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Cohering power and de-cohering power have recently been proposed to quantify the

ability of a quantum operation to produce and erase coherence respectively. In this

paper, we investigate the properties of cohering power and de-cohering power. First, we
prove the equivalence between two different kinds of cohering power for any quantum

operation on single qubit systems, which implies that l1 norm of coherence is monotone

under Maximally incoherent operation (MIO) and Dephasing-covariant operation (DIO)
in 2-dimensional space. In higher dimensions, however, we show that the monotonicity

under MIO or DIO does not hold. Besides, we compare the set of quantum operations

with zero cohering power with Maximally incoherent operation (MIO) and Incoherent
operation (IO). Moreover, two different types of de-cohering power are defined and we

find that they are not equal in single qubit systems. Finally, we make a comparison

between cohering power and de-cohering power for single qubit unitary operations and
show that cohering power is always larger than de-cohering power.
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1 Introduction

Quantum resource theory [1, 2] plays an important role in the development and quantitative

understanding of various physical phenomena in quantum physics and quantum information

theory. A resource theory consists of two basic elements: free operations and free states. Any

operation (or state) is dubbed as a resource if it falls out of the set of free operations (or the

set of free states). The most significant resource theory is the resource theory of quantum

entanglement defined on bipartite or multipartite systems [3], which is a basic resource for

various information processing protocols including superdense coding [4] and teleportation [5].

However, for single quantum systems, quantum coherence, which is based on the superposition

rule, must be thought of a peculiar feature of quantum mechanic just like entanglement in

bipartite systems. Recently significant advancements in fields like thermodynamic theory [6–
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9], quantum biology [10–12], has suggested coherence to be a useful resource at the nanoscale,

which leads to the development of the resource theory of coherence [13–45].

One advantage of having a resource theory for some physical quantity is the operational

quantification of the relevant resources and the resource production through a quantum op-

eration. In the resource theory of entanglement, entangling power [46] of quantum operations

has been proposed to quantify the ability of quantum operations to produce entanglement.

Besides, cohering power and de-cohering power of quantum operations have also been pro-

posed to quantify the ability to produce coherence and erase coherence respectively [26]. And

it has been shown that the cohering power of single qubit unitary operations is equal to de-

cohering power in the skew information of coherence [24]. Two different types of cohering

power have been defined on the set of incoherent states and the set of all quantum states re-

spectively, and it has been proved that these two types of cohering power are equal for unitary

operation in single qubit case [47,48]. However, whether this statement can be generalized to

any quantum operation in single qubit case remains unclear. In the present work, we further

investigate cohering power and de-cohering power. And we prove that these two types of co-

hering power are equal for any quantum operation in 2-dimensional space, which extends the

result on unitary operations [47,48] to general quantum operations. Besides, as the cohering

power of incoherent operations is always zero, we compare the sets of quantum operations

with zero cohering power with several different free operations for coherence [25], namely,

Incoherent operation (IO), Maximally incoherent operation (MIO) and Dephasing-covariant

incoherent operation (DIO) [13,19,20]. As free operations cannot increase the amount of the

relevant resource, the monotonicity of resource measure under free operations is crucial to

the resource theory. Whether l1 norm of coherence is monotone under MIO and DIO or not

is an open problem proposed in [19, 20]. In this work, we prove that l1 norm of coherence

is not monotone under MIO or DIO. Due to this statement, we demonstrate the operational

gap between DIO and IO in terms of state transformation, which is also an open problem

proposed in [19, 20]. Furthermore, we derive the exact expression for de-cohering power of

unitary operations on single qubit systems. Two different kinds of de-cohering power have

also been defined on the set of maximally coherent states and the set of all quantum states

respectively. We also compare these two kinds of de-cohering power but find they are not

equal in single qubit systems, which is different from the cohering power. Finally, we make

a comparison between the cohering power and de-cohering power and find that de-cohering

power is always less than the cohering power for unitary operations on single qubit systems.

This work is organized as follows. In Sec.2, we provide the preliminary material in the

resource theory of coherence. We investigate two types of cohering power are equal for any

quantum operation in single qubit case. And we show that there is no monotonicity for l1
norm of coherence under MIO or DIO in Sec.3. Besides, we derive the explicit formula for

de-cohering power and compare two different types of de-cohering power in Sec.4. Moveover,

we compare the cohering power and the de-cohering power in 2-dimensional space in Sec.5.

