron or hole spin (|↑〉 and |↓〉) corresponding to a state

localized in the dot. Fast external control is achieved by optical driving of a negatively charged

exciton, or a trion,—a collective excitation that carries an effective net angular momentum

of 1/2 that can have both spin and orbital contributions (states |⇑〉 and |⇓〉). All relevant

degrees of freedom of a single dot can be described by Hamiltonian

HQD = E↑|↑〉〈↑|+ E↓|↓〉〈↓|+ E⇑|⇑〉〈⇑|+ E⇓|⇓〉〈⇓|. (21)

The ↑ / ↓ and ⇑ / ⇓ energies split in an external magnetic field as E↑ − E↓ = µeB ≡ ωe and

E⇑ − E⇓ = µtB ≡ ωt with µt 6= µe, where g-factors have been included into the definitions

of µ-s. The corresponding level diagram is shown in Fig. 1(a). Because the primary control

mechanism in the system is creation of charged exciton, we will refer to excited states as

states with at least one exciton. The system can be controlled by coherent laser field coupled

to excitonic transition [15]

VQD(t) = 2Φ(t) {ΩV cosωV t (|↑〉〈⇑|+ |↓〉〈⇓|) + ΩH cosωHt (|↑〉〈⇓|+ |↓〉〈⇑|)}+ h.c., (22)

where V and H denote two orthogonal polarizations of the laser pulse. We will assume that

harmonics of the multicolor control pulse can be applied (focused) locally to each quantum

dot. The real-valued dimensionless pulse envelop function Φ(t) is the same for all harmonics,

as defined earlier in Eq. (5). The relation between axises of polarization and the growth

direction of the dots depend on several factors, such as light-heavy hole mixing, that are

set, predominantly, at the time of manufacturing [13]. Additional control can be achieved

with microwave pulses coupled directly to spin states |↑〉 and |↓〉. The microwave operations

however are typically slower than optical control. Note that while transitions |0〉↔|2〉 and

|1〉↔|3〉 can be distinguished from |0〉↔|3〉 and |1〉↔|2〉 by polarization to which they couple,

transitions |0〉↔|2〉 and |0〉↔|3〉 are distinguishable from |1〉↔|3〉 and |1〉↔|2〉, respectively,

only spectrally.
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Fig. 1. Level diagrams for a system of self-assembled InAs/GaAs quantum dots. (a) Relevant

energy states of a negatively charged InAs/GaAs quantum dot. States |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉
are electron spin states encoding a qubit. States |2〉 ≡ |⇑〉 and |3〉 ≡ |⇓〉 are optically accessible

collective charged exciton (trion) states. Dashed, H, and solid-line, V, transitions are coupled

to the two orthogonal light polarizations. (b) A segment of a scalable quantum register: two
quantum dots (QD-n) connected via cavity modes (C-n). The cavity modes are coupled to the V
polarization in this example. Transitions coupled to the same and the other polarization (dashed
lines) can be activated in each dot with focused laser pulses. Excitonic transitions in quantum

dots 1 and 2 must be spectrally distinct to avoid spectral crowding. (c) The segment shown in (b)

connected to the next dot. Note that dots with the same (index) parity along the chain, i.e., QD-1,
QD-3, QD-5, etc., can be identical. (d) Part of the spectrum of a chain of four dots coupled via

three cavity modes, ω0/g = 104. (e) Distances between neighboring energy levels in (d). (f) The

same as (e), but with cavity modes artificially restricted to couple only to one transition in each
dot to block propagation of excitations along the chain. The upper gray shading approximately

outlines the range corresponding to translation-induced splittings. They disappear (except for

few accidental degeneracies) on panel (f). The lower gray shading outlines limits of numerical
diagonalization accuracy.
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Self-assembled quantum dots can be coupled to photonic crystal cavity modes [13], which

act as coherent quantum medium to carry interaction between qubits. Because trion exci-

tations can be distinguishable by polarization, two orthogonally-polarized cavity modes can,

in principle, be set up to interact with “spin conserving” and “spin-flip” transitions indepen-

dently [13]

HDC = (|↑〉〈⇑|+ |↓〉〈⇓|) gV
(
a†V + aV

)
+ (|↑〉〈⇓|+ |↓〉〈⇑|) gH

(
a†H + aH

)
+ h.c. (23)

Furthermore, multiple cavity modes with the same polarization but corresponding to different

frequencies can couple to the same set of transitions at the same time, e.g., gVaV → gaa+gbb.

In what follows we will discuss the case gH = 0 and will omit indexes in the coupling strength

constant gV → g to simplify notation. We will also assume that g is the same for all dots.

Inhomogeneity in the coupling strengths at different quantum dots, unless significant, will not

change the results qualitatively.

In general, the spectrum of N identical or sufficiently similar quantum dots coupled in a

chain, as shown in Figs. 1(b) and (c), has bands of states corresponding to propagation of

excitations through the chain. When strength of coupling to cavity modes, g, is zero, these

bands are degenerate states (zero band width), in which each state is local and distinguishable

by the appropriate pulse harmonic of a pulse focused on specific dot. When g is finite and

N → ∞, each individual state becomes spectrally indistinguishable because the states are

no longer local—excitations propagate through the chain. In this case the band width is

∼ g, and the number of states within each band is ∼ N . As a result, states become spectrally

indistinguishable for realistic pulses, which is referred to as “spectral crowding.” For example,

a cavity photon from cavity C-(2n − 1) can be absorbed by transition |0〉↔|2〉 in the right

adjacent quantum dot, and then subsequently emitted as cavity C-2n photon, and so on.

This propagation of excitations can, in principle, be suppressed if odd and even cavity mode

photons do not couple to the same transitions (modes themselves are orthogonal to each

other). In such case the resulting spectrum would resemble that of quantum dot pairs, with

each energy being highly degenerate if the pairs are identical. The degeneracy in this case is

not a problem because each state is local to its pair of dots, and, hence, is addressable locally,

i.e., is distinguishable.

Cavity modes connecting a chain of quantum dots will necessarily couple to each other

via excitonic transitions unless they are sufficiently detuned in frequency. Detuning reduces

coupling to individual transitions from g to ∼ g/δω where δω is the detuning energy, hence

reducing the interaction. As we have demonstrate earlier [7, 22], double-dot systems with

finite detuning are still suitable for entanglement manipulations via excitonic states provided

detunings between optical transitions in the dots, as well as the detunings between excitonic

transitions and cavity photons, are within certain range as defined by intermediate resonance

regime [22]. In a system of N dots a similar regime can, in principle, develop if all dots are

detuned from one another [23]. This, however, is not practically achievable for large number

of coupled quantum dots. Below we demonstrate that it is sufficient to detune only the nearest

neighbor dots, while the next nearest neighbors can be similar.

Consider a system in which optical transitions in the adjacent dots are detuned by ∼
∆ � g, while transitions in the dots with the same parity (of the index) are approximately

equal to each other (with detuning . g). The latter condition can be relaxed and is chosen



424 Quantum gates via continuous time quantum walks in multiqubit systems with non-local auxiliary states

for clarity of presentation. In this case the chain is composed of identical (or similar) pairs

of dots shown in Fig. 1(b). The even cavity modes are detuned to the blue by ∼ ∆ from

the largest frequency |1〉↔|3〉 transition, and the odd cavity modes are detuned to the red

by ∼ ∆ from the smallest frequency |0〉↔|2〉 transition, or vice versa [see Fig. 1(c)]. Which

parity cavity mode is detuned to higher energies, as well as the specific value of detuning, will

not be significant, but that choice and the order of magnitude for detunings, ∆, must be the

same for the entire register. This results in a g/∆ factor each time a cavity mode photon is

absorbed or emitted, e.g.,

|1010.., a†1〉
∼g/∆−−−−→ |1210..〉 ∼g/∆−−−−→ |1010.., a†2〉

∼g/∆−−−−→ |1030..〉 ∼g/∆−−−−→ |1010.., a†3〉 (24)

Therefore the amplitude of translating the cavity excitation one step to the next equivalent

cavity is ∼ (g/∆)4. The width of the energy bands resulting from such translations will be

∼ g(g/∆)4. The intermediate resonance regime for each pair of dots requires that transitions

split by ∼ g2/∆ are distinguishable to the driving pulse, while transitions split by ∼ g(g/∆)4

are indistinguishable [22]. This means that shifts ∼ (g/∆)4 and possible resulting differences

in excitonic transitions should appear effectively indistinguishable. Each such state remains

effectively local to one of the quantum dot pairs as in the case discussed above when cavity

modes did not couple to the same transitions. Therefore, despite of the translational symmetry

along the chain (of base 2), spectral crowding will not occur. At the same time, many non-local

states that span over pairs of dots will be present and entanglement can still be manipulated

due to spectral shifts ∼ g2/∆.

