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We give necessary and sufficient conditions for a Gaussian quantum channel to have a
dilation involving a passive, i.e., number-preserving unitary. We then establish a normal
form of such channels: any passively dilatable channel is the result of applying passive
unitaries to the input and output of a Gaussian additive channel. The latter combine the
state of the system with that of the environment by means of a multi-mode beamsplitter.
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1 Introduction

It is a fortunate fact of nature that many physical systems are well-described by a quadratic
approximation. Harmonic oscillators are ubiquitous in physics, and are the basis for our un-
derstanding of a variety of phenomena in the domain of classical mechanics, electrodynamics,
solid state physics, quantum field theory and gravity. Gaussian processes are also essential
in probability theory and information theory as a source of non-trivial yet exactly solvable
scenarios of interest. Arguably one of the most promiment examples is Shannon’s capacity
formula for the additive white Gaussian noise (AWGN) channel [10]. The latter constitutes a
realistic model for fiberoptic communication. It transforms an analog input signal X (modeled
by a random variable on R™) into the output ¥ = X + Z by adding an independent centered
unit-variance Gaussian random variable Z representing the noise. More generally, Z may be
replaced by an arbitrary random variable Z, in which case we refer to this as an additive noise
channel.

In quantum mechanics, Gaussian states arise naturally as thermal states of Hamiltonians
which are quadratic in the mode operators of a bosonic system. The latter provide an accurate
description of many systems of interest. Restricting to such Hamiltonians, Gaussian channels
result whenever a system interacts with an environment in a Gaussian state. A typical example
is a channel of the form

E(p) = tr (Ur(p @ p)U3) (1)
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284  On quantum additive Gaussian noise channels

where Uy is a beamsplitter with transmissivity A € [0,1], and pg is a Gaussian state of the
environment (see Example 2 below). This channel constitutes a natural quantum counterpart
of the classical additive noise channel, and, correspondingly, we refer to it as a (quantum)
additive Gaussian noise channel. In the special case where pg is the thermal state of the har-
monic oscillator Hamiltonian, it is also called a thermal noise channel (and is the counterpart
of the AWGN channel).

The channel (1) also arises naturally from the viewpoint of resources in e.g., quantum
optics. The unitary U obeys a special property: it cannot generate squeezing. More generally,
a unitary U acting jointly on n modes of a system and ! environment modes is called passive
if it commutes with the total number operator N = ZZ; ajay. Here ap = (Q +iPy)/V?2 is
the usual annihilation operator associated with the k-th mode. The unitary U describing the
beamsplitter is an example of such a passive unitary. In fact, a Gaussian unitary is passive if
and only if it is the composition of beamsplitters and phase shifters [9]. Thus passive Gaussian
unitary operations are experimentally easy to implement. Physically, such operations neither
introduce nor remove photons and are thus implementable without expending energy.

Considering squeezing as a resource, it is natural to try to separate preexisting squeezing
(in the form of a potentially squeezed state of the environment) from evolutions generating
squeezing. One is then led to consider the class of passively dilatable channels: these are
channels possessing a dilation with a passive unitary. Motivated by the decomposition [9] of
passive Gaussian unitaries, we ask if passively dilatable channels also have a special structure.
The main result of our paper is such a normal form: we establish a close connection between
additive channels and the class of passively dilatable channels. That is, any passively dilatable
channel is the composition of (i) a passive unitary applied to the input, (ii) an additive
Gaussian noise channel and (iii) a passive unitary applied to the output.

Our result thus provides an alternative characterization of quantum additive channels as
canonical examples of non-unitary channels which do not generate squeezing. It is a further
manifestation, but in a non-unitary context, of the well-known fact that non-linear optical
elements are generally required for the generation of squeezed states [1]. We refer to [6] for a
recent study of the operational quantification of squeezing, and a more detailed discussion of
its role in quantum optics.

Our work also establishes simple necessary and sufficient criteria for deciding when a given
passively dilatable channel has a dilation with [ environment modes. Our considerations cover
all cases, including rank-deficient ones. Using these criteria, we compute the minimal number
of required environment modes for a passive dilation to exist. These results are similar, in
spirit, to those of [2, 3], but in contrast to the latter, geared towards characterizing non-
squeezing resources. Specifically, [2] constructs a unitary dilation of an arbitrary Gaussian
quantum channel, and presents a number of applications to weak degradability. In [3], the
minimal number of environment modes required to provide a unitary Gaussian dilation with
pure state environment is identified, and bounds for the case of mixed state enviroments are
given (see Remarks 2 and 3 below).

2 Preliminaries

We begin by introducing some of the basic relevant terminology associated with continuous
variable quantum information (for longer reviews of the material see for instance [4, 11]). This
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will also serve to introduce our notation.

2.1 Gaussian states and operations

We consider n-mode bosonic systems with n pairs of quadratures (or modes) given by R =
(Q1, P1,Q2, P2, ...,Qn, P,), or, equivalently, the annihilation and creation operators

1 1
ap = — + 1P and a; = — — P
k \/i(Qk %) & \/i(Qk %)
for kK =1,...,n. The commutators

[Rj, Rk] = inkid (2)

are given by the standard symplectic form

U:—é<_01 (1)>

i=1
To simplify notation, it is often convenient to work in the permuted basis (Q1,. .., @Qm, P1,
cois Py Qunt1y -+ oy Qmts Pty - -+, Pmyt), where o takes the form o = o9, @ 09 with

- (kak L )
—1r  Okxk
For concreteness, we will henceforth assume that the CCR-relations (2) are realized by un-
bounded operators acting on the tensor product H®™ where H = L?(R) is the Hilbert space
associated with a single mode. When convenient, we will also use the notation H ,...4, = H®"
to denote multipartite Hilbert spaces.