Finally, we conclude in Sec.6.

2 Preliminary and notations

Free states and free operations in the resource theory of coherence ( see [13] and [19, 20])–

Given a fixed reference basis, say {|i〉}, any state which is diagonal in the reference basis is
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called an incoherent state. And the set of all incoherent states is denoted by I. Then we

introduce several different free operations in the resource theory of coherence from [13,19,20].

• Incoherent operation (IO). A quantum operation Φ is called an incoherent operation if

there exists a set of Kraus operators {Kn} of Φ such that KnIK†n ⊂ I for any n.

• Maximally incoherent operation (MIO). A quantum operation Φ is called a maximally

incoherent operation if Φ(I) ⊂ I.

• Dephasing-covariant incoherent operation (DIO). A quantum operation Φ is called a

Dephasing-covariant incoherent operation if

[∆,Φ] = 0, (1)

where ∆(ρ) :=
∑
i〈i|ρ|i〉|i〉〈i|.

l1 norm and relative entropy measure (see [13])–

(i) l1 norm measure Cl1 is defined by

Cl1(ρ) :=
∑
i 6=j

|ρij |. (2)

(ii) Relative entropy measure Cr is defined by

Cr(ρ) := S(ρ(d))− S(ρ), (3)

where S(ρ) = −Trρ log ρ is the von Neumann entropy of ρ and ρ(d) is the diagonal state

of ρ.

Cohering power– Two types of cohering power (see [26] and [47]):

CX(Φ) : = max
ρ∈I
{CX(Φ(ρ))}, (4)

ĈX(Φ) : = max
ρ∈D(H)

{CX(Φ(ρ))− CX(ρ)} (5)

where X denotes a coherence measure and I is the set of incoherent states. To distinguish

these two powers, we call C and Ĉ the cohering power and generalized cohering power,

respectively. Obviously, CX(Φ) ≤ ĈX(Φ) for any coherence measure X.

Formula of cohering power for unitary operations (see [47] )– It has been shown in [47] that

the cohering power for a unitary operation U = [Uij ]d×d can be written as

Cl1(U) = ‖U‖21→1 − 1, (6)

where ‖U‖1→1 = max
{∑d

i=1 |Uij | : j = 1, . . . , d
}

. And

Cr(U) = max{S(|U1i|2, |U2i|2, · · · , |Udi|2), i ∈ [d]}, (7)

where S({pi}) =
∑
−pi log pi.

De-cohering power (see [26])– Two types of decohering power:

DX(Φ) : = max
ρ∈M
{CX(ρ)− CX(Φ(ρ))}, (8)

D̂X(Φ) : = max
ρ∈D(H)

{CX(ρ)− CX(Φ(ρ))}. (9)
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where X denotes a coherence measure and M is the set of maximally coherent states. To

distinguish them, we call D and D̂ the de-cohering power and generalized de-cohering power,

respectively. Clearly, DX(Φ) ≤ D̂X(Φ) for any coherence measure X. Note that maximally

coherent state must be pure state and can be expressed as |ψ〉 = 1√
d

∑
k e

iθk |k〉 [30] and it will

takes the maximal value log d and d − 1 in d-dimensional space for the coherence measures

defined by relative entropy and l1 norm, respectively. Thus, (generalized) de-cohering power

is non-negative.

3 Results about cohering power

In view of the definitions, cohering power and generalized cohering power are different in

essence: one is defined on the set of incoherent states and the other is defined on the set of all

quantum states. As can be seen, cohering power is always less than the generalized cohering

power. Moreover, it has been proved that for any unitary operation U on a single qubit system,

the cohering power and the generalized cohering power coincides, that is, Cl1(U) = Ĉl1(U) [47].

This means the maximal coherence produced by unitary operation over all states can be

obtained by considering only the incoherent states which is a smaller set of states. Here, we

generalize this statement to any quantum operation Φ on single qubit systems.

Proposition 1 For any quantum operation Φ on a single qubit system, the cohering power

and the generalized cohering power coincides, that is, Cl1(Φ) = Ĉl1(Φ).