In order to verify the collapse of width of translational-symmetry-induced bands we nu-

merically investigate the spectrum of a chain of four dots coupled via three cavities. We set

ω0/g = 10000, ∆/g = 30, and ωe = 3ωt = 3g, as an example, which corresponds to a realistic

excitonic frequencies and Zeeman splittings in self-assembled InAs/GaAs dots. We also trun-

cate cavity modes to four states to perform exact diagonalization of the system. For these

parameters (g/∆)4 ∼ 10−6. The energies of the first 2000 (out of 16384) states are shown in

Fig. 1(d). In order to examine band splitting due to propagation of excitations we plot energy

differences between the nearest energy states, i.e. En+1 −En, in Fig. 1(e). Figure 1(f) shows

the same energy differences as in Fig. 1(e), except we artificially restrict C-1 and C-3 modes

to couple only to |1〉↔|3〉 transitions and the C-2 mode to couple only to |0〉↔|2〉 transitions

in the adjacent dots. These constraints factorize the system into non-interacting segments,

with one cavity mode per segment, and eliminate band splitting due to sequences of type

(24). Comparison of the plots shows that the removed splittings (the upper highlighted area)

are indeed in the range ∼ (g/∆)4. The bottom highlighted energy range falls below standard

numerical diagonalization accuracy (∼ 10−13 for matrices with O(1) entries). To confirm the

∼ (g/∆)4 splitting due sequence (24) further we can numerically identify eigenstates with the

largest overlap with |1010, a†1〉 and |1010, a†3〉 states. The splitting between the corresponding

energies is found to be 1.53648×10−5g which is consistent with the above description. Further

numerical confirmation require identification of states, and will be done for sub-systems of

two and three dots below.
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3.1.1 Two-dots subsystem

In the intermediate resonance regime, each pair of dots develops specific symmetry breaking

in relations (20). It has been found earlier [22] that in the system of two dots with only one

|0〉↔|2〉 transition used and for certain strength of interaction, Rabi frequencies for transi-

tions that involve only one excitation, |2i〉↔|0i〉 and |i2〉↔|i0〉, are indistinguishable (local)

for different i = 0, 1, i.e., Ω2i,0i → Ω2,0;at dot 1 and Ωi2,i0 → Ω2,0;at dot 2. The two transitions

|22〉↔|02〉 and |22〉↔|20〉 are distinguishable from any of the |2i〉↔|0i〉 and |i2〉↔|i0〉 tran-

sitions respectively. Our system involves at least two more transitions per dot |1〉↔|3〉 and

|1〉↔|2〉, which enable multiple other transitions involving two or multi-dot states. In order

to obtain the symmetry relations between the corresponding Rabi frequencies we analyze the

system numerically.

We begin with the double-dot system, describing one segment of the register. In such

segment, Fig. 1(b), quantum dots are coupled via a single cavity mode interacting with

transitions |0〉↔|2〉 and |1〉↔|3〉 (V polarization only in this case). The schematic energy

spectrum of the system as a function of the cavity mode frequency ωC is shown in Fig. 2(a).

The exact numerically obtain spectrum for ∆ = 10g, ω0 = 104g, ωe = 3ωt = g is shown in

Fig. 2(b-d), where part (b) shows the qubit computational basis subspace energy range, part

(c) shows states with one excitation and part (d) shows states with two excitations. The

cavity frequency is varied in the range ω0 − ∆ ≤ ωC ≤ ω0 + 2∆. In order to investigate

interaction-induced symmetry reduction in the intermediate resonance regime, in Fig. 2(e)

we plot numerically obtained transition frequency differences ωn,m − ωn′,m′ as a function of

ωC . We notice that all these differences fall into three categories: (i) local-to-local differences,

(ii) non-local-to-local differences, and (iii) non-local-to-non-local differences. Group (i) has

differences

ω20,00 − ω21,01, ω30,00 − ω31,01, ω20,10 − ω21,11, (25)

and the other three with all dot indexes swapped. Note that the later three are larger because

transitions are based on the right dot exciton, which is closer to the cavity spectrally for that

cavity mode frequency range. Group (ii) has differences

ω20,00 − ω22,02, ω21,01 − ω23,03, ω30,10 − ω32,12, (26)

ω31,11 − ω33,13, ω21,11 − ω23,13, ω20,10 − ω22,12,

and the other six with all dot indexes swapped. Group (iii) has differences

ω22,02 − ω23,03, ω33,13 − ω32,13, ω22,12 − ω23,13 (27)

and the other three with all dot indexes swapped. In the (i) group all differences fall below

g×10−4 at ωC ∼ ω0 +2∆, i.e., at the right edge of the plotted frequency range. In groups (ii)

and (iii) the values are at least two orders of magnitude larger, and the differences in group

(iii) are of approximately the same magnitude as in group (ii). Therefore we can set the

overall pulse profile Φ(t) to be sufficiently fast (broad band) to render transitions in group (i)

indistinguishable, and yet sufficiently slow (narrow band) to distinguish transitions in groups

(ii) and (iii), which defines the intermediate resonance regime. The symmetry of transitions

is outlined in Figs. 2(f) and (g). In part (f) only |0〉↔|2〉 and |1〉↔|3〉-based transitions are
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Fig. 2. Energy spectrum of two quantum dots and the corresponding transition networks (graphs).

(a) Total energy, schematically. Highlighted area shows location of anti-crossings of interest. (b-
d) Numerically obtained parts of the spectrum for ω0/g = 104, ∆/g = 10, ωe = 3ωt = g. (e)
Transition frequency differences that define reduction of symmetry (20). (f) A set of graphs

outlining the symmetry of connections (Rabi frequencies), when only V transitions are used in

pulse (5). (g) The symmetry of the network with both V and H transitions (except for |0〉↔|3〉)
addressed by pulse (5). Non-local transitions are shown as single- or double-crossed lines. Lines of

the same type mark transitions that are indistinguishable in the intermediate resonance regime.
Other transitions are, in general, distinguishable. Transition |0〉↔|3〉 adds “periodic boundary
conditions” to graph (g) transforming it into a two-dimensional hyper-cycle [26, 28] graph (torus).
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shown and part (g) also has |1〉↔|2〉-based transitions. Connecting lines of the same type mark

indistinguishable transitions that can not be addressed independently by the corresponding

resonant component of the multicolor pulse (5). The crossed lines denote different line types

and correspond to transitions involving states with two excitations. Transitions of the same

color become indistinguishable in the limit g → 0, as required by relations (20). Finally,

when transition |0〉↔|3〉 is added, it appends “periodic boundary conditions” to graph (g)

transforming it into a two-dimensional hyper-cycle [26, 28] graph (torus), i.e., nodes |03〉 and

|33〉, |01〉 and |02〉, |32〉 and |33〉, etc., become connected.

3.1.2 Three-dots subsystem

In order to understand how symmetry (20) is broken in a larger segment of the linear chain

register we must investigate a three-dot subsystem, as shown in Fig. 1(c). The spectrum of

three quantum dots and two cavity modes is substantially more complex. Yet its schematic

structure can be recovered through the following simple procedure outlined in Fig. 3(a-c). The

double-dot spectrum of the left two dots interacting via cavity C-1 as a function of ωC-1 [black

lines in Fig. 3(a)] is shifted up by the exciton energy in the third dot if the later is excited

[red lines in Fig. 3(a)]. Similarly, the spectrum of the second and the third dots interacting

via cavity mode C-2 [black lines in Fig. 3(b)] is shifted up if the first dot is excited [blue lines

in Fig. 3(b)]; still as a function of ωC-1 but with ωC-1/ωC-2 = const. In both cases a series of

anti-crossings develop where bands intersect. The superposition of part (a) and part (b) gives

the schematic structure of the spectrum of the three-dot system shown in Fig. 3(c). Note that

not all intersections lead to anti-crossings. Many states are orthogonal and, hence, can not

couple. Note also that states with higher photon count (some of which are shown by dashed

lines) do not interfere appreciatively with the shown states in (and in between) the shaded

regions. For example, two two-photon lines originating from the one-excitation line of the

second dot (shown as dashed) can anti-cross with the one-photon lines in the three-excitation

region of the spectrum. This process, however, involves transferring excitations between dots

1 and 3, which is a ∼ (g/∆)4 process as discussed above, and the resulting splitting can be

neglected. We obtain the exact spectrum numerically [see Fig. 3(d-f)] for the same parameters

as used in the two-dot case above (shown in Fig. 2). The ratio between cavity frequencies

was set to

ωC-1

ωC-2
=
ω0 + 2∆

ω0 −∆
(28)

such that at the middle point, marked by the vertical dashed line in Fig. 3(c), one cav-

ity is above the top single-excitation band by ∆ and the other is below the bottom single-

excitation lines by ∆, as suggested earlier. The two- and three-excitation parts of the spec-

trum in Fig. 3(e) and (f) have lower-excitation parts with additional photons superimposed

on them, making them hard to read. This does not change the simple anti-crossing struc-

ture schematically shown in Fig. 3(c) because these overlapped bands do not interact in

the cavity frequency region of interest. As before, the resonators were modeled using four

states. To further illustrate that similar transitions that belong to different segments of

the register remain unaffected by each other, we plot energy difference ω200,000 − ω202,002

in Fig. 3(g). It remains at, or below, g × 10−6 level for the cavity mode frequencies of in-

terest, which indicates that transition |0〉↔|2〉 in the first dot is unaffected by the similar
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Fig. 3. Energy spectrum of three quantum dots and the corresponding transition network. (a-

c) Schematic representation of the energies as a function of the cavity C-1 frequency, provided
the ratio of cavity mode frequencies remains constant. (d-f) Numerically computed spectrum;

parameters are the same as in Fig. 2. (g) Difference of two transition frequencies demonstrating
vanishing effect of excitation propagation through the register. (h-j) Symmetry of transition
network; lines of the same type correspond to indistinguishable transitions; see text for explanation.
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transition in the third dot in the intermediate resonance regime. The symmetry of transi-

tions is outlined in Fig. 3(h-j). Figures 3(h-i) illustrate how the symmetry is obtained for

each subgraph using the example of a subgraph based on state |000〉. Figure 3(j) shows the

entire network of transitions. Specifically, in Fig. 3(h) red lines correspond to breaking of

symmetry (20) due to QD-1 and QD-2 double-dot system and blue lines correspond to QD-2

and QD-3 double-dot system, with the same graphic notation as in Fig. 2(f). For example,

the frequency of transition |202〉↔|222〉 is non-negligibly shifted by both the first (red) and

the second (blue) double-dot systems, making it distinguishable from both |022〉↔|002〉 and

|220〉↔|200〉 as shown in Fig. 3(i). On the other hand, transitions remain indistinguishable

in each pair: {|000〉↔|200〉 and |002〉↔|202〉}, {|000〉↔|002〉 and |200〉↔|202〉}, {|020〉↔|220〉
and |022〉↔|202〉}, {|020〉↔|022〉 and |220〉↔|222〉}. The frequency difference corresponding

to the first pair is shown in Fig. 3(g). This is consistent with suppression of excitonic propa-

gation by one segment along the chain as discussed above. It can also be numerically verified

that transitions involving the middle dot |i0j〉↔|i2j〉 with different combinations of i, j are

distinguishable (have substantially larger frequency differences). Note that accidental degen-

eracies in the transition network can still render some transition indistinguishable at some

specific values of the system parameters, including ωC-n and ∆. The front face of the cube in

Fig. 3(j) is the cross-section representing a two-dot subsystem shown in Fig. 2(g) when the

third qubit is in state 0. The wavy and broken lines show symmetry of |1〉↔|2〉 transitions

in this cross-section. It is not shown on other parts of the cubic lattice to avoid clutter. If

|0〉↔|3〉 based transitions are also accounted for, graph (j) closes into a three-dimensional

hyper-cycle [26, 26] graph, i.e., into a 3D crystal lattice with periodic boundary conditions

and the primitive cell defined by graph (j).