An important subset of states is given by the Gaussian states: such a state p is fully
characterised by its first and second moments

dy, = tr(pRy) and Yee = tr(p{Ri — diid, Ry — dyid}) ,

where {A, B} = AB + BA denotes the anticommutator. Here d € R?" is the displacement
vector, whereas the symmetric matrix v = 47 € R2?"%2" ig referred to as the covariance
matriz. By Heisenberg’s uncertainty principle, the covariance matrix of any state satisfies the
operator inequality

v > ioa, - (3)

Conversely, any pair (d, ) with d € R?" and v = y7" € R?"*2" gatisfying (3) uniquely defines
a Gaussian n-mode state.’ As a consequence, we may identify the set of Gaussian states with
the set of such pairs.

bWe emphasize, however, that passive dilatability (as defined below) of the channel (X, Y, 027) is not equivalent
to passive dilatability of the channel (X,Y,v) with v # 02™. For example, in the case of pure translations
(X,Y) = (12, 02nx2n), the corresponding unitary channel is passively dilatable if and only if v = 02™.
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2.2 Gaussian operations

A quantum operation (or channel) acting on an n-mode system is described by a completely
positive trace-preserving map ® : B(H®") — B(H®"). Here B(H®") is the set of bounded
linear operators on H®". Again, the subset of Gaussian channels is distinguished by the
property that such channels map Gaussian states to Gaussian states. Such a channel is
completely characterized by its action on Gaussian states, and the latter has a convenient
description: for a Gaussian state p with displacement vector d and covariance matrix -y, the
Gaussian state ®(p) resulting from application of the channel is described by the pair (d’,~’)
obtained from the map

v X4 XT+Y
d— Xd+v,

where the matrices X,Y € R?**27 and the vector v € R?" determine the action of the
channel. Clearly, Y = Y7 has to be symmetric for this to map covariance matrices to
covariance matrices. The map is completely positive if and only if(cf. [4])

Y > iog, —iXoon X7 . (4)

Conversely, and similarly as for Gaussian states, any triple (X, Y, v) with Y = Y7 symmetric,
(X,Y) satisfying (4) and v € R?" arbitrary uniquely determines a Gaussian n-mode channel.
We will thus identify the set of Gaussian channels with the set of such triples.

In fact, the displacement vector v € R?” has no influence on operational properties of
the channel such as capacities since it can be changed arbitrarily by applying a displacement
operator (a Gaussian, but non-passive unitary) to the output of the channel (see e.g., [4]).
In contrast, the matrices (X,Y) determine all important characteristics of the channel. As a
consequence, we will henceforth assume that v = 0 (as in [2, 3]), and write ®x y : B(H®") —
B(H®™) for the Gaussian channel determined by the pair (X,Y).

2.3 Gausstian unitaries and passive unitaries

A Gaussian unitary channel is one of the form ®x ¢ (i.e., Y = 0). For such channels, the
constraint (4) implies that X preserves the symplectic form (i.e., X092, X = 03,), i.e., X is
an element of

Sp(2n) = {S € R***" | S59,8T = 09, } ,

the group of real symplectic matrices. It can be shown that any element S € Sp(2n) defines
a unitary Ug on H®" such that

®s0(p) =UspUs -

Furthermore, S +— Ug defines a representation called the metaplectic representation of Sp(2n).
In more physical terms, a Gaussian unitary describes the evolution (for a fixed amount
of time) generated by a Hamiltonian H which is quadratic in the creation- and annihilation

¢Note that in [4], the condition is stated with a minus sign, but since 0T = —¢ and Y is symmetric, this

conditions is equivalent.
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operations, i.e., one that has the form

H= Z hjkajax + h.c. (5)
j k=1

A Hamiltonian of the form (5) which commutes with the total number operator, i.e.,
satisfies

H, Za;aj] =0
j=1

is called passive. A passive Hamiltonian generates Gaussian unitaries which are associated
with orthogonal symplectic matrices S € Sp(2n) N O(2n), where

0(2n) = {0 € R | 00T = 1,,} .

We call such Gaussian unitaries passive. It can be shown that passive Gaussian unitaries can
be realized using beamsplitters and phase shifters only [9].

2.4 On the orthogonal symplectic group

Let us collect a few facts about the group Sp(2n) NO(2n). Crucially, there is an isomorphism
U(n) = Sp(2n) N O(2n) between this group and the group

Un) ={UcC™" | U'U=1,}

of unitary n xn matrices. For our purposes, it will be convenient to write out this isomorphism
for the case of n + [ modes (associated with a system and its environment), as follows:
Lemma 1 The map
¢:Um+1) — Sp2(n+1)NO2(n+1))
Uy U

U= ) — ¢>(U)=S:<51 52)

where  s; = Re(u;) — Im(u;)
— Im(ul) Re(ul)
uz  Ug 53 54

and where uy € C" ™, uy € C™*! ug € C*™, uy € C*! is an isomorphism.