Proof: For any quantum operation Φ on a single qubit system, it can be expressed by a set

of Kraus operators {Kn}n as

Φ(·) =
∑
n

Kn ·K†n,

where Kn =

[
K

(1,1)
n K

(1,2)
n

K
(2,1)
n K

(2,2)
n

]
and

∑
nK

†
nKn = I. Any qubit state ρ can be written as

ρ = I

2 + 1
2~σ · ~r, where ~r = (x, y, z) is a unit vector and ~σ = (σx, σy, σz) is the Pauli matrices.

Thus, the l1 norm of coherence of initial state ρ and final state Φ(ρ) are specified by

Cl1(ρ) = |x+ iy| ,

and

Cl1(Φ(ρ)) =

∣∣∣∣∣∑
n

[K
(2,1)
n K(1,1)

n (1 + z) +K
(2,2)
n K(1,2)

n (1− z)

+K
(2,1)
n K(1,2)

n (x− iy) +K
(2,2)
n K(1,1)

n (x+ iy)]
∣∣∣ .

Since the cohering power is only defined on incoherent states, then cohering power of Φ can

be written as

Cl1(Φ) = 2 max

{∣∣∣∣∣∑
n

K
(2,1)
n K(1,1)

n

∣∣∣∣∣ ,
∣∣∣∣∣∑
n

K
(2,2)
n K(1,2)

n

∣∣∣∣∣
}
.
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Since

Cl1(Φ(ρ))

≤

∣∣∣∣∣∑
n

K
(2,1)
n K(1,1)

n (1 + z)

∣∣∣∣∣+

∣∣∣∣∣∑
n

K
(2,2)
n K(1,2)

n (1 + z)

∣∣∣∣∣
+

∣∣∣∣∣∑
n

K
(2,1)
n K(1,2)

n

∣∣∣∣∣ |x− iy|+
∣∣∣∣∣∑
n

K
(2,2)
n K(1,1)

n

∣∣∣∣∣ |x+ iy|

≤ 2 max

{∣∣∣∣∣∑
n

K
(2,1)
n K(1,1)

n

∣∣∣∣∣ ,
∣∣∣∣∣∑
n

K
(2,2)
n K(1,2)

n

∣∣∣∣∣
}

+

∣∣∣∣∣∑
n

K
(2,1)
n K(1,2)

n

∣∣∣∣∣ |x− iy|+
∣∣∣∣∣∑
n

K
(2,2)
n K(1,1)

n

∣∣∣∣∣ |x+ iy|

≤ 2 max

{∣∣∣∣∣∑
n

K
(2,1)
n K(1,1)

n

∣∣∣∣∣ ,
∣∣∣∣∣∑
n

K
(2,2)
n K(1,2)

n

∣∣∣∣∣
}

+
∑
n

∑2
i,j=1

∣∣∣K(i,j)
n

∣∣∣2
2

|x+ iy|

= 2 max

{∣∣∣∣∣∑
n

K
(2,1)
n K(1,1)

n

∣∣∣∣∣ ,
∣∣∣∣∣∑
n

K
(2,2)
n K(1,2)

n

∣∣∣∣∣
}

+ |x+ iy|,

then

Cl1(Φ(ρ))− Cl1(ρ)

≤ 2 max

{∣∣∣∣∣∑
n

K
(2,1)
n K(1,1)

n

∣∣∣∣∣ ,
∣∣∣∣∣∑
n

K
(2,2)
n K(1,2)

n

∣∣∣∣∣
}

≤ Cl1(Φ),

which implies

Ĉl1(Φ) ≤ Cl1(Φ).

Therefore, Ĉl1(Φ) = Cl1(Φ) for any quantum operation Φ on qubit system.

The above proposition is also an evidence that cohering power Cl1 can be used to quantify

the ability of a quantum operation to generate coherence even if it is only defined on inco-

herent states. Besides, this result can be used to demonstrate the monotonicity of l1 norm of

coherence under DIO and MIO in single qubit system directly. However, monotonicity of l1
norm coherence under DIO and MIO does not hold in higher dimensional space.

Proposition 2 (Non-monotonicity for l1 norm of coherence under DIO and MIO)

In single qubit system, the l1 norm of coherence can not increase under DIO and MIO. How-

ever, such statement is not true in N-qubit system with N ≥ 2, that is, there exists a state

ρN ∈ D(C⊗N ) and a DIO (or MIO) ΦN such that Cl1(ΦN (ρN )) > Cl1(ρN ).
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Proof: Due to the definition of cohering power, it is easy to see that Cl1(Φ) = 0 is equivalent

to Φ(I) ⊂ I, which means that such Φ is a MIO. Due to Proposition 1, we have Ĉl1(Φ) = 0

for any MIO Φ on a single qubit system. Thus, the l1 norm of coherence can not increase

under MIO. Since DIO ⊂ MIO, then we also have the monotone of l1 norm of coherence

under DIO in single qubit case.