Each additional qubit will increase the dimension of the transition network grid by one.

The N -dot chain, therefore, creates a base-4 N -dimensional hypercube graph (or hyper-cycle

graph if all four transitions per dot are accounted for) with structured network of local and

non-local transitions. The symmetry of transitions in such network can be derived following

the same procedure as outlined in Fig. 3(h-g), keeping in mind that transitions in quantum

dots separated by more then one dot do not affect each other in the intermediate resonance

regime. Lower-dimensional cross-sections can be considered to construct entangling or non-

entangling gates involving the desired number of qubits. The procedure of constructing quan-

tum gates and examples involving some of these lower-dimensional cube graphs are discussed

in the next sections. The cavity-based connections discussed above and shown in Fig. 1 are

not the only possible scalable arrangement. It is also possible, e.g., to couple cavity modes

with one parity (of the index) to H transitions and cavity modes with the other parity to

V transitions in a similar chain. This will also remove spectral crowding in the intermediate

resonance regime, but it will create a different network of transitions. The network of this

type is discussed in Subsection 3.3, where it is the most natural option.

3.2 Defects in diamond

Defects in diamond have six optically addressable states shown schematically in Fig. 4(a).

In each triplet, the dublet is split off from the spin-0 state due to crystal strain around the

defect [21, 22, 49, 50]. Each dublet has two spin states and can be split with the magnetic

field [51, 52]. Optical transitions conserve spin in this system. However, at sufficiently strong
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Fig. 4. Level diagram for nitrogen vacancy (NV) centers in diamond. (a) Relevant energy levels
of a NV-center [21, 22, 49, 50] as a function of magnetic field B. (b) Energy levels in the magnetic

field mixing states in the upper triplet. Qubits are encoded by states |0〉 and |−1〉 in each NV

center. The energy level diagram is similar to that of a quantum dot shown in Fig. 1(a). (c) A
single element of a chain of NV centers (quantum register) connected via different cavity modes

similarly to quantum dot system shown in Fig. 1(b).

magnetic fields, the lowest two states of the higher energy triplet mix, allowing for the “cross”

transitions. In this case the spectrum becomes similar to that of a self-assembled quantum

dot, c.f., Fig. 1(a) and Fig. 4(b), except for the polarization dependence. As the result, optical

control in the defect centers can be performed in the same fashion [22].

As in the case of quantum dots, the propagation of excitations by one segment [see

Fig. 4(c)] along the chain involves four off-resonance absorptions or emissions of cavity mode

photons, each contributing a factor of ∼ g/∆ if frequencies of transitions and cavity modes are

arranged the same way as in the previous subsection. The translation-induced energy bands

will have widths of ∼ g(g/∆)4, which are spectrally indistinguishable in the intermediate

resonance regime. The corresponding states will, therefore, remain effectively local, and the

system will split into pairs of defects that can be locally addressed by the multicolor control

pulses. The pulse will temporarily create graphs of types shown in Figs. 2 and 3, performing

continuous time quantum walks in effective time τ with the desired outcome as discussed in

the next section.

3.3 Superconducting transmon qubits

Superconducting transmon qubit systems are substantially different from the systems de-

scribed in the two previous examples. A transmon is a variation of a cooper-pair box qubit in

which Josephson energy, EJ , dominates over the charging energy [11, 9, 16]. In this limit the

system resembles a heavy quantum particle in a periodic −EJ cosφ potential subject to peri-

odic boundary condition on phase φ of the superconducting order parameter. The low-energy

spectrum is approximately harmonic [11]

En =
(
ω01 −

α

2

)
n+

α

2
n2, (29)

with small negative anharmonicity α defined as

α = ω01 − ω12 (30)
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Fig. 5. Level diagrams for superconducting transmon architecture. (a) The first four energy

levels of a single transmon system. The qubit is encoded by states |0〉 and |1〉. (b) Subsection of a
multiqubit transmon register consisting of two spectrally distinct transmons connected via a cavity

mode. (c) Connection to the next transmon along the chain. All cavity modes are orthogonal to

each other.

where ωij = Ej−Ei. The first four energy levels are shown in Fig. 5(a) schematically. In order

to correctly represent the spectrum at higher energies or at large anharmonicities, Eq. (29)

must be adjusted [11] to include tunneling due to periodic boundary conditions on φ and the

correct shape of the Josephson potential energy as a function of φ. Transmons are designed

[11] to have |α/ω01| below 0.1 with α/ω01 ∼ −0.01 for low noise transmons [16]. In these

systems microwave field can strongly couple to consecutive transitions, i.e., |0〉↔|1〉, |1〉↔|2〉,
|2〉↔|3〉 etc, and nearly harmonic approximation (29) is sufficient.

A chain of interacting transmons can be organized by coupling adjacent transmons via

microwave cavity modes. In order to attenuate the propagation of excitations through the

chain to O([g/∆]4) as before, we must design cavity modes such that the corresponding

frequencies are detuned by ∆ to the red and to the blue from |2〉↔|3〉 and |1〉↔|2〉 transition

frequencies respectively, alternating through the chain. The chain can be approximately or

exactly base-two translationally symmetric. A single element of the chain is shown in Fig. 5(b),

and connection to the next segment is shown in Fig. 5(c).

When transition frequencies ω12 and ω23 are detuned from the same respective transitions

in the adjacent transmon by ∼ ∆ with g/∆� 1 such that energy gaps ∼ g2/∆ are resolvable

by microwave pulses and gaps ∼ g4/∆3 are not resolvable, each pair of transmons is in

the intermediate resonance regime described in Ref. [22]. The energy cost for excitation to

propagate from one pair to the next symmetrically equivalent pair is ∼ g(g/∆)4, e.g.,

|i21j.., a†1〉
∼g/∆−−−−→ |i31j..〉 ∼g/∆−−−−→ |i21j.., a†2〉

∼g/∆−−−−→ |i22j..〉 ∼g/∆−−−−→ |i21j.., a†3〉 (31)

Therefore, base-2 translation-induced energy shifts will be indistinguishable to the control

pulse, which eliminates spectral crowding, as discussed in the previous subsections.

The network of transitions available to pulse-induced quantum walks differ from the one

shown in Figs. 2 and 3 because only three states are involved. Accessible graphs describing

a sub-system of two transmons are shown in Fig. 6(a). The graphs are disjointed because

transitions that skip one state are not available. The symmetry of transitions is shown on

the same plot. It is deduced by observing the that levels participating in transitions such as

|31〉↔|32〉 involve the same arrangement of anti-crossings as |11〉↔|12〉 (without two-photon

line). Levels participating in transitions of type |33〉↔|23〉 have single-photon line at the
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Fig. 6. A set of graphs representing (a) two- and (b) three-transmon subsection of the chain

register. The graphs are disjointed in both cases because transitions skipping one energy level,
e.g., |1〉↔|3〉, are not practically accessible. The symmetry of transition network is explicitly shown

for two-transmon segment in part (a). The |1〉↔|2〉 and |2〉↔|3〉 subsets involving transmons 1
and 2, and transmons 2 and 3 respectively are highlighted in the |111〉-based graph in part (b) to

show structure.

bottom (near |23〉), which make them similar to effectively local |11〉↔|21〉 transitions, except

for lower transition frequency, ω23. Transitions such as |32〉↔|22〉 should be distinct from

|33〉↔|23〉 because participating energy levels involve two-photon line near |22〉. The set of

graphs accessible for a three qubit subsystem are shown in Fig. 6(b). The transition network

symmetries can be obtained by procedure similar to the one outlined in Fig. 3(h-i). Note

that, due to its nearly harmonic spectrum, transmon systems can be affected by accidental

degeneracies (and anti-crossings) more substantially than systems of quantum dots. This,

however, does not invalidate the intermediate resonance regime approach because cavity-

transmon coupling strength g (and bandwidths of the pulses) is typically much smaller then

anharmonicity α, even though the latter is much smaller than ω01 in each transmon. In

general, the largest graph is based on state |1..1〉 and resembles a hyper-cube lattice of three

nodes in each dimension. All other graphs are cross-sections of that graph with one or several

|0〉 states in place of |1〉. Note that, as described earlier, the “non-interacting” state labels refer

to states that can be non-local, but are connected to those non-interacting states adiabatically

when g → 0.

Finally we note that base-three hypercube networks of type shown in Fig. 6 can also

appear in system of quantum dots when odd and even-parity cavity modes are coupled to

transitions with different polarizations. In that case states |1〉, |2〉, and |3〉, can be mapped,

e.g., onto states |↑〉, |⇑〉, and |↓〉 respectively. At the same time, in this case cube graphs

will involve more than one computational basis state. Therefore quantum walks designed

to perform certain gates based on graphs representing transmon architecture will not be

necessarily portable to quantum dots architecture with orthogonally polarized cavity modes.