Proof. The existence of the isomorphism is well-known (see [8]). We need to show that S is
symplectic:

T T T T

So ) ST — S$102n87 + S2021S5  S102,S3 + S2021Sy
2(n+ - T T T T

( ) S§309p,S] + S4091S5  S302,53 + S409;S]

Note that

s 5T ( Re(u;) Im(u;)? — Im(u;) Re(u;)T  Re(u;) Re(u;)T + Im(u;) Re(uj)T)
2227 7 —(Re(ui) Re(u;)T 4 Im(u;) Re(u;)”)  Re(u;) Im(uj)T — Tm(u;) Re(u;)”

and that
Re(u;) Re(u;)” + Im(u;) Re(u;)” = Re(uiu})

Re(u;) Tm(u;)? — Tm(u;) Re(uj)’ = Im(ulu;)
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Therefore, since U is unitary, it follows that SO’Q(n_H)ST = Og(n41)- Similarly,

55T — (slsg + 828§ slsg + @s%) — 1,
5357 + 8485  S3S3 + 845
using the unitarity of U. To prove that this is an isomorphism, one then has to consider the
inverse map. This is well-defined because any matrix S € Sp(2n) N O(2n) is of the form of
the image of the map ¢ in (1) (see [8]). .
The following lemma will be an important tool in what follows.
Lemma 2 For any matriz X € R**2" [X g5,] = 0 if and only if X has the form

A B
(% 3)
for some matrices A, B € R"*". In particular, any matric X € Sp(2n) N O(2n) commutes
with ooy, .

Furthermore, any eigenvalue of a matriz of form (2) has even multiplicity.

In fact, it can be shown (see [8]) that any two of the three properties X049, X1 = o, [X, 02,] =
0 and X X7 = 1, implies the third, a feature known as the 2-out-of-3 property.

Proof. The proof is straightforward. The fact that this holds for X € Sp(2n) N O(2n) is
clear from Lemma 1 (specialized to [ = 0).

For the eigenvalue multiplicity, note that if v = (vy,v2)” with vy, vy € R™ is an eigenvector
to the eigenvalue \ of X, then 09,v = (v2, —v1)7 is an eigenvector to the same eigenvalue and
oon,v L v. Now, if {v,09,v}* contains another eigenvalue w € R?*" with eigenvalue )\, then
oopw is again an eigenvector of X with eigenvalue A\. We claim that {v, o2,v, w, 02, w} is an
orthonormal set of eigenvectors to eigenvalue A. By construction, we have w L {v, 03,v} and
oopw L w. Finally, oo,w L v as (o9,w,v) = —(w, 09,v) = 0. Iteratively, we can construct
an orthonormal basis of every eigenspace, which will necessarily have even multiplicity. OJ.

The next lemma is an extension theorem for orthogonal symplectic matrices:
Lemma 3 Assume that s; € R?"*?" and sy € R?"*2! satisfy

T T
8$102n8] + S202185 = O2n

slslT + 5232T =15, .
Then there are s3 € R**2" gnd s4 € R2*2! such that
S1 S92
S = < 54> € Sp2(n+1)NO2(n+1)) . (7)
Furthermore, if S is of the form (7) and

S = (21 f) € Sp(2(n+1)) NOR2(n+1)),
3 4

then there is an orthogonal symplectic matriz o € Sp(21) N O(21) such that

g — ( 12, 02n><2l) g 8)

021x2n 0
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Proof. This is essentially saying that one can always extend suitable matrices to orthogo-
nal symplectic matrices. It is clear by symplectic Gram-Schmidt (see [8]) that it is always
possible to find s3,s4 to construct a symplectic matrix S, which however is not necessarily
orthogonal. Therefore, we take the isomorphism to unitary matrices: Since s; and sq satisfy
the relations (6), we can choose uy, us from the isomorphism in Lemma 1. In particular, the
matrix V = (u1 ug) fulfills VVT = 15,, hence we can extend it to a unitary matrix U
and use the isomorphism again to find s3 and s4. The corresponding S is now orthogonal
symplectic by construction.

For the second statement, let S, 5" € Sp(2(n +1)) N O(2(n + 1)) be given by (7) and (8),
respectively. Then

raT 1o, slsg + 3254T

S50 = (sgslT + shsT shsT + sisT (9)

by the orthogonality relation (6). But S’ST € Sp(2(n+1))NO(2(n+1)), hence it follows that
56T — < 1oy 02n><2l> -0

021 % 2n 0

for some o € Sp(21) N O(2l). Combining this with (9) immediately gives O7S’'ST = 1(;,,4).
The claim follows by left- and right-multiplying the latter identity with O and .S, respectively.
0.

2.5 Dilations of Gaussian channels

Consider the Gaussian n-mode channel ®xy as defined in Section 2.1. It is well-known
(see [2]) that one can find a Gaussian state pg of | < n environment modes and a Gaussian
unitary matrix U acting on n + [ modes such that ®x y can be written as

®(p) =trg(U(p® pp)U”) . (10)

Note that we do not demand pg to be a pure state (if it is, this is referred to as the Stinespring
representation, see Remark 3 below). In Eq. (10), U = Ug is the image under the metaplectic
representation of a symplectic matrix S € Sp(2(n +1)).

The relationship between S and (X,Y") is obtained by analyzing the action on covariance
matrices: if the I-mode Gaussian state pgp has covariance matrix vg, then the channel’s action
is given by

v (S(YDYE)S  )2nxan = XA X" +Y

where (+)2nx2, means that we restrict to the upper left block of the size 2n x 2n. More
precisely, writing
(23
53 S4

with s; € R2"*27 and s4 € R?*2! we have

T
81 S vy O2nxa2t) (81 82\ _ $17YST + SaYESL  *
53 84) \O2yxon  VE 83 84 * *
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and therefore
XyXT +Y = s19sT + soypst (11)
for all covariance matrices . Thus the pair (X,Y) and (s1, $2,vg) are related by
X =+s and Y = soypsd . (12)

3 Passively dilatable Gaussian channels

Given a Gaussian channel ® x y, we ask if there is a passive unitary associated with an element
S € Sp(2n) N O(2n) and an (arbitrary) Gaussian state pg of the environment constituting a
dilation of the channel. We shall call any channel with this property passively dilatable. Our
main result is the following.

Theorem 1 Let ®xy be an n-mode Gaussian channel. The following conditions are
equivalent:

(i) There exists a passive dilation with | environment modes and S € Sp(2(n+1))NO(2(n+

).