Next, we show there exists a DIO Φ and a state a state ρ such that Cl1(Φ(ρ)) > Cl1(ρ) in

2-qubit system. Consider the quantum operation Φ with following Kraus operators

M1 =


0 1

2 0 0
1

2
√
3

0 0 0

− 1
2
√
3

0 0 0
1

2
√
3

0 0 0

 ,M2 =


1

2
√
3

0 1√
2

1√
6

0 1
2 0 0

1
2
√
3

0 0 0
1

2
√
3

0 0 0

 ,

M3 =


1

2
√
3

0 − 1√
2

1√
6

1
2
√
3

0 0 0

0 1
2 0 0

− 1
2
√
3

0 0 0

 ,M4 =


1

2
√
3

0 0 −
√
6
3

− 1
2
√
3

0 0 0

− 1
2
√
3

0 0 0

0 1
2 0 0

 ,
It can be easily verified such operation Φ is a DIO according to [19, 20]. Besides, let us take

the state as following

ρ =


ρ11 ρ12 0 0
ρ21 ρ22 0 0
0 0 0 0
0 0 0 0


with ρ12 = ρ21 > 0. Then, through some calculation, Cl1(Φ(ρ)) = 4√

3
ρ12, which is lager than

Cl1(ρ) = 2ρ12. Furthermore, for any N qubit system with N ≥ 3, let us take ΦN = Φ⊗ IN−2
and ρN = ρ⊗ σN−2 where IN−2 denotes the identity operator on the remaining (N-2)-qubit

system and σN−2 is a state of the remaining (N-2)-qubit system with Cl1(σN−2) > 0. It is

easily to see that such ΦN is also a DIO. Thus,

Cl1(ΦN (ρN ))− Cl1(ρN )

= Cl1(Φ(ρ))⊗ σN−2)− Cl1(ρ⊗ σN−2)

= [Cl1(Φ(ρ))− Cl1(ρ)][Cl1(σN−2) + 1]

> Cl1(Φ(ρ))− Cl1(ρ) > 0,

where the second equality comes from the multiplicity of l1 norm of coherence, that is Cl1(τ1⊗
τ2)+1 = [Cl1(τ1)+1][Cl1(τ2)+1] for any two states τ1 and τ2. Thus, the l1 norm of coherence

is not monotonous under DIO in N-qubit system with N ≥ 2. Since DIO is a subset of MIO,

it also implies that there is no monotonicity of l1 norm coherence under MIO.

Corollary 3 There exists state transformation ρ→ σ by DIO which is not possible by IO.

Proof: Let us take the states ρ and Φ(ρ) given in the Proof of Proposition 2, then state

transformation ρ −→ σ = Φ(ρ) is feasible by DIO, but not possible by IO, as Cl1(Φ(ρ)) >

Cl1(ρ) and IO can not increase coherence of the states.



1212 A note on cohering power and de-cohering power

This corollary shows the operational gap between DIO and IO in terms of state trans-

formation which is an open problem proposed in [19, 20]. Besides, it has been shown in [13]

that the distance measure, which is contracting under CPTP maps, can be used construct a

potential coherence quantifier, e.g the relative entropy of coherence. Here, non-monotonicity

of l1 norm coherence under MIO implies that l1 norm is not contracting under CPTP maps,

but l1 norm of coherence is still a proper coherence measure. Thus, the contractivity under

CPTP maps may not be a necessary condition for distance measure to be a proper coherence

measure.

Corollary 4 l1 norm is not contracting under CPTP maps, that is, there exists quantum

states ρ, σ and CPTP map Φ such that ‖Φ(ρ)− Φ(σ)‖l1 > ‖ρ− σ‖l1 , where ‖ρ‖l1 :=
∑
i,j |ρij |.