4 Quantum gates via quantum walks

In this section we discuss structure of Λ necessary to implement entangling and local (single-

qubit) quantum gates and give several examples of such implementations. In what follows
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we will focus primarily on the reduction of symmetry (20) based on the intermediate res-

onance regime and the cavity-mediated interactions discussed in the previous section. We

will demonstrate how one-, two-, and three-dimensional cross sections (sub-graphs) of the

multidimensional graphs corresponding to the scalable qubit register can be used to perform

local and entangling operations. When degeneracy (20) is lifted differently, the gates can be

constructed in a similar fashion, but different graphs, and, hence, pulse spectra, might be

necessary in each case. Furthermore, because violation of symmetry (20) is a manifestation of

physical interactions between qubits, some entangling gates might not be accessible in certain

cases. This is not surprising because necessary physical interactions might simply be absent.

4.1 Single-qubit quantum gates

Single-qubit quantum gates in systems with actively used auxiliary states are the simplest

examples of PΛP 6= Λ gates implemented via quantum walks. Here we give few examples

of gates, some of which are performed routinely in different quantum computing systems

[10, 12, 53, 54], to demonstrate their connection with a (more general) quantum-walks-based

approach investigated in this paper.

The first example is Z gate [3]. This gate flips the sign of the amplitude for one of the

qubit’s state, i.e.,

Ug(Z) = σz ≡
(

1 0
0 −1

)
(32)

In the simplest case, a single auxiliary state is sufficient and we can choose the graph with

the following adjacency matrix

Λ =

 0 0 Ω
0 0 0

Ω∗ 0 0

 (33)

in the basis {|2〉, |1〉, |0〉}, i.e. transition between states |0〉 and |2〉 is addressed (activated)

by external pulse with Rabi frequency Ω. Upon examination of the solution of this effectively

two-state problem (see Sec 5.1) it is evident that Eq. (32) is obtained from Eqs. (10), (12),

and (13) when the walk is terminated at τ = (2n + 1)π/|Ω|, where n is any (non-negative)

integer.

Another example is a (single-qubit) swap gate with arbitrary phase change, i.e.,

Ug(swap, φ) =

(
0 eiφ

e−iφ 0

)
= σx cosφ− σy sinφ (34)

Using the same three states as before, one of which is an auxiliary state, we can set the graph

to have adjacency matrix

Λ =

 0 |Ω1|eiϕ1 0
|Ω1|e−iϕ1 0 |Ω2|e−iϕ2

0 |Ω2|eiϕ2 0

 (35)

in the basis {|1〉, |2〉, |0〉}. Examination of quantum walks on such graph (chain of three states,

see Sec. 5.2) shows that if we set |Ω1| = |Ω2| and ϕ1−ϕ2 = φ, gate (34) is obtained provided

the walk is terminated at time τ = (2n+1)π/
√

2|Ω1|2, where n is any (non-negative) integer.
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Finally, we consider an example of implementing the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
(36)

which is widely used in algorithms and error correction codes [3]. Similarly to the previous

example, it can be performed via a quantum walk on the graph with adjacency matrix (35).

In this case (see Sec. 5.2) we must set φ1 − φ2 = π and |Ω2| = |Ω1|/(
√

2 − 1). Hadamard

gate evolution operator (34) is obtained when the walk is terminated at time τ = (2n +

1)π/
√
|Ω1|2 + |Ω2|2, where n is any (non-negative) integer.

Note that in all three cases, Eq. (14) is satisfied and the probability is completely returned

back to the qubit nodes (|0〉 and |1〉) at time τ . While such abrupt termination of the walk

may seem unnatural, we should note that τ is not the physical time in the system. It is the

overall integral magnitude of the external control field [see Eq. (11)], which can be controlled

with high accuracy in experiment. The change of the control field with real physical time

is typically a smooth function with maximum at (physical) time t = (t1 + t2)/2 and with

sufficiently small values at t1 and t2, e.g., Φ(t) ∼ exp{−σ2[t− (t1 + t2)/2]2}.

4.2 Two-qubit quantum gates

One of the most important two-qubit entangling gates is the CNOT (Control-NOT) gate [3].

It is defined as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = (I ⊗H)CZ(I ⊗H) (37)

in the basis of, e.g., {|00〉, |01〉, |10〉, |11〉}. It can be represented via two local Hadamard gates

acting on one of the qubits and CZ (Control-Z) gate

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (38)

The CZ gate has a simple structure: it requires a set of return walks with the adjacency

matrix restricted to

|i′〉〈i′|e−iτΛ|i〉〈i| = 0, i 6= i′ (39)

Moreover, for the version of CZ given in Eq. (38), the quantum walks, terminated at time τ ,

must yield

e−iτΛ|00〉 = |00〉, (40)

e−iτΛ|01〉 = |01〉, (41)

e−iτΛ|10〉 = |10〉, (42)

e−iτΛ|11〉 = −|11〉 (43)
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This is most easily achieved if the graph, corresponding to Λ, is separable into four discon-

nected subgraphs, each containing one of the two-qubit basis states, and each performing a

return quantum walk when terminated at exactly the same time τ . Only one subgraph must

implement a non-trivial return walk. Other subgraphs are only required to produce a trivial

return walk (effectively no evolution).

(d)(c)(b)(a)

Fig. 7. A set of graphs representing a two-qubit system with one active auxiliary state in each

qubit and only one allowed transition, |1〉 ↔ |2〉, in each qubit system.

4.2.1 Adjacent qubits

As an example, consider graph in Fig. 6(a) with only |1〉↔|2〉 transitions addressed by the

pulse. Two-qubit CZ gates in adjacent qubits with graphs of type shown in Fig. 2(h) are

similar up to renaming of vertices. In this example only a single auxiliary state |2〉 in each qubit

system is set to interact with analogous state in the other qubit system. In the intermediate

resonance regime described in the previous section, symmetry (20) is reduced such that we

can set Ω11,21 6= Ω12,22 and Ω11,12 6= Ω21,22. We obtain a disconnected set of graphs shown in

Fig. 7. In this case Eq. (40) describes a walk on the trivial single-node graph (no evolution);

Eqs. (41) and (42) describe walks on two-state graphs (see Sec. 5.1); and Eq. (43) involves a

walk on a four-state square graph (see Sec. 7).

A set of complex hopping amplitudes (edges) that satisfy Eqs. (40-43) is not unique: an

infinite number of solutions is possible. To demonstrate this we, first, define a dimensionless

Rabi frequency ξ as

ξ = Ωξτ/π (44)

for every edge, where ξ is a1, a2, b1, or b2 in this case. This makes all walks propagate over

the same time interval τ . We, then, set

|a1| = n1, |a2| = n2 (45)

to be positive even integers. This results in trivial return [see Eq. (65) in Sec. 5.1] for all

walks that start from states |01〉 and |10〉, thus satisfying Eqs. (41) and (42). Continuous

time return walk through the square graph that contains state |11〉 is investigated in Sec. 7.

The absolute values of hopping amplitudes for the two bottom edges of this graph are already

defined above. We have freedom to adjust the remaining two complex amplitudes, b1 and b2,

and two phases, arg a1 and arg a2. As demonstrated in Sec. 7, a return walk on a square graph



436 Quantum gates via continuous time quantum walks in multiqubit systems with non-local auxiliary states

can be mapped onto a walk on a linear chain graph of four states (Sec. 5.3). The latter allows

for both trivial and non-trivial return walks [see Eqs. (76) and (77) in Sec. 7]. A non-trivial

solution that satisfy Eq. (43) is parameterized by two odd integers m and n. Without loss

of generality we can set 0 < m < n. In this case the hopping amplitudes in graph 7(d) are

bounded by condition

m ≤
√
n2

1 + n2
2 ≤ n (46)

and the solution is found from |a| ≡
|a2b

∗
1−a1b

∗
2 |√

n2
1+n2

2

= nm√
n2

1+n2
2

|a1b1+a2b2|√
n2

1+n2
2

=
√

(n+m)2 − (nm|a| + |a|)2
(47)

One specific example can be derived if we set m = 1, n = 3, n1 = n2 = 2, and assume no

complex phases for a1 and a2. In this case{
|b1 − b2| = 3/2

|b1 + b2| =
√

7/2
→

{
b1 =

√
7eiφi+3eiφii

4

b2 =
√

7eiφi−3eiφii

4

(48)

where φi and φii are two arbitrary real numbers. In this example all available transitions are

activated to produce hopping amplitudes a1, a2, b1, and b2 given by Eqs. (45) and (48). This,

however, is not a necessary condition.

As another example, we can set n2 = 0 (do not activate a2 transition, see Fig. 7) and set

n1 to be an odd positive integer. This defines a non-trivial return walk for state |10〉 instead

of |11〉 [the standard CZ gate (38) is recovered if we apply single-qubit Z gate to the first

qubit]. The graphs with |00〉 and |01〉 states are now trivial one-node graphs. The graph

that has |11〉 node is now a linear chain graph with four nodes (see Sec. 5.3), which is a

subgraph of the square graph discussed above. The walk starting at |11〉 must be a trivial

return walk—parameters m and n must be non-equal even integers. Because n1 is odd, it can

always be chosen between m and n to satisfy Eq. (46). As an illustration, we chose m = 2,

n1 = 3, and n = 4. From Eq. (47) we obtain |b1| =
√

35/3 ≈ 1.972 and |b2| = 8/3 ≈ 2.667.

In this case the phases of all hopping amplitudes can be arbitrary.