(ii) The matrices X,Y satisfy 1o, — XXT >0, [X, 09,] =0, ker(Y) = ker(12, — XX7T) and
20 > rank(1,, — XXT).

We defer the proof of this theorem to Section 3.2, and first discuss some examples.
Remark 1 Note that if [X,02,] = 0, then rank(1la, — XX7T) is even (see Lemma 2) and
therefore also rank(Y').

Example 1 Consider the classical noise channel given by X = 1 and Y > 0, Y # 0. Ac-
cording to Theorem 1, this channel is not passively dilatable because the condition ker(Y) =
ker(1 — XX7T) is not met. A dilation of this channel with two environment modes is given
in [5].

Example 2 Let Uy be the two-mode beamsplitter with transmissivity A € [0,1], i.e., the
Gaussian unitary given by the symplectic matriz

G — VAL V1=,
AT <\/1 AL, VA )

with respect to the ordering (Q1, P1,Q2, P2) of the modes. Let pg be a one-mode Gaussian
state with covariance matriz vg. Consider a channel of the form

®(p) = tre Ux(p® pp)U5 - (13)

We call this an additive Gaussian channel.
Since Uy is passive, ® is clearly passively dilatable. To see that the conditions of the
theorem are satisfied, observe that

X =Vl and Y =(1-Nyg.

Assume that X €]0,1[. Then it is easily verified (using the fact that covariance matrices are
positive definite) that the conditions of (ii) are satisfied for any I > 1. In particular, the
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theorem implies that there is a dilation with I modes for all 1 > 1. This is consistent with
expression (13). The theorem also implies that at least one environment mode is necessary.
On the other hand, assume that A = 1. Then the conditions of (ii) are satified for any
1 > 0, implying the existence of a dilation with no environment modes. Indeed, in this case,
the channel is simply the identity channel, with trivial dilation ®(p) = p for all states p.
Finally, consider the case where A = 0. Here the conditions (ii) apply with | > 1, which is
also consistent with (13).

In most cases, the theorem can be stated in a simpler fashion.
Corollary 1 Let ®xy be an n-mode Gaussian channel such that X,Y and 1g, — XX7T have
full rank. Then there exists a passive dilation with n modes if and only if 1o, — XXT >0
and [X, 09,] = 0.
In fact, we remark that this Corollary can be shown directly by constructing an orthogonal
symplectic unitary from s; = X, s9 = (L, — XX T)l/ 2 and using the covariance matrix
_ o—ly o= INT
Ve =55 Y(sy )"

3.1 General observations about dilations

We can now make a first step towards proving the theorem:

Lemma 4 Let ®xy be an n-mode Gaussian channel. Using the notation of equation (10),
such a Gaussian channel can be passively dilated with I environment modes if and only if there
exists a tuple (sg,vg) with so € R22 5 € R2*2 and vg > ioq such that

SQ(TQ[S%1 = 092n — XO-QHXT =2
8285 = ]].Qn — XXT = 2 (14)

T
SoVESy; =Y

Any dilation satisfies s1 = X or s1 = —X.
Proof. Given a passive dilation of the channel with a matrix S € Sp(2(n+1)) NO(2(n+1)),
we know that Xy X7 +Y = s;ys? + syymsd for all y by equation (11). Therefore it must
hold that s1ys? = XyXT for all 4 > iog, and syygss = Y, which is the third equation of
(14).

In particular we have s;s7 = X X7 hence s;0 = X for some orthogonal matrix O € O(2n)
and we have syys? = le’yOTslT for all covariance matrices v > i¢o. This is equivalent to

Q1Q = Q007Q

if Q = s sy denotes the projection onto ker(s;)*. Since this holds for all covariance matrices
v it also holds for all symmetric matrices, in particular the orthogonal projection (). Since
OQOT is a projection itself QOQOTQ = Q can only hold if OQOT = Q. This implies that
in the basis where Q is diagonal, O must be block diagonal and we can write O = O1 & O,
with Op a matrix onto ker(s;)* and O5 onto ker(sy).

Since O commutes with @, we also find QvQ = O(QyQ)OT and O commutes with all
symmetric matrices A with ker(A) D ker(s;). This implies that O; must be a multiple of the
identity on ker(s;)*. Since s;0 = s1(O; @ 0) by construction, this implies that we can find
O’ € O(2n) such that $10 = 10’ and O’ is a multiple of the identity. Since O’ is orthogonal,
O' = £1. Hence s1ys] = XyXT for all v > io if and only if s; = +£X.
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In addition, we need that S is symplectic and orthogonal, which means that the following
conditions must always hold:

$10205] + $202185 = O2p,
slslT + 3232T =15,

slagnsg + 5202154T =0
slsg; + 5233; =0

$302n83 + 8402184T =0y

T T
5353 + 5455 = Loy,

If we plug in £s7 = X, the first two conditions are exactly equations (6) so that it is necessary
to satisfy system (14) in order to have a passive dilation.

Conversely, using Lemma 3, having a solution to (14), we can always choose s3 and s4 to
extend S to an orthogonal symplectic matrix. [J.