Proof: If l1 norm is contracting under CPTP maps, then for any quantum state ρ and any

MIO Φ,

Cl1(ρ) = min
σ∈I
‖ρ− σ‖l1

≥ min
σ∈I
‖Φ(ρ)− Φ(σ)‖l1

≥ min
σ∈I
‖Φ(ρ)− σ‖l1

= Cl1(Φ(ρ)),

which contradicts with Proposition 2.

In fact, as the cohering power Cl1 and Cr are both defined on the set of incoherent states I,

it is easy to see that the quantum operations with zero cohering power in l1 norm of coherence

or relative entropy of coherence is MIO, that is MIO = {Φ : Cl1(Φ) = 0} = {Φ : Cr(Φ) = 0},
which means that MIO is the set of all operation that can not increase the coherence of

incoherent states. We also consider the quantum operations with zero generalized cohering

power as following,

NIOl1 = {Φ : Ĉl1(Φ) = 0}, (10)

NIOr = {Φ : Ĉr(Φ) = 0}. (11)

Note that the set NIOl1( resp. NIOr) is the set of all quantum operations that will not

increase the coherence of all states in l1 norm of coherence (resp. relative entropy of coher-

ence). Due to the definition of generalized cohering power, we have NIOr ⊂ MIO. Since

relative entropy of coherence is monotone under MIO [19, 20], then MIO ⊂ NIOr, which

implies that MIO = NIOr. That is, MIO is just the set of all quantum operations that will

not increase the coherence of all quantum states in relative entropy measure. Moreover, we

get the relationship between IO, MIO, NIOl1 and NIOr.

Corollary 5 The relationship between IO, MIO, NIOl1 and NIOr in N-qubit system ( N ≥
2) is

IO ( NIOl1 (MIO = NIOr (12)

However, in single qubit system, the relationship will become

IO ( NIOl1 = MIO = NIOr. (13)
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Proof: Since Cl1(Φ) = Ĉl1(Φ) in single qubit system, then NIOl1 = MIO due to the

definition of NIOl1 and the fact MIO = {Φ : Cl1(Φ) = 0}. Besides, it has been demonstrated

that there exists a quantum operation on single qubit system Φ ∈MIO but Φ /∈ IO (see [25]

and the Erratum of [20]). Thus IO ( NIOl1 = MIO = NIOr.

In N-qubit system ( N ≥ 2), NIOl1 ( MIO comes from Proposition 2. Thus, the

relationship between IO, MIO and NIOl1 in N-qubit system ( N ≥ 2) will become IO (
NIOl1 (MIO = NIOr.

The above proposition tells us that in single qubit system, MIO is also the set of quantum

operations that will not increase the coherence of all quantum states in the l1 norm measure,

that is, NIOl1 and NIOr coincides in this case. The relationship between these sets may

help us understand the role of IO and MIO in the resource theory of coherence and be

complementary to the previous work [19,20]. Besides, since the relationship between l1 norm

of coherence and relative entropy coherence has been considered in [32], we also consider

the relationship between cohering power defined in l1 norm Cl1 and that defined in relative

entropy Cr for unitary operations.

Proposition 6 Given a unitary operation U in d-dimensional space, we have

Cl1(U) ≥ max{Cr(U), 2Cr(U) − 1}. (14)

Proof: Since l1 norm coherence and relative entropy coherence in pure states has the the

following relationship Cl1(|ψ〉) ≥ max{Cr(|ψ〉), 2Cr(|ψ〉) − 1} [32], it is easy to see the cohering

power Cl1(U) = max{Cl1(U |i〉) : i = 1, ..., d} and Cr(U) = max{Cr(U |i〉) : i = 1, ..., d} also

satisfy this relationship, that is,

Cl1(U) ≥ max{Cr(U), 2Cr(U) − 1}.

However, whether the cohering power of any quantum operation Φ satisfy (14) is still a

question, which is closely related to the open problem: the potential relationship between l1
norm of coherence Cl1 and relative entropy of coherence Cr [32].

4 Results about de-cohering power

As mentioned before, de-cohering power and generalized de-cohering power are defined by the

maximization over the set of maximally coherent states and all quantum states respectively.

As both sets contain too many states, it is difficult to calculate the exact value of de-cohering

power and generalized de-cohering power of a given quantum operation. Here, we consider a

simple case and give the exact formula of de-cohering power and generalized de-cohering power

for unitary operations in single qubit case, which makes the comparison between de-cohering

power and generalized de-cohering power possible.