4.2.2 Next nearest neighbor qubits

Here we give another example of a CZ gate for qubits that are one qubit away from each

other in the chain register discussed in the previous section. We will focus on graph Fig. 3(j)

that appear in, e.g., chains of quantum dots, and will avoid transitions based on |1〉↔|2〉
and |0〉↔|3〉 transitions in each dot. In this case the middle dot (QD-2) becomes part of the

medium to carry interaction between the left and right dots. All available graphs are shown

in Fig. 8.

We chose a single multi-color pulse approach as before, and activate five distinct transitions

a2, b3, c1, a′2 = a2, and b̃′3 = b3, where the dimensionless Rabi frequencies are defined by

Eq. (44) as before. The last two dimensionless frequencies are set equal to the first two to

make quantum walks starting from nodes |000〉 and |010〉 [graphs (f) and (h)], as well as |100〉
and |110〉 [graphs (d) and (g)], identical, thus, factoring out the middle qubit. We want the

phase factor of −1 accumulated for states |000〉 and |010〉 (state |00〉 of the first and the last
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(e) (f) (g) (h)

(a) (b) (c) (d)

Fig. 8. A set of graphs representing a sub-system of three quantum dots with transitions |1〉↔|2〉
(dashed lines) and |0〉↔|3〉 (doted lines) allowed in each dot. Symmetry of transitions is shown via
dimensionless Rabi frequencies. Subgraphs activated by the single multi-color pulse performing

CZ gate on the first and the last qubits are highlighted (in yellow).
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qubit), and no phase accumulated for states |100〉 and |110〉 (state |10〉 of the first and the

last qubit). Graphs (d) and (g) are three-state chain graphs discussed in Sec. 5.2, and graphs

(f) and (h) are four-state chain graphs investigated in Sec. 5.3. Return walks on these graphs

require 
|c1|2 + |b3|2 = k2,
|c1|2 + |b3|2 + |a2|2 = n2 +m2,
|c1|2|a2|2 = n2m2,
|m| < |c1| < |n|,
|m| < |a2| < |n|,

(49)

where n,m are integers and k is and even integer. When n,m are odd integers, return walks

on graphs (f) and (h) are non-trivial, and a phase of π is accumulated.

As an example we can chose m = 1, n = 3, k = 2, and obtain |a2| =
√

6 ≈ 2.45,

|b3| =
√

5/2 ≈ 1.58, and |c1| =
√

3/2 ≈ 1.23. Because all graphs are chain graphs, relative

phases are irrelevant and pulse harmonics do not have to be phase locked. The resulting gate

is a CZ gate on the first and the last qubits in the three-qubit segment with the first qubit

tested for state |0〉 and the −Z gate applied to the last qubit if the test succeeds. Other

variations of the CZ gate can be constructed by choosing different transitions.

4.3 Three-qubit quantum gates

Here we investigate an example of a non-trivial entangling three-qubit quantum gate that

performs three-qubit Toffoli gate [3] up to two single-qubit Hadamard rotations. A three-

qubit Toffoli gate, when represented via CNOT gates, requires at least six CNOT gates

applied sequentially [30]. A faster implementation that bypasses this limitation is, therefore,

beneficial. Toffoli (or CCNOT) gate can be factored into a sequence

Toffoli = (I ⊗ I ⊗H)CCZ(I ⊗ I ⊗H), (50)

where H is the Hadamard gate applied to the third qubit and CCZ is control-Z gate with two

control and one target qubits

CCZ = diag(1, 1, 1, 1, 1, 1, 1,−1). (51)

As in the case of CZ gates, “-1” can be brought to a different location by single-qubit Z gates

and the overall phase factor (which is not important in quantum computing). Similarly, the

CCZ gates needs return walks with the adjacency matrix restricted by relation (39). As an

illustration, we will focus on the variation of the CCZ gate in which the amplitude residing

on state |100〉 acquires the phase of π, i.e.,

e−iτΛ|100〉 = −|100〉, (52)

e−iτΛ|ijk〉 = |ijk〉, ijk 6= 100 (53)

4.4 Completely connected three-qubit system, example

We begin with the symmetry of Λ that appears in the case of three qubit systems, e.g.,

transmons, interacting via a single cavity mode [23]. The simplest example of a set of graphs

implementing the above evolution in such system is shown in Fig. 9. We will construct the



D. Solenov 439

(e) (f) (g) (h)

(a) (b) (c) (d)

Fig. 9. A set of graphs representing a three-qubit system with one active auxiliary state in each

qubit and only one allowed transition, |1〉↔|2〉, in each qubit system. Dotted lines are guide

to the eye. Solid lines indicate resonant transitions activated with external field. Dashed lines
are transitions that are allowed but are not used. Dimensionless Rabi frequencies are defined as
ξ = Ωξτ/π, where ξ is a, b, or c with appropriate indexes. Indexes indicate the largest number of

auxiliary states in vertexes each transition connects. Note that graphs corresponding to different
qubit basis states are not connected with one another because transitions |0〉↔|2〉 are not allowed

(or not used) in this case.
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gate using a single multi-color pulse. Using a dimensionless representation for each Rabi

frequency given by Eq. (44), as before, we ensure that all walks terminate at the same time

τ . We obtain a non-trivial return walk for the graph in Fig. 9(b) corresponding to Eq. (52)

when

|aI | = n, (54)

and n is an odd integer (see Sec. 5.1). Walks on all other graphs must be trivial return walks.

This is trivially the case for graphs (a), (c), (d), and (g), because the corresponding qubit

basis states are not connected to any other state by the pulse (corresponding Rabi frequencies

are zero). In the case of graphs (e) and (f), a trivial return walk is achieved when√
|aI |2 + |bII |2 = m, (55)√
|aI |2 + |cII |2 = m′, (56)

and m and m′ are even integers (see Sec. 5.2).

In order to understand the return walk on graph (h), note that it is in fact a square graph

(see Sec. 7) with an additional node attached to it. As explained in Sec. 7, a square graph can

be transformed into a linear chain of four states (see Sec. 5.3). Therefore, the entire graph

(e) becomes effectively a linear chain of five states discussed in Sec. 5.4 [see also Fig. 11(d)].

The hopping amplitudes corresponding to this chain are

Ωaτ

π
= a = aI , (57)

Ωbτ

π
= b =

√
|bII |2 + |cII |2, (58)

Ωcτ

π
= c =

|bIIcIII + cIIbIII |
|b|

, (59)

Ωdτ

π
= d =

|cIIc∗III − bIIb∗III |
|b|

. (60)

The walk on such graph returns with trivial phase when{
|a|2 + |b|2 + |c|2 + |d|2 = k2 + k′2

|a|2|c|2 + |b|2|d|2 + |a|2|d|2 = k2k′2
(61)

and k and k′ are even integers (see Sec. 5.4). This later system of two equation has two

unknowns: |c| and |d|, and two real parameters: |a| and |b|, set by walks on the other graphs.

The overall solution for the original Rabi frequencies, however, is not unique because |c| and

|d| depend on complex phases of bII , cII , bIII , and cIII (see Eqs. 59 and 60). In addition,

the overall solution is parameterized by five integer parameters n, m, m′, k, and k′ (n is odd,

others are even).

One specific solution mentioned in our earlier work [23] that satisfy Eqs. (54)-(61) can be

obtained assuming all Rabi frequencies are real and n = 1, m = m′ = 2, k = 2k′ = 4. In this
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Fig. 10. A set of graphs based on Fig. 3(j) representing a three-qubit subsystem of the quantum
dot register with two allowed transitions |0〉↔|2〉 and |1〉↔|3〉 in each dot. The sub-graphs cut by

the choice of the pulse harmonics are highlighted (in yellow for the first and the last pulse; in blue
for the middle pulse). The symmetry of the transition amplitudes (Rabi frequencies) is shown via

dimensionless amplitudes defined by Eq. (44).
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case we have

aI = 1

bII = cII =
√

3

bIII =
3 +
√

17

2
(62)

cIII =
3−
√

17

2

4.5 Scalable system, three-qubit subset

As mentioned in the previous section, single-cavity systems are not scalable and can not

accommodate large number of qubits due to spectral crowding. Scalable multi-cavity registers

discussed in the previous section induce symmetry reduction that is different form the one

used in Sec. 4.4 above. As an example, we will consider a network produce by a three-qubit

segment of the quantum dot register shown in Figs. 3(i-j). When only transitions originating

from single qubit |0〉↔|2〉 and |1〉↔|3〉 transitions are involved, the three-qubit subgraph splits

into a set of cube graphs shown in Fig. 10. The symmetry of the system is such that the

connections opposite to each other on the top as well as the bottom faces of each cube are

indistinguishable in the intermediate resonance regime. In addition, connections involving

nodes that differ only by one index, i.e., |i02〉↔|i22〉 for various i, are also indistinguishable,

except for those with excitations in all three qubit systems (see Sec. 3.1.2 for derivation). The

symmetry is displayed in Fig. 10 using reduced Rabi frequency labels defined by Eq. (44).