This lemma implies that proving Theorem 1 is equivalent to characterizing the solvability
of the system of equations (14). From the fact that sos2 is positive semidefinite, it is imme-
diately clear that the system can only be solvable if $ > 0, which is one of the conditions
stated in Theorem 1. To recover the other conditions, we will need the next lemma:
Lemma 5 In the notation of Lemma 4, for any passive dilation of an n-mode passively
dilatable Gaussian channel ®xy we have ¥ = Ugni and both Y and 3. commute with Oon -
Proof. By definition, we need SQUQZSQT = ¥ and 5255 = 3. Since So is derived from an
orthogonal symplectic matrix, it is of the form (see Lemma 1)

sy = (Rl) Dulue)),

Setting

= Re(ug) Re(uz)” + Im(up) Im(ug)”

v :=Im(us) Re(ug)T — Re(uz) Im(u2)T7

v !
SQS%1 = <_MV M) =

—v !
32021$g = <—,u _MV) =

we obtain:

™M

Since ¥ and ¥ are of the form specified in Lemma 2, they commute with o5,,. .

3.2 Proof of Theorem 1
3.2.1 Characterization of passively dilatable channels ((i)=(ii))

We begin by proving the first part of Theorem 1, namely that the stated conditions are
necessary:

Lemma 6 Let ®xy be an n-mode Gaussian channel. The conditions 1o, — XXT >0,
[X,02,] =0 and 2] > rank(1a, — X XT) are necessary for the existence of a passive dilation
of the channel with 21 environment modes.
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Proof. By Lemma 4, in order for a dilation to exist, the system of equations (14) must be
satisfied. In particular, sps? = 1s, — X X7T. Due to the fact that sys] is positive semidefinite,
12, — X X7 must be positive semidefinite. In addition, if so € R?"*2! then rank(sss?) < 21,
which implies that sysl = 15, — XXT can only have a solution if rank(ls, — XX7T) <
2l. Finally, for a passive dilation we have S € Sp(2n) N O(2n) by definition. The 2-out-
of-3 property of the unitary group (Lemma 2) then implies [S,05(,44)] = 0 and therefore
[s1,02,] = 0. Hence [X, 09,] = 0 is a necessary condition as X = s;. 0.

Lemma 7 Let ®xy be a Gaussian channel. The condition ker(ls, — XX7T) = ker(Y) is
necessary for the existence of a passive dilation of the channel.

Proof. We suppose that we have found (sa,vz) such that sgsi = 1, — X X7T and vg > ioy
such that syypsl = Y. First note that for every y € ker(s?) we have soygpsiy = 0, hence
y € ker(Y) or ker(s]) C ker(Y). Now, on the other hand

rank(s2) > rank(syygss ) > rank(sy soypst 537 )

with the pseudoinverse s; (see Appendix 1 for definition and basic properties), using that the

rank of a product of matrices is always smaller than the rank of its factors. Now note that
S;Sg = @ is the orthogonal projection onto the range of sZ. Since yg > iog, one can easily
see that vg > 0 has full rank, which means that there is € > 0 such that yg > €lg;. Then we

have that QveQ > £Q? = £Q, hence
rank(sy soygss s5° ) > rank(Q) = rank(s?)

But then, rank(Y) = rank(syygsd ) = rank(s?) and therefore ker(Y') = ker(sZ). Finally, since
ker(sg) = im(s3)", ker(sosd) = ker(s) and hence ker(1s, — X XT) = ker(Y) is a necessary
condition. [.

Lemmas 6 and 7 show that the conditions stated in Theorem 1 are necessary for a passive
dilation to exist. This proves the implication (i)=-(ii).

3.2.2 Emistence of unitary dilations ((i))=(1))

We now consider the converse direction, i.e., we assume that (X,Y") satisfy the conditions
stated in (ii) of Theorem 1 and show that these are sufficient to imply the existence of a
passive dilation (as in (i)).

Lemma 8 Let ®xy be an n-mode Gaussian channel satisfying 21 > rank(1 — XXT), 1y, —
XXT >0, ker(1a, — XXT) =ker(Y) and [02,, X] = 0. Then there is a passive dilation with
l environment modes.

Proof. From the spectral theorem, it is known that if [A, B] = 0 and A is normal, then
also [Py(4), B] = 0 for any spectral projection P4y of A and therefore [A'/2, B] = 0, where
A2 denotes the unique positive square root of A. Define S =1-XXT >0and ¥ =
Oon — X092, XT. Using [02,, X] = 0, we have 093 = ¥ and 79,5 = S0y, i.e. 3 commutes

with og,,. Therefore
212 09,] =0 (15)

and thus (see Lemma 2) the matrix $/2 is of the form

N2 = < H ”) (16)

v



294 On quantum additive Gaussian noise channels

and
¥ =51 2g,,501/2 (17)
Furthermore, by definition of the square root (and since Y is symmetric), we have
(21/2)T _$1/2 (18)
We divide the proof into three cases:

1. Consider the case where I = n. We proceed by constructing a pair (s2,vg) satisfying
the conditions of Lemma 4, implying the existence of a passive dilation of (X,Y).

Setting s, = $1/2 we have sys7 = 3 and $202,5% = . Thus the first two conditions
of (14) (Lemma 4) are satisfied, and it remains to construct a covariance matrix g
satisfying syypsi =Y. Let 53' be the Moore-Penrose pseudoinverse of so. We set

e = 33Y 55T + Prersy) - (19)
where Pyey(s,) is the projection onto ker(sz). Then
827E5§ = SQS;YS;_TS; = Rm(sz)YPiTn(sz) (20)

where we used the fact that so Pier(s,) = 0 in the first identity and the properties of the
Moore-Penrose-pseudoinverse (Lemma A.1) in the second step, and where we denoted
the projection onto the range im(sz) of s2 by Piy(s,)-

Since im(Y) = im(%) by assumption and im(2) = im(s2s7) C im(s2), we have Pin(s)Y =
Y and since Y = Y7 is symmetric, it follows that