Proposition 7 For a qubit unitary operation U , which can be expressed as (up to a phase

factor) U =

[
a b
−b∗ a∗

]
where |a|2 + |b|2 = 1, the de-cohering power in l1 norm of coherence
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and relative entropy of coherence can be expressed as

Dl1(U) = 1− ||a|2 − |b|2| (15)

Dr(U) = 1− S(
1

2
+ |ab|, 1

2
− |ab|) (16)

And the generalized de-cohering power of U is equal to the generalized cohering power of U†,

that is

D̂l1(U) = Ĉl1(U†) (17)

D̂r(U) = Ĉr(U
†) (18)

Proof: In single qubit system, the maximal coherent state can be written as |ψ〉 = ( 1√
2
, 1√

2
eiθ)t,

where t denotes transposition. Then U |ψ〉 would be 1√
2
(a+ beiθ,−b∗ + a∗eiθ)t. Thus

Dl1(U) = 1−min
θ
|(a+ beiθ)(−b∗ + a∗eiθ)|

= 1− ||a|2 − |b|2|.

Denote a = |a|eiθ and b = |b|eiθb , then

Dr(U) = 1−min
ϑ
S(

1

2
+ |ab| cosϑ,

1

2
− |ab| cosϑ)

= 1− S(
1

2
+ |ab|, 1

2
− |ab|),

where ϑ = θ + θb − θa.

Besides, in view of the definition of generalized de-cohering power

D̂l1(U) = max
ρ∈D(H)

{Cl1(ρ)− Cl1(UρU†)}

= max
ρ∈D(H)

{Cl1(U†(UρU†)U)− Cl1(UρU†)}

= max
UρU†∈D(H)

{Cl1(U†(UρU†)U)− Cl1(UρU†)}

= Ĉl1(U†).

And D̂r(U) = Ĉr(U†) can be obtained in a similar way.

As can be seen from (17) and (18), the amount of coherence produced by a unitary

operation U is equal to that of coherence erased by U† ( the reverse process of U). Besides,

the exact formula of de-cohering power in single qubit system makes the comparison between

de-cohering power and generalized cohering power possible. According to (15) and (16), the

de-cohering power and generalized cohering power of unitary operation on single qubit system

are not equal in general, which is different from the relationship between cohering power and

generalized cohering power.

Proposition 8 For any unitary operations U on a single qubit system, Dl1(U) and D̂l1(U) are

not equal in general, that is, there exist a unitary operation U0 such that Dl1(U0) < D̂l1(U0).
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Proof: In single qubit system, Dl1(U) = 1− ||a|2 − |b|2| and D̂l1(U) = Ĉl1(U†) = Cl1(U†) =

2|ab| where Ĉl1(U†) = Cl1(U†) comes from the fact that cohering power coincides with gen-

eralized cohering power in single qubit case [47]. Thus it is easy to take an unitary U0 such

that Dl1(U0) < D̂l1(U0).

Proposition 9 For unitary operations U on single qubit system, Dr(U) and D̂r(U) are not

equal, that is, there exist a unitary operation U0 such that Dr(U0) < D̂r(U0).

Proof: Since the generalized de-cohering power need to take maximization over all quantum

states, it is difficult to get exact value of D̂r. Thus, a lower bound of the generalized de-

cohering power is expected instead of the exact value. Consider the following unitary operation

and quantum state,

U0 =

(
0.5645 + 0.6351i 0.4141 + 0.3264i
−0.1452 + 0.5069i −0.0868− 0.8452i

)
,

ρ0 =

(
0.7063 0.4338− 0.1360i

0.4338 + 0.1360i 0.2937

)
,

then Dr(U0) ≈ 0.7053 is strictly less than [Cr(ρ0) − Cr(U1ρ1U
†
1 )] ≈ 0.8327. As D̂r(U0) ≥

[Cr(ρ)− Cr(U0ρU
†
0 )], then we prove the result.