Table 1. Examples of three-qubit CCZ gates (diagonal Toffoli gates) performed via three pulses of

two frequencies each. A subscript to a group indicates pulse order in temporal sequence. Non-zero
adjacency matrix entries (Rabi frequencies) are shown for each pulse. Dimensional Rabi frequencies

can be obtained using Eq. (44). All pulses are resonant and do not have to be phase-locked. Note

that in all given examples, pulse harmonics are applied to each dot (a, b, c). Other quantum-walk-
based sequences performing the same gates, e.g., based on a1 and ã1, can be constructed in a

similar fashion. Some may require pulses to be phase locked if complex phases of the adjacency

matrix entries matter. The table also shows the basis state for which the phase of π is accumulated,
and control-target qubit order, where the over-bar denotes application of control (C) or sign change

(Z) to |0〉 instead of |1〉.
CCZ gate diagonal∗ two-color pulse sequence; not phase-locked type state

{−1, 1, 1, 1, 1, 1, 1, 1} {{c1 = c̃1 = 1/2}1, {ã′2 =
√

3; b3 = 1}2, {c1 = c̃1 = 1/2}3} C̄C̄Z̄ |000〉
{1,−1, 1, 1, 1, 1, 1, 1} {{c1 = c̃1 = 1/2}1, {ã′2 =

√
3; b′3 = 1}2, {c1 = c̃1 = 1/2}3} C̄C̄Z |001〉

{1, 1,−1, 1, 1, 1, 1, 1} {{c1 = c̃1 = 1/2}1, {ã2 =
√

3; b̃′3 = 1}2, {c1 = c̃1 = 1/2}3} C̄ZC̄ |010〉
{1, 1, 1,−1, 1, 1, 1, 1} {{c1 = c̃1 = 1/2}1, {ã2 =

√
3; b̃3 = 1}2, {c1 = c̃1 = 1/2}3} Z̄CC |011〉

{1, 1, 1, 1,−1, 1, 1, 1} {{c1 = c̃1 = 1/2}1, {a2 =
√

3; b3 = 1}2, {c1 = c̃1 = 1/2}3} ZC̄C̄ |100〉
{1, 1, 1, 1, 1,−1, 1, 1} {{c1 = c̃1 = 1/2}1, {a2 =

√
3; b′3 = 1}2, {c1 = c̃1 = 1/2}3} CZ̄C̄ |101〉

{1, 1, 1, 1, 1, 1,−1, 1} {{c1 = c̃1 = 1/2}1, {a′2 =
√

3; b̃′3 = 1}2, {c1 = c̃1 = 1/2}3} CCZ̄ |110〉
{1, 1, 1, 1, 1, 1, 1,−1} {{c1 = c̃1 = 1/2}1, {a′2 =

√
3; b̃3 = 1}2, {c1 = c̃1 = 1/2}3} CCZ |111〉

∗ the basis is {000, 001, 010, 011, 100, 101, 110, 111}.

With this reduction of symmetry (20), it is most natural to perform various CCZ gates

using three pulses with two frequencies each. Examples of pulse compositions that produce

different variations of the CCZ gate are given in Table 1. Here we give a detailed discussion of

the fifth example, when pulses accumulate a non-trivial phase for basis state |100〉 as before.

The first and the last pulses are identical and activate only one connection for each cube graph

in Fig. 10. They are simple π-pulses performed concurrently, i.e., we set c1 = c̃1 = 1/2. After
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the first two-color pulse, the population is moved to the bottom right (highlighted) node in

each cube. The population is returned back to the qubit states by the last two-color pulse.

This means that all quantum walks induced by the middle two-color pulse must start from

and return to those highlighted nodes. By setting b3 = 1 we produce a simple non-trivial

return walk for node |102〉 in graph (g). In order to produce a trivial walk for graph (h),

which also has b3 connection activated, we set a2 =
√

3. This reduces graph (h) to a chain

of three states discussed in Sec. 5.2 below. Note that all other connections remain inactive

because they are off resonance with narrow-bandwidth pulse harmonics used for b3 and a2.

This leads to trivial evolution on graphs (a-f) during the second two-color pulse. As the

result, the amplitude residing on state |100〉 accumulates a phase of 2π (a factor of +1) and

all other qubit states accumulate a phase of π (a factor of −1). Because the overall phase

factor is negligible, this is equivalent to a CCZ gate with control triggered by 0 in the second

and the third qubit and Z applied to the first qubit. Other CCZ gates are obtained similarly,

activating different transition in the same fashion. Note that in all these examples evolution

does not depend on phases of the entries of the adjacency matrix (Rabi frequencies), and,

hence, all three two-color pulses do not have to be phase-locked. Generally this is not the

case if loop graphs, e.g., shown in Fig. 11(f), are involved.

4.6 Gate performance

It is instructive to investigate the execution time of a three-qubit gate performed using quan-

tum walks, for example the CCZ gate constructed in Sec. 4.5. The best known decomposition

of a three-qubit Toffoli gate using CNOT gates involves at least six CNOT gates. Thus, if

performed via a CZ gates, each CCZ gate requires at least six CZ gates applied to different

pairs of qubits (two for each pair). This provides a reference point for the execution time of

similar quantum-walk-based gate.

In scalable systems outlined in Sec. 3, two-qubit CZ gates between adjacent qubits are

performed via four π pulses, as described in Refs. [7, 21, 22], or a single multi-color pulse, as

described in Sec. 4.2. Following Sec. 2, we can use duration and control field amplitude of the

π pulses as 1/2 of a unit of time and a unit of field amplitude respectively, and rescale the

amplitudes of the multi-color pulses such that amplitude of each Fourier harmonic does not

exceed those of the π pulses. In this case the relative execution time of the CZ gate performed

via four π pulses is tg/2tπ = 2. The largest amplitude in the first example in Sec. 4.2 is 2π/τ

which corresponds to tg/2tπ = 2 (also ≈ 2.7π/τ and tg/2tπ = 2.7 for another example in the

same section). The CZ gates applied to the next nearest neighbors along the chain register

are constructed in Sec. 4.2.2 and have the largest Rabi frequency
√

6π/τ which corresponds

to tg/2tπ ≈ 2.45.

Three-qubit gates described in Sec. 4.5 use three two-color pulses to perform quantum

walks. The first and the last pulses are equivalent to pairs of concurrent π pulses. The middle

pulse has the largest amplitude
√

3π/τ , which results in the duration of ≈ 1.7 × 2tπ after

rescaling. The total duration of the gate is tg/2tπ ≈ 1/2 + 1.7 + 1/2 = 2.7. It follows that

the execution time is longer then that of a CZ gate but faster than that of two CZ gates,

i.e., tg(CZ) < tg(CCZ) < 2tg(CZ). The standard decomposition into the CZ gates requires

tg(CCZ) ≥ 6tg(CZ). Therefore CCZ and Toffoly gates performed using quantum walks can be

executed more than three times faster as compared to standard CNOT decomposition in the
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same system given the maximum allowed control field amplitude for each pulse harmonic. Note

that the speed of the CCZ gate performed using quantum walks depends on the symmetry

of the graphs (degree of physical interaction in the system), the choice of sub-graphs for each

walk, the number of (multi-color) pulses, as well as other parameters. In particular, complex

single-pulse walks may, in some cases, require large adjacency matrix entries, which will lead

to longer gate time (rescaling the amplitudes).

5 Linear graphs

In this section we discuss return quantum walks on graphs that are a set of states connected

in linear chains of various (finite) length. These graphs can be used to implement single-

qubit gates (see Sec. 4.1) and are essential building blocks for more complex graphs needed

to implement entangling quantum gates (see Secs. 4.2 and 4.3).

Two distinct types of return walks in these systems will be emphasized: (i) trivial return

walk, R0, in which amplitudes returns back to initial state and acquire no phase, and (ii) non-

trivial return walk, Rπ, in which phase π is accumulated when the system returns back to its

initial state. The second type, Rπ walk, is only possible if adjacency matrix is not singular,

which can be readily verified by calculating the evolution operator via eigendecomposition

(see examples below). In general, it is, therefore, expected that linear chain graphs with even

number of vertexes can support both R0 and Rπ walks (i.e., both U = ±1 are possible),

while linear chain graphs with odd number of vertexes can not produce U = −1. The latter

statement, does not strictly eliminate Rπ walks, as a possibility that Rπ exists, even when

U 6= −1, remains, in principle.

Four examples of linear chain graphs are discussed below. Detailed derivation of the

walks are given in Appendixes A-C. Some more complex graphs, which appear in two- and

three-qubit gates and simplify to linear chain graphs, are discussed in the next sections.

5.1 chain of two states

The simplest linear chain graph that we discuss here briefly for completeness is the one that

corresponds to a two-state quantum system [see Fig. 11(a)]. The adjacency matrix is

Λ =

(
0 Ωa

Ω∗a 0

)
≡ π

τ

(
0 a
a∗ 0

)
(63)

The evolution operator can be easily found by direct re-summation of odd and even terms of

the exponential series

U(τ) = e−iτΛ = cosπ|a| − i Λ

|Ωa|
sinπ|a| (64)

The “return” condition, which is identical to condition (14) in this case, is satisfied provided

|a| is an integer number. We have

Walk R0: |Ωa|τ/π = |a| = 2n, n ∈ Z (65)

Walk Rπ: |Ωa|τ/π = |a| = 2n+ 1, n ∈ Z (66)

where the former defines a trivial return walk and the latter defines a non-trivial return walk

that accumulates the phase of π.
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(�) (b) (c) (d) (e) (f)

Fig. 11. Linear chain graphs (a-d), a fan/tree graph (e), and a square graph (f); for details see
Secs. 5.1 - 5.4, Sec. 6, and Sec. 7, respectively. In each case, dimensionless amplitudes are defined

as ξ = Ωξτ/π, where Ωξ are Rabi frequencies (due to external control) corresponding to each

transition, and ξ stand for a, b, c, etc.