’Pim(32)Y‘Pijr;l(52) =Y.
Inserting this into (20) yields syypsl =Y, as claimed (cf. (14)).
We next verify that g is a valid covariance matrix. This is done using equation (4):
we have

sTY 3T + Prer(sy) = (Y2 iy — iX 00, XT)(ZV2)FT 4 Prer(sy)
= i(EVA)TEEYA)TT 4 Prer(sy)
_ i(21/2)+21/20_2n(21/2)T(21/2)+T + Pker(s,:g)
= iPn(s7) 920 Pns1) + Brer(sa)
where we used (17) in the third step and introduced the projection Pim(il/z) onto the

range of the symmetric matrix s’ = (il/z)T in the fourth step. Since sy is symmetric
we have

Pker(SQ) =1y, — Pker(sz)J- = 1o, — Pim(sz) =1y, — Rm(qg) .
Using 1y, > i09,, we thus obtain
s;YS;rT + Pker(SQ) > i‘Pim(SQ)O-Qn‘PiTn(S2) + Z(:ﬂ- - -Pim(SQ))O—Zn(IL - -P1,11;1(52)) = i02p-

Here we used that Py, (,,) commutes with o3, as a consequence of (15) and the fact that

it is the projection onto the range of $31/2. This concludes the proof that (19) defines a
valid covariance matrix.
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2. The claim for [ > n then follows immediately by using the established claim for | = n:
since 2n > rank(1 — XX7T), there is a dilation ®(p) = tre(U(p ® pg)U*) involving
n environment modes. For an arbitrary (I — n)-mode state pz, we then have

D(p) =trpp(Ue1g)(p® (pp @ pp))(U15)%) ,
providing us with a passive dilation using | modes.

3. Finally, consider the case [ < n. Then we have rank(i)) < 2] by assumption. We can
assume that rank(X) = 2/ without loss of generality (cf. Remark 1), since otherwise we
can proceed as in step (2) to increase the number of environment modes.

We exploit the form (16) of $1/2. Because £/2 is symmetric (cf. (18)), we have u? = p
and vT = —v, hence the complex matrix Z}C/z := u + v is Hermitian. We can thus

1/2
C

diagonalise 321/ with a unitary u € U(n), which corresponds (see Lemma 1) to a matrix

0 € Sp(2n) N O(2n) such that uSy*ul corresponds to 051/20T. In particular,

o827 = diag(dy, ..., d;,0,...,0,dy,...,d;,0,...,0)
—— ——

n—I n—l
This implies that $'/207 has the form
21/20T = (A 02n><(nfl) B 02n><(n7l))

for two matrices A, B € R?"*!, We now define s, to be the matrix where we erase the
2(n — 1) zero columns, i.e. we choose

s3= (A B)eR™<?

T commutes with &g,

By construction, this implies that sysl = 3 as before, and since o
(Lemma 2), we also have 5202155 = U%Sgsg. Again, v is defined as in the case [ = n
by (19) and we have a solution to the system (14) with vg > iog; by the same argument

as in case 1.

O.

3.3 Minimal dilations

In the following, we show that under the assumptions of Corollary 1, any pair of dilations are
related by orthogonal symplectic matrices acting on the environment. More generally, let us
define a minimal dilation as one with the least number of environment modes. We then have
the following uniqueness property of minimal dilations.

Theorem 2 Let ®x y be a passively dilatable n-mode Gaussian channel. Then

(i) A dilation is minimal if and only if | = Srank(Y). There is a minimal dilation given
by the construction of Theorem 1.

(i) Let
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be the orthogonal symplectic matrix describing the passive Gaussian unitary associated
with a minimal dilation. Then rank(se) = 21 = rankY. In particular, sy € R?"*2l js
mjective.

(i1i) Consider two minimal dilations
Dxy(p) =trpU(p@ pp)U* =trp U (p@ pp)U""

of ®xy, where U, U’ are passive Gaussian unitaries on HEHD) - Then there are two
passive Gaussian unitaries V.,V on H®' such that

U' = (Iyen @ V)U(Lyen @ V) and e =V*ppV .

Note that a statement analogous to (iii) was given in [2, Appendix D] for general (non-passive)
dilations.

Remark 2 Let us compare these statements to the results of [2, 8]. For a channel ®x v,
let I™ized(® v ) denote the minimal number of environment modes such that a dilation with
a (potentially mized) state of the environment exists. By explicit construction, it was shown
in [2] (see also [3, Section 2]) that 1% (®y y) < 2n—rank(X)/2, where X is defined by (14).
This result was later improved to

mized(§ y ) < rank(Y) — rank(X)/2 (22)

in [8], and this is conjectured to be optimal (a matching lower bound is not known, but
see Remark 3). To compare to our results, assume that ®xy is passively dilatable. Let

lmized

min passive(Px,y') denote the minimal number of environment modes such that a dilation with

a passive unitary exists. By definition, we clearly have

l:ﬁfgﬁsd(éx,y) S l:rrlbiirgf,egassiue((DX,Y) .

According to Theorem 2, we have

; 1

lgilraf,egassive(q)x,y) = ira‘nky . (23)
But since rank(Y) > rank(X) (see e.g., [3, Eq. (10)] — this follows immediately from the
positivity condition (4)), this means that

lr":llfrf,epdassiq;e(¢X7Y) =rankY — %rankY < rank(Y) —rank(X)/2 .
Thus our result is consistent with (22). We emphasize that in contrast to the case where
passivity is not imposed on the dilating unitary, the exact minimal number lﬂgfﬁawwe(@ X,Y)
of environment modes is known, i.e., given by expression (23).