In view of the definition of D̂ , D̂(Φ) = 0 implies that C(ρ) ≤ C(Φ(ρ)) for any quantum

state, that is, quantum operation will not decrease coherence of any input state. Here, we

investigate the set of quantum operations with zero generalized de-cohering power,

NDOl1 = {Φ : D̂l1(Φ) = 0}, (19)

NDOr = {Φ : D̂r(Φ) = 0}. (20)

Note that the set NDOl1( resp. NDOr) is the set of all quantum operations that will

not decrease the coherence of any state in l1 norm of coherence (resp. relative entropy of

coherence). It is easy to give some quantum operations that belongs to NDOl1 (or NDOr),

for example, take the quantum operation Φ with Kraus operators {Ki}i, where Ki = |Ψ〉〈i|
and |Ψ〉 is a maximally coherent state, then Φ maps any quantum state to maximally coherent

|Ψ〉. It seems that there is no close relation between NDOl1 (or NDOr) and IO, MIO, as

there exists coherence breaking operations [40] map any quantum state to incoherent states.

5 Comparison between cohering power and decohering power

It has been proved that the cohering power of qubit unitary operations is equal to de-cohering

power in the skew information coherence [26]. Here, we consider the relationship between

cohering power and de-cohering power for the unitary operations defined by l1 norm and

relative entropy respectively.

Proposition 10 For any unitary operation U on a single qubit system, the cohering power

is always larger than de-cohering power in l1 norm, that is Cl1(U) ≥ Dl1(U). However, this

relationship does not hold for unitary operations in higher-dimensional space.
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Proof: Since U can be written as U = eiϕ
[

a b
−b∗ a∗

]
with |a|2 + |b|2 = 1, the cohering

power of U is Cl1(U) = 2|ab|. And by the definition of the de-cohering power, we have

Dl1(U) = 1− ||a|2 − |b|2| ≤ 2|ab| = Cl1(U) (21)

Take U on d-dimensional system with d ≥ 3 as following

U =

√
2

2
(|1〉〈1|+ |2〉〈2|+ |1〉〈2| − |2〉〈1|) +

d∑
k>2

|k〉〈k|,

then Cl1(U) = 1 and for maximally coherent state |ψ〉 = 1√
d

∑
k e

iθk |k〉, U |ψ〉 = 1√
2d

(eiθ1 +

eiθ2)|1〉+ 1√
2d

(eiθ1 − eiθ2)|2〉+ 1√
d

∑d
k>2 e

iθk |k〉, which implies that

Dl1(U) = d− 1− min
|ψ〉∈M

Cl1(U |ψ〉)

= (2−
√

2)(2− 2−
√

2

d
).

Moreover, Dl1(U) is larger than (2 −
√

2)(2 − 2−
√
2

3 ) when d ≥ 3. It is easy to check that

(2−
√

2)(2− 2−
√
2

3 ) is strictly larger than 1. Thus, we have Cl1(U) < Dl1(U).

Corollary 11 For any unitary operation U on a single qubit system, we have the following

relationship

D̂l1(U) = Ĉl1(U) = Cl1(U) ≥ Dl1(U) (22)

Proof: To prove (22), we only need to prove D̂l1(U) = Ĉl1(U). Since U can be written as

U = eiϕ
[

a b
−b∗ a∗

]
with |a|2+|b|2 = 1, the cohering power of U is Cl1(U) = 2|ab| = Cl1(U†).

As we have proved that D̂l1(U) = Ĉl1(U†) in Proposition 7 and Ĉl1(U) = Cl1(U) [47], we have

D̂l1(U) = Ĉl1(U†) = Cl1(U†) = Cl1(U).

Proposition 12 For any unitary operation U on a single qubit system, the cohering power

is always larger than de-cohering power in relative entropy coherence, that is Cr(U) ≥ Dr(U).

Proof: Since U can be written as U = eiϕ
[

a b
−b∗ a∗

]
with |a|2+|b|2 = 1, the cohering power

of Cr(U) = S(|a|2, |b|2). And the de-cohering power of U is Dr(U) = 1−S( 1
2 + |ab|, 12 + |ab|).

Thus, Cr(U) ≥ Dr(U) is equivalent to S(|a|2, |b|2) + S( 1
2 + |ab|, 12 − |ab|) ≥ 1. Due to Lemma

13 in Appendix, we get the result.