5.2 chain of three states

A graph of three states connected in a chain [see Fig. 11(b)] is described by the adjacency

matrix

Λ =

 0 Ωa 0
Ω∗a 0 Ωb
0 Ω∗b 0

 ≡ π

τ

 0 a 0
a∗ 0 b
0 b∗ 0

 (67)

The evolution operator corresponding to this system can be found explicitly as in the previous

case, although the exact expression becomes cumbersome, see Appendix A. A more elegant

approach, also applicable to larger systems, is to notice that diagonalization of (67)

M†ΛM = diag(λi) (68)

yields three eigenvalues

λi = {−
√
|Ωa|2 + |Ωb|2, 0,+

√
|Ωa|2 + |Ωb|2, } (69)

one of which is zero. The evolution operator, therefore, becomes

U = M

 e−iπ
√
|a|2+|b|2 0 0
0 1 0

0 0 e+iπ
√
|a|2+|b|2

M† (70)

As the result, irrespective of M , we have

Walk R0: U = 1→
√
|a|2 + |b|2 = 2n, n ∈ Z (71)

Walk Rπ: U = −1→ not achievable (72)

This, strictly speaking, does not imply that Rπ is not possible. However by inspecting the

complete solution (see Appendix A) we see that Rπ walk is not accessible in this system if

the initial state is state |1〉 or |3〉.
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Special case: integer amplitudes. It is interesting to note that the system allows inte-

ger amplitudes, which can become useful when implementing quantum gates via quantum

walks on graphs with small number of free parameters. Note that |a|2 + |b|2 = n2 describes

Pythagorean triples (or triangles), therefore |a| = i2 − j2

|b| = 2ij
n = i2 + j2

ij ∈ Z > 0 (73)

Irreducible triples have odd n and, therefore, must be multiplied by an even integer to pro-

duce R0 walk (71), e.g., {|a|, |b|, n} → 2{3, 4, 5}, {|a|, |b|, n} → 2{5, 12, 13}, {|a|, |b|, n} →
2{8, 15, 17}.

5.3 chain of four states

The adjacency matrix of a chain of four states [see Fig. 11(c)] is

Λ =


0 Ωa 0 0

Ω∗a 0 Ωb 0
0 Ω∗b 0 Ωc
0 0 Ω∗c 0

 ≡ π

τ


0 a 0 0
a∗ 0 b 0
0 b∗ 0 c
0 0 c∗ 0

 (74)

Due to symmetry, the eigenvalues are±λ1 and±λ2. The system does not have zero eigenvalues

and, thus, unlike in the previous case shown in Eq. (70), does allow U = 1 and U = −1

evolutions. By setting λ1τ = πn and λ2τ = πm, where n and m are integers of the same

parity, we obtain (see Appendix B){
|a|2 + |b|2 + |c|2 = n2 +m2

|a||c| = |n||m| n,m ∈ Z (75)

As the result, we have

Walk R0: U = 1, Eq. (75) with n,m ∈ even (76)

Walk Rπ: U = −1,Eq. (75) with n,m ∈ odd (77)

It is interesting to note that if we solve system (75) for b we obtain

|b| =

√
(|n|+ |m|)2 −

(
|nm|
|a|

+ |a|
)2

(78)

This defines the range of valid values for |a| and |c|

|m| ≤ |a| ≤ |n|, |m| ≤ |c| ≤ |n|, |n| > |m|. (79)

The system becomes disconnected into a pair of two-state systems, when |n| = |m|.
Special case: integer amplitudes. Integer amplitudes can be used in the symmetric case

when |a|2 = |c|2. From system (75) we obtain{
|a|2 = |n||m|
|b| = ||n| − |m|| (80)

Therefore, for any positive integer |a|, one can define integer amplitudes |a| ∈ Z
|b| = ||a|2 − 1|
|c| = |a|

(81)
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5.4 chain of five states

The adjacency matrix of a chain of five states shown in Fig. 11(d)
0 Ωa 0 0 0

Ω∗a 0 Ωb 0 0
0 Ω∗b 0 Ωc 0
0 0 Ω∗c 0 Ωd
0 0 0 Ω∗d 0

 ≡ π

τ


0 a 0 0 0
a∗ 0 b 0 0
0 b∗ 0 c 0
0 0 c∗ 0 d
0 0 0 d∗ 0

 (82)

is singular. One of the eigenvalues is zero, and the remaining eigenvalues are ±λ1 and ±λ2,

where λ1,2 are given in Appendix C. The evolution operator is a trivial identity matrix if

λ1τ = πn and λ2τ = πm, where n and m are even integers. Solving these two equation we

obtain (see Appendix C){
|a|2 + |b|2 + |c|2 + |d|2 = n2 +m2

|a|2|c|2 + |b|2|d|2 + |a|2|d|2 = n2m2 n,m ∈ Z (83)

As the result, we have

Walk R0: U = 1→ Eq. (83) with n,m ∈ even (84)

Walk Rπ: U = −1→ not achievable (85)

Special case: integer amplitudes. Integer amplitudes are possible for a symmetric chain

with |a| = |d| and |b| = |c|. We obtain{
|a| = |m|
|b|2 = (n2 −m2)/2

n > m ∈ even (86)

6 Single-level tree (fan) graphs

These graphs are structures that branch from a single vertex, as shown in Fig. 11(e). They

are natural parts of a network of transitions in multiqubit systems with at least one “local”

transition allowed for each qubit. The corresponding adjacency matrix is

Λ =

N∑
j=1

Ωj |α〉〈j|+ h.c. =
π

τ

N∑
j=1

aj |α〉〈j|+ h.c. (87)

Quantum evolution on such graphs can be mapped onto that of a two state quantum system.

To perform the map, define state

a∗|s〉 =

N∑
j=1

a∗j |j〉 (88)

such that 〈s|s〉 = 1, i.e.,

|a|2 =

N∑
j=1

|aj |2 (89)



448 Quantum gates via continuous time quantum walks in multiqubit systems with non-local auxiliary states

As the result the adjacency matrix becomes

Λ =
π

τ
a|α〉〈s|+ h.c. (90)

which is identical to (63). We obtain

Walk R0:

√√√√ N∑
j=1

|aj |2 = 2n, n ∈ Z (91)

Walk Rπ:

√√√√ N∑
j=1

|aj |2 = 2n+ 1, n ∈ Z (92)

7 A square graph

This is the graph [see Fig. 11(f)] that naturally appears in the simplest quantum walk im-

plementation of a CZ gate in the system with one (active) auxiliary state per qubit. The

adjacency matrix is

Λ = Ω1|α〉〈1|+Ω2|α〉〈2|+Ω′1|1〉〈β|+Ω′2|2〉〈β|+h.c.

=
π

τ
(a1|α〉〈1|+a2|α〉〈2|+b1|1〉〈β|+b2|2〉〈β|+h.c.) (93)

Similarly to symmetric fan graphs discussed above, it can be mapped onto a graph representing

linear chain of states. We can define state |s〉 such that

s∗|s〉 = a∗1|1〉+ a∗2|2〉, |s|2 = |a1|2 + |a2|2 (94)

In this case, the adjacency matrix transforms to

Λτ

π
= s|α〉〈s|+b1

a1s
∗|s〉+ a∗2s|a〉
|s|2

〈β| (95)

+b2
a2s
∗|s〉 − a∗1s|a〉
|s|2

〈β|+h.c.

where state

|a〉 = (a2|1〉 − a1|2〉)/s (96)

is orthogonal to |s〉. This gives to possibilities.

7.1 symmetric case

One possibility is to have b1a
∗
2 = b2a

∗
1, in which case

Λτ

π
= s|α〉〈s|+s′|s〉〈β|+h.c., (97)

where

s′ = s∗
a1b1 + a2b2
|s|2

(98)
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The adjacency matrix becomes that of the linear chain graph of three states. In this case the

solution is

Walk R0: U = 1→
√
|s|2 + |s′|2 = 2n, n ∈ Z (99)

Walk Rπ: U = −1→ not achievable (100)

as obtained earlier in Sec. 5.2.

7.2 non-symmetric case

The other possibility is to have b1a
∗
2 6= b2a

∗
1. In this case, adjacency matrix is

Λτ

π
= s|α〉〈s|+s′|s〉〈β|+a|β〉〈a|+h.c. (101)

where

a = s∗
a2b
∗
1 − a1b

∗
2

|s|2
(102)

This corresponds to the linear chain graph of four states discussed in Sec. 5.3. The solution

is {
|s|2 + |s′|2 + |a|2 = n2 +m2

|s||a| = |n||m| n,m ∈ Z (103)

and

Walk R0: U = 1, Eq. (103) with n,m ∈ even (104)

Walk Rπ: U = −1, Eq. (103) with n,m ∈ odd (105)

as obtained earlier in Sec. 5.3. In this case a non-trivial return walk is possible.

7.3 partitioning

It is interesting to note that the square graph can be partitioned into two non-trivial two-node

graphs, one having state |α〉 and the other having state |β〉, in an infinite number of ways.

This is achieved by setting hopping amplitude s′ to zero, or, explicitly, by requiring

a1b1 + a2b2 = 0. (106)

The two specific straightforward cases of partitioning are obtained for a1 = b2 = 0 or a2 =

b1 = 0.

Such partitioning, as also discussed in Refs. [55, 56], can be particularly advantageous

when performing similar analysis for larger graphs, for which analytical solutions may be

difficult or impossible to find. This approach can simplify construction of multiqubit gates

performed via quantum walks in larger systems.

8 Conclusion

We introduced a new scalable approach to quantum gates based on continuous time quantum

walks. This approach relies on availability of auxiliary, typically higher energy, states that
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can take part in interactions between qubit systems. Interacting excited states create a

developed network of states, see, e.g., Fig. 2(g) and 3(j), through which entanglement can

propagate. This additional resource—an interacting entangling bus—potentially enables much

faster entanglement propagation and quantum gates. As an example, Toffoli gate that needs

a minimum of six CNOT gates [3] to be implemented can run as fast as ∼ 1.35 of a run-time

of a single CNOT gate, as analyzed in Sec. 4.6. Such dramatic compression of multiqubit

gates does not rely solely on the existence of entanglement bus, but require an efficient way

to probe physical non-local interactions present there.