Remark 3 The authors of [2, 8] also consider dilations where the state pg is pure. These
are referred to as Stinespring dilations. Correspondingly, they consider the minimal num-
P (®xy) of environment modes for a Stinespring dilation with a pure Gaussian envi-

ronment state pg to exist. Imposing Gaussianity here is crucial to get a non-trivial problem,

ber



M. Idel and R. Kénig 297

since any mized state can be purified with only a single additional mode otherwise. By defi-
nition, we clearly have ™24 (®x ) < IPV(®x y). Improving an upper bound of [2], and by

min — "min
providing a new lower bound, the identity

lﬁgf(q}){’y) = rank(Y - ZE)
was shown in [3]. We have not considered the analogous question for passive dilations, since
our focus is on establishing an equivalence with additive Gaussian channels (see Theorem 3).
At least in one direction, the analysis of [3, Appendix B] should be useful: here the minimal
number of modes needed to find a Gaussian purification of a generic multimode Gaussian
state is computed.

Proof of Theorem 2

Statement (i) of Theorem 1 implies that there is a dilation with { = % rank(Y") environ-
ment, and this number is minimal. This proves statement (i).

To prove statement (ii), fix a minimal dilation with orthogonal symplectic matrix S and
covariance matrix yg. By (i), the number of environment modes is ¢ = %rank Y, ie., s2 €
R2nxrank(Y) and ~p € RrankYxrankY "By the minimality and (12), we have 21 = rank(Y) =
rank(sgygsd ), but since yg > iog;, the covariance matrix g is full rank and it follows that
rank(sy) = 21. In particular, this implies that s, € R2"*?! is injective.

Finally, we can prove statement (iii): Consider two minimal dilations of ®x y with or-
thogonal symplectic matrices

=) e (@)
and covariance matrices vg and v}, respectively. In particular, sq, s5 € R27>x2L and
sp=81=X (24)
by (12). Using the orthogonality of S and S’ (in the form (6)) therefore gives
5955 = shsh! . (25)

Since s; is injective, s3 sy = 1o by the properties of the pseudoinverse. Multiplying (25) from

the left by sJ therefore gives s3 = s3shs,” and multiplying this from the right with s ”

yields s3s5 7 = 53 shs4Ts3 7 which is equivalent to

s3sh(s3s5)" =1y .
Hence
s3sh=:0€ 0(2]) (26)

is orthogonal. Multiplying Eq. (26) from the left by sy and using that 5235r = Prange(ss) 1S
the projection onto the range of s; we obtain Prange(SQ)s’Q = $90, hence

§h = 8§90 (27)
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because Prange(s;)S5 = S3. The latter identity follows from the fact that the images of sy
and s}, coincide as a consequence of the assumption sysl = shsy and the fact that s and
s are surjective (since so, 85 are injective, as argued above).

Furthermore, using the symplecticity condition (6), we have

T / 1T T.T
S909185 = S5091S5" = $200910" S (28)

Since s is minimal it is injective and hence s is surjective. Because of the injectivity of so

and the surjectivity of sI, Eq. (28) implies
oo = 000",

i.e., o is orthogonal symplectic, o € O(21) N Sp(2l). Similarly, Y = saypsi = shysh! by
assumption, we have

Vg =o' ygo . (29)

using once again the injectivity of so and s}, (and correspondingly, the surjectivity of sZ and
Finally, we claim that S and S’ only differ by an orthogonal symplectic matrix applied to
the environment modes. Indeed, it follows from (24) and (27) that

! A

g Llop,  Oopxor) (81 S5
O - 1 1

2% 2n 0 sy sl

for some matrices s§ € R?*2" and s} € R?**2!. The second part of Lemma 3 thus implies
that there is an orthogonal symplectic matrix o’ € Sp(21) NO(2l) acting on the [ environment

modes such that
1o, O2pxa L2, O2pxa /
S =5. 30
<02l><2n o ) (02l><2n 0 ) (30)

Combining (30) with (29) yields the claim.0J

3.4 Passive channels

To conclude this section, we combine Theorem 1 and Theorem 2 to characterize passive chan-
nels. The latter are defined by having a dilation with a passive unitary U and an environment
state pg which is also passive. Here passivity of a state pg is defined physically by the condi-
tion that pg is the Gibbs state of a passive Hamiltonian H at some inverse temperature 3, i.e.,
pe = e PH /tr(e=#H). Mathematically, passivity of a state pg is equivalent to the statement
that its covariance matrix yg satisfies

Ve, 02] =0 (31)

as argued in [7]. In other words, a passive channel is one which has no “hidden” squeezing:
both the system-environment interaction and the state of the environment are associated with
passive Hamiltonians. We have the following simple characterization of such channels:
Corollary 2 Let ®x y be a passively dilatable Gaussian channel. Then the following are
equivalent:
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(i) [Y,02,] = 0.
(i) ®xy is passive.

Proof. Suppose @ x y is passively dilatable. We first remark that any orthogonal symplectic
matrix S as in (21) satisfies

$909] = 02,82 . (32)

Indeed, this follows immediately using the block structure of S and oy(,41) = 02, © 02 by
taking the upper right block matrix of the identity [S, oa(;,41)] = 0.

We prove the two implications: (i)=-(ii): Assume that [Y,02,] = 0. Consider the minimal
dilation constructed in Theorem 2, with orthogonal symplectic matrix S as in (21) and an en-
vironment state of £ modes with covariance matrix yg given by expression (19). According to
Theorem 2, s, is injective, hence ker(ss) = {0} and thus vz = s§ Y's . We will show that vz
satisfies (31), which implies that ®x y can be passively dilated with a passive environment
state pg.