Although we have proved that Cr(U) ≥ Dr(U) and D̂r(U) = Ĉr(U†), we cannot get the

similar result like (22) as cohering power Cr(U) and Ĉr(U) are not equal even in single qubit

case [47]. Besides, as the explicit formula for de-cohering power Dr in higher dimensions is

still unknown even for unitary operations, the relationship between Dr and Cr remains to be

identified.
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6 Conclusion

In this work, we have investigated the cohering power and de-cohering power which are defined

to quantify the ability of quantum operations to produce coherence and erase coherence

respectively. It has been proved that cohering power Cl1 and generalized cohering power

Ĉl1 are equal for single qubit unitary operations [47, 48]. In this work, we prove that this

statement is also true for any quantum operation on single qubit systems, which implies the

monotonicity of l1 norm of coherence under MIO on single qubit systems. However, we show

that l1 norm of coherence is not monotone under DIO or MIO in higher dimensional space.

Thus we give a complete answer to the open problem about the monotonicity of l1 norm of

coherence under MIO proposed in [19, 20]. And the non-monotonicity of l1 norm coherence

implies that l1 norm is not contracting under CPTP maps. Thus contractivity under CPTP

maps may not be a necessary property for norms to be coherence measures. Besides, we

investigate the connections between the sets of operations with zero generalized cohering

power NIOl1 and NIOr with IO and MIO: IO ( NIOl1 = MIO = NIOr in single qubit case

and IO ( NIOl1 ( MIO = NIOr in higher dimensions; MIO is just the set of all quantum

operations that will not increase the coherence of all states in relative entropy measure.

Moreover, we derive the exact formula of de-cohering power of single unitary operations. By

a comparison between de-cohering power and generalized de-cohering power, we have shown

that they are not equal in general which is different from the coincidence between cohering

power and generalized cohering power in single qubit systems. Furthermore, we compare

cohering power and de-cohering power defined in l1 norm and relative entropy, and find that

cohering power is usually larger than de-cohering power for unitary operations on single qubit

systems.

The results in this work present a new approach to study the free operations in the resource

of coherence by cohering power and therefore, are of great value to our understanding of IO,

MIO and DIO proposed in [13, 19, 20]. However, more work is needed in this context. For

example, it will be useful to obtain the relationship between cohering power Cl1 and Cr (or

de-cohering power Dl1 and Dr) for any quantum operation. Another important question for

future studies is to determine the relationship between cohering power and de-cohering power

for any quantum operations on higher dimensions.
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Appendix A

Lemma 13 The function H(x) := −x log2 x− (1− x) log2(1− x) with x ∈ [0, 1] satisfy

H(x) +H(
1

2
+
√
x(1− x)) ≥ 1, (A.1)

for any x ∈ [0, 1].

Proof: To prove this inequality is equal to prove

−x lnx− (1− x) ln(1− x)− t ln t− (1− t) ln(1− t) ≥ ln 2

with t = 1
2 +

√
x(1− x). Since the symmetry of the formula, we only need to consider the

the case x ∈ [0.5, 1]. As variables x, t satisfy (x − 1/2)2 + (t − 1/2)2 = 1/2, we change the
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variables x, t to x = 1+cos θ
2 and t = 1+sin θ

2 with θ ∈ [0, π/2]. Then we prove the following the

inequality:

f(θ) = −(
1 + cos θ

2
) ln(

1 + cos θ

2
)− (

1− cos θ

2
) ln(

1− cos θ

2
)

−(
1− sin θ

2
) ln(

1− sin θ

2
)− (

1 + sin θ

2
) ln(

1 + sin θ

2
)

− ln 2 ≥ 0

with θ ∈ [0, π/2]. Differentiate f(θ) with respect to θ, then

df

dθ
=

1

2

[
sin θ ln

1 + cos θ

1− cos θ
− cos θ ln

1 + sin θ

1− sin θ

]
=

1

2 sin θ cos θ

[
1

cos θ
ln

1 + cos θ

1− cos θ
− 1

sin θ
ln

1 + sin θ

1− sin θ

]
.

Consider the function g(s) = 1
s ln 1+s

1−s with s ∈ [0, 1]. Then dg
ds = 1

s2 [ln(1− s) + 1
1−s − (ln(1 +

s) + 1
1+s )] > 0, that is, g(s) is a monotonous function. Thus

(1) when θ ∈ [0, π/4], then cos θ ≥ sin θ. As the function g(s) is monotonous, thus df
dθ ≥ 0.

(2) when θ ∈ [π/4, π/2], then cos θ ≤ sin θ. As the function g(s) is monotonous, thus
df
dθ ≤ 0.

Therefore, minθ∈[0,π/2] f(θ) = min{f(0), f(π/2)} = 0.