Many systems do have multiple well-defined excited states that can mediate interactions

between qubits. However, as demonstrated in Sec. 3 and subsections therein, interactions in

a scalable qubit register are restricted by certain symmetry. The symmetry originates from

that of a non-interacting collection of multi-state quantum systems, see Eqs. (20), and is

subsequently reduced when physical interactions are present, but not lifted entirely. As the

result, entanglement bus becomes a complex collection of states each span over few qubit

systems (due to physical interactions), e.g., as shown in Fig. 3(j). Traditional approach—

driving system through a well defined trajectory—is possible but does not give any gate

compression [23]. Compression becomes possible when multiple trajectories are addressed

concurrently, simultaneously probing interactions present in different parts of the spectrum.

This is accomplished using continuous time quantum walks, see Sec. 2.

Unlike in many other proposed implementations of continuous time quantum walks, here

the walk does not propagate in real time. Evolution takes place in an effective time, see

Eq. (13), generated by external control pulses, see Eqs. (5), (11), (15), and (16). This effective

time can begin and end, enabling walks of precise duration. Solution to a coherent quantum

walk, given the network of states (graph) with corresponding hopping amplitudes, is rather

easy to find. The problem of constructing an entangling gate, however, is of different type. A

quantum gate is defined via a set of boundary conditions in the (effective) time—the initial

and the final conditions, see, e.g., Eqs. (40). These conditions must be satisfied to perform the

desired gate. In addition, there are symmetry relations on hopping amplitudes enforced by

physical interactions and configuration (connectivity) of the entanglement bus. The problem

therefore is to find quantum walk solutions that make these sets of restrictions consistent.

This is not always possible: as an example, the set of symmetry conditions (20) corresponding

to non-interacting qubit systems is inconsistent with any time-domain boundary conditions

required for entangling quantum gates. Further complexity comes from the fact that a single

quantum gate is represented by multiple quantum walks, each starting at one of the multiqubit

basis states in the qubit domain, see, e.g., Fig. 7 or 8. The problem, therefore, is that of

constraint simultaneous optimization of multiple walks, that is, to find parameters of the

control field (Rabi frequencies) that define a set of quantum walks satisfying symmetry and

time-boundary constraints. When quantum gates span over relatively small number of qubits

at a time, this problem is most effectively addressed by investigating analytical solutions (if

available), as done in Secs. 5-7. Specifically, diagonal entangling gates, such as CZ, CCZ,

CZZ, and, thus, related CNOT and Tofoli gates, can be obtained by analyzing a set of return

quantum walk solutions on simple subgraphs, such as linear-chain graphs of up to 5 states,

fan/tree graphs, and square graphs.

Quantum walks solutions to quantum gates are typically not unique and multiple different
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combinations of control pulse harmonics can accomplish the same gate, as evident from, e.g.,

solution (48) to a CZ gate. The origin of this is in how a returned walk can occur. A

quantum walk on a given graph is guaranteed to return to the starting node if the spectrum

of the corresponding adjacency matrix, see, e.g., Eq. (68), is composed of integers of the same

parity (odd or even). In this case one can chose effective time such that the resulting evolution

operator is fully diagonal at the end. As the result, adjacency matrices formed by multicolored

control pulses may have different integer spectra and yet produce the same returned walk.

Different integer values in the spectra are related to the magnitudes of Rabi frequencies,

and, hence, the strength of the control field. This introduces a problem of assessment of

gate performance due to different walks: that is, if the control pulse is stronger, it can,

in principle, produce faster gates. This speedup however is not usable. In actual physical

quantum systems the strength of the control filed and the pulse duration are limited by the

hierarchy of transition that may or must not occur to perform desired quantum evolution, as

discussed in Sec. 3. Furthermore, the two always come as a product. Therefore to compare

duration of the gates (in real time) due to different solutions, one must rescale control filed

amplitudes to keep them within the same limit, see Sec. 4.6. The true, usable gate compression

occurs due to more effective utilization of interactions between qubit systems. Specifically, we

show that Toffoli gate (CCZ) represented via quantum walks can run almost as fast as a single

CNOT (CZ) gate, with the execution time slower only by a factor of ≈ 1.35. This is in sharp

contrast with the standard decomposition theorem [30, 3], which states that (three-qubit)

Toffoli gates require at least six CNOT gates.

Not all quantum walk-based solution necessarily lead to speed up of multiqubit gates.

Some solutions, particularly, the onces implementing single-qubit gates, can map exactly

onto standard Λ-system single-qubit control commonly (experimentally) performed in many

currently available qubit systems. These solutions were outlined in Sec. 4.1 for completeness.

For this reason, it is generally desirable to have analytical solutions to quantum walks on

graphs involved in the gate of interest. We have outlined such quantum walk solutions involved

in two- and tree-qubit gates in Sec. 5, 6, and 7. It is evident, however, that complexity of

analytical solutions increases dramatically for larger graphs. This difficulty can be partially

avoided by introducing “classical“ predefined waypoints to guide the walks. This effectively

splits the single multicolor pulse into a time sequence of two or several multicolor pulses. The

simplification comes at a cost of potentially increasing the overall gate runtime. Yet, we still

obtained a significant gate compression for variety of CCZ gates following this procedure, see

Sec. 4.5 and Table 1.

Finally, we note that this paper is focused on one of the simplest possible scalable quantum

registers forming a network of interacting auxiliary states—an infinite chain of qubits. We have

also limited our discussion to, at most, three-qubit segments in this register to provide clear

examples of walk-based gates. Clearly more developed connectivity should be possible. For

example, in quantum dot architecture, discussed in Sec. 3.1, only transitions of V-type were

used to couple to cavity photons, see Fig. 1(a) and (b). Additional cavities or cavity modes

coupled to these or the other pair of transitions can create nodes accepting more then two

connections. The resulting quantum networks will have symmetry of transition amplitudes

(adjacency matrix) that is different from the one in the linear chain register. As the result,

specific representation of gates via walks obtained in Sec. 4 will have to be adjusted to conform
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to this new symmetry restrictions. Nevertheless, the approach developed in Secs. 4-7 should

still be applicable.
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Appendix A: Exact diagonalization of three-state system

We include solution obtained from exact diagonalization of a three-states system (chain of

three states, Sec. 5.2) here for completeness. The adjacency matrix (Hamiltonian) of the

system is

Λ =

 0 Ωa 0
Ω∗a 0 Ωb
0 Ω∗b 0

 . (A.1)

The evolution operator U = exp[−iτΛ], found from the eigenvalue decomposition of Λ, is

U = (A.2)
|Ωa|2+|Ωb|2 cos τ

√
|Ωa|2+|Ωb|2

|Ωa|2+|Ωb|2 −iΩb sin τ
√
|Ωa|2+|Ωb|2

|Ωa|2+|Ωb|2 − 2ΩaΩb sin2 τ
√
|Ωa|2+|Ωb|2

2

|Ωa|2+|Ωb|2

−iΩ∗b sin τ
√
|Ωa|2+|Ωb|2

|Ωa|2+|Ωb|2 cos τ
√
|Ωa|2 + |Ωb|2 −iΩa sin τ

√
|Ωa|2+|Ωb|2

|Ωa|2+|Ωb|2

− 2Ω∗aΩ∗b sin2 τ
√
|Ωa|2+|Ωb|2

2

|Ωa|2+|Ωb|2 −iΩ∗a sin τ
√
|Ωa|2+|Ωb|2

|Ωa|2+|Ωb|2
|Ωb|2+|Ωa|2 cos τ

√
|Ωa|2+|Ωb|2

|Ωa|2+|Ωb|2


Note that both, the first and the last entry on the diagonal can not be set to −1 when Ωa 6= 0

and Ωb 6= 0. The central matrix element, however, can become −1. The evolution becomes

trivial (identity matrix) when τ
√
|Ωa|2 + |Ωb|2 = 2πn with n ∈ Z. When τ

√
|Ωa|2 + |Ωb|2 =

π(2n+ 1) evolution started initially from the middle state returns back with a phase of π.

Appendix B: Eigenvalues of four-state chain adjacency matrix

The dimensionless adjacency matrix of a chain of four states can be formulated as

τΛ

π
=


0 a 0 0
a∗ 0 b 0
0 b∗ 0 c
0 0 c∗ 0

 . (B.1)

It has four eigenvalues ±λ1τ/π and ±λ2τ/π, where

λ1,2τ

π
=

√
|a|2 + |b|2 + |c|2 ±

√
(|a|2 + |b|2 + |c|2)2 − 4|a|2|c|2
√

2
(B.2)

In order to obtain a return walk (evolution) we must set{
λ1τ/π = n
λ2τ/π = m

, n,m ∈ int (B.3)

This produces a system{
|a|2 + |b|2 + |c|2 = n2 +m2√

(|a|2 + |b|2 + |c|2)2 − 4|a|2|c|2 = n2 −m2 (B.4)

which can be further simplified to yield Eq. (75).
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Appendix C: Eigenvalues of five-state chain adjacency matrix

The dimensionless adjacency matrix of a chain of five states is

Λτ

π
=


0 a 0 0 0
a∗ 0 b 0 0
0 b∗ 0 c 0
0 0 c∗ 0 d
0 0 0 d∗ 0

 (C.1)

One of the eigenvalues of this matrix is always zero. The other two are ±λ1τ/π and ±λ2τ/π,

where

λ1,2τ/π =

√
R2 ±

√
R4 − 4|a|2|c|2 − 4|b|2|d|2 − 4|a|2|d|2

√
2

, (C.2)

R2 = |a|2 + |b|2 + |c|2 + |d|2

Because one of the eigenvalues is always zero, exponentiation of the diagonalized iΛτ can not

produce negative identity matrix. Therefore we must set{
λ1τ/π = n
λ2τ/π = m

, n,m ∈ even (C.3)

This yields the system{
R2 = |a|2 + |b|2 + |c|2 + |d|2 = n2 +m2√
R4 − 4|a|2|c|2 − 4|b|2|d|2 − 4|a|2|d|2 =n2−m2 (C.4)

which can be further simplified to produce Eq. (83)