We use (32) to establish the identity

+ _
02189 = 89 UQnPrange(SQ) . (33)
Indeed, we have
+ + _ + 4o ot
83 OonPrange(sy) — 02183 = S3 02,5253 — 021S3 5285

where we used the fact that s255 = Prange(s,) and (s3 s2)sy = Pmmge(sg)sgL = s5 by the

properties of the pseudoinverse and the fact that s is surjective (as sy is injective). That is,

+ +_ (ot + o Vot
So UQnPrange(SQ) — 021S9g = (52 O2nS2 — 02]Sy 52)52
(ot +o Vot

= (85 S2091 — 02185 S2)S5

= (P

range(s3) 02 ~ 021 Prange(s))53 =0

range

where we used (32) in the second step and the fact that s1' is surjective (and thus Prange(sT) =
15;) in the last step. This establishes (33).
We will also need the transpose of (33), which reads

+T _ +T
So 021 = Pker(sg)l0-2n52 (34)

because Prz;ngc(sz) = Pier(s7)+- We can then compute

OuVE = 0954 Y3
= 53 020 Prange(ss) Y S5 by (33)

= s;agangT because Y = SQ’yEsg

= sQLYJQnsng by the assumption [Y, 02,] =0
= S;_kaer(sg)J_ O'an;rT since Y = spypss

=55 Ysi oy by (34)

=YEO2[ -
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Fig. 1. This figure shows how a general passively dilatable channel can be understood as an additive
noise Gaussian channel composed with passive unitaries (two modes are drawn completely). This
defines a normal form of passively dilatable channels.

Thus [yg, 021] = 0, as claimed.

(if)=-(i): Suppose ®x y is passive. Assume S is an orthogonal symplectic matrix and vg
a covariance matrix of a passive state such that S and «g define a dilation of the channel
@y y. Then Y = syypsl and thus

oY = $309VESY by (32)
= SQ’}’EUleg because pg is passive, that is, (31)
= swEsgagn by the transpose of (32)
=Yoo, ,

hence [Y, 02,] = 0 as claimed. O.

4 Passively dilatable channels are additive noise channels

Consider a (one-mode) channel of the form
B(p) = V (b Un(WplW™ © p)UL) V* ,

where U, is the beamsplitter of transmissivity A (see Example 2) and V,W are passive
Gaussian (one-mode) unitaries. That is, ® is obtained by applying passive unitaries to the
input and output of an additive Gaussian channel. Since ®(p) = trg(U(p ® pg)U*) for
U= (V®I1lg)Uy(W ® 1g), this channel is passively dilatable. Here we show the converse:
any passively dilatable is equivalent (up to passive unitaries) to a (multi-mode) additive nois
Gaussian channel. The following result is illustrated in Fig. 1.

Theorem 3 Let ® : B(A;...A,) = B(A;1--- Ay,) be a passively dilatable n-mode Gaus-
sian channel. Then there is an n-mode Gaussian state pg = pg,..g,, n-mode Gaussian
unitaries V., W and transmissivities X = (A1,...,A\n) € [0,1]" such that for the multi-mode
beamsplitter Uy = U;\?El R ® Ufn"E", we have

O(p) =V (trg U\(WpW™ ® pg)Ux) V™ for all states p .

Proof. Assume that ® = ®x y is specified by the pair (X,Y) of matrices. As in the proof
of Theorem 1, consider | = n. Let (S,vg) be the dilation constructed in case 1 of the proof
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of the theorem, i.e., S = (Sl 82) satisfies

S3  S4
s1=X and so =212 = (1 - xxT)/2 (35)
and the covariance matrix g is given by the expression (19). Since [X,02,] = 0, we can

decompose X as in Lemma 2. Let D = (G; + iG2)(X1 + iX3)(F1 + iF%) be the singular
value decomposition of the complex matrix X; 4+ iX5. The matrix D is nonnegative but not
necessarily full rank. By definition and the isomorphism of Lemma 1, the unitaries G; + iGo
and Fy + iF, define passive symplectic elements F, G € Sp(2n) N O(2n). Define

o G 0 F 0 - Gle GSQGT . §1 §2
§= <0 ]1271) S <0 GT) o < SSF S4GT > o (gg, §4 > (36)
With (35) we obtain

5 = GXF - D& D

55 = QLo — XXT)2GT = (1a, — D@ D?)V/2 . (37)

@
()
|

Here we exploited that X X7 is equivalent to (X1 4+iX2)(X1+iX2)" = (G1+iG2)T D (G1+iGs)
under the isomorphism and hence 15, — X X7 = GT (15, — D?>® D?)G. Since G is orthogonal
we have (1g, — XXT)¥/2 = GT(1,, — D* @ D?)'/2G.

We conclude from (36) that

s1 =G5 FT and sy = GT5,G ,
i.e., the action of the channel on a covariance matrice v is given by (cf. (11))
XvXT +Y =G5, FTyF3T G + GT5,GypGT3LG .
Clearly, this means that the channel can be written as the composition
=9 = ®gr oo g 70®pr g,

T I
$1,82YES3 $1,52VES3

where 75 = GypG' is a valid covariance matrix. It is clear from (37) and the fact that
(S,9E) give a dilation that ®
O.

51,5,757 1s an additive noise channel, hence the claim follows.
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Appendix A

In this appendix, we collect a few well-known facts about the Moore-Penrose pseudoinverse.
Let A € R¥*™ be a not necessarily invertible matrix. Using the singular value decomposition,
we can find unitaries U € U(k),V € U(m) and a diagonal matrix D € R*¥*™ with A = UDV.
Define A* = VID*UT with D+ € R™** and D}} = ﬁ for all Dy; # 0 and zero otherwise.
Then At is called the Moore-Penrose pseudoinverse. h

Lemma A.1 Let A € RFX™ and let A be its pseudoinverse. Then:

1. P = AA™" is the orthogonal projection onto the range of A.

2. Q = AT A is the orthogonal projection onto the range of AT.

A proof can be found in any introductory book on linear algebra.



