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We consider Majorana fermion stabilizer codes with small number of modes and distance.

We give an upper bound on the number of logical qubits for distance 4 codes, and we
construct Majorana fermion codes similar to the classical Hamming code that saturate

this bound. We perform numerical studies and find other distance 4 and 6 codes that

we conjecture have the largest possible number of logical qubits for the given number
of physical Majorana modes. Some of these codes have more logical qubits than any

Majorana fermion code derived from a qubit stabilizer code.
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1 Introduction

Qubit stabilizer codes are a fundamental way to construct families of quantum error cor-

recting codes. These codes use some number, Nqub, of physical qubits, to construct some

smaller number, K, of logical qubits. The code space is the +1 eigenspace of several mutually

commuting operators. These operators are called stabilizers, and are taken to be products of

Pauli operators[1]. Majorana fermion codes, introduced in Ref. [3], are a natural variant of

stabilizer codes where the stabilizers are instead taken to be products of Majorana operators.

Instead of using qubits as the physical degrees of freedom, the Majorana codes use some

number, Nmaj , of Majorana modes, to obtain a code space with K logical qubits (see below

for identification of the code space with qubits).

In Refs. [2, 3], it was shown how to convert qubit stabilizer codes into Majorana fermion

codes, with the properties of the Majorana fermion codes (including distance, number of

logical qubits, and weight of generators) depending on those of the original stabilizer code.

Further, Ref. [3] discussed various other Majorana fermion codes which could not be obtained

by such a conversion procedure.

In this paper, we further consider Majorana fermion codes which cannot be obtained from

a qubit stabilizer code. However, our focus will be on small codes. That is, rather than

studying asymptotic properties with large number s of physical Majorana modes, we will

instead consider codes that have small Nmaj and obtain optimal distance d for the given
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K. To explain by analogy to qubit stabilizer codes, our study will be closer to the results

in the code tables of Ref. [4], rather than studying topological phases such as toric codes

or color codes. Similar results to those in this paper were found in Ref. [5] which appeared

simultaneously with this paper.

One motivation for studying small Majorana fermion codes is that hopefully realizations

of Majoranas in physical devices[6] will have very low error rates. Perhaps these modes will

already have low enough error rates that no code will be necessary, but if a code is necessary,

then a low distance code may suffice.

In some cases, we will be able to prove that our small Majorana fermion codes have an

optimal tradeoff between Nmaj , d,K. These codes will be closely related to Hamming codes.

In other cases, we will conduct computer search to construct codes that we conjecture have

an optimal tradeoff; the computer search will not be exhaustive but will involve a random

element, so we will not be able to prove optimality. We consider only the case where the

codes have no odd weight logical operators, as explained below.

2 Majorana Stabilizer Codes

2.1 Hilbert Space, Code Space, and Stabilizer Group

We consider a system with Nmaj Majorana fermion operators. We denote these Majorana

fermion operators by γa with a ∈ 1, . . . , Nmaj . They obey the anti-commutation relations

{γa, γb} = 2δa,b. (1)

We will always assume that Nmaj is even. The minimal Hilbert space compatible with these

anti-commutation relations has dimension 2Nmaj/2 and we will take this to be the dimension

of the Hilbert space of the system. A Majorana fermion code is a subspace of this Hilbert

space.

We will consider Majorana fermion codes which have a stabilizer form, so that there are

several operators, called “stabilizers”, such that the code space (the subspace of the Hilbert

space which describes valid codewords) is the space in which each of these operators assumes

some given eigenvalue. Each of these operators will be a product of an even number of

Majorana fermion operators; physically, this is chosen so that they correspond to bosonic

operators. If the number of operators in the product is equal to 24, then the operator is anti-

Hermitian and the possible eigenvalue are either +i or −i while if the number of operators

in the product is equal to 04 then the operator is Hermitian and the possible eigenvalues are

either +1 or −1. Further, all of these operators will be chosen to commute with each other.

Thus, as an example code, one might take a system with Nmaj = 6 and with stabilizers

γ1γ2γ3γ4γ5γ6 and γ1γ2 (this code is practically useless as it has distance 2 as defined below,

but it is a valid code).

The stabilizers generate a group, the stabilizer group, which is the group generated by

products of stabilizers. Taking the quotient of this group by all elements of the group which

are proportional to the identity (i.e., all elements equal to 1,−1) gives a group with 2Nstab

elements, where Nstab is the minimal number of stabilizers that generate this group. That is,

if for example one were given a list of stabilizers γ1γ2γ3γ4γ5γ6 and γ1γ2 and γ3γ4γ5γ6 then

the group has Nstab = 2 (despite the fact that there were 3 stabilizers in the list) as it is

generated by 2 stabilizers (indeed, any two stabilizers from that list suffices).
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One way to understand this group is to identify each element of the stabilizer group with

a bit string of length Nmaj . There will be a 1 in the a-th entry of the bit string if the operator

γa is in the given element of the stabilizer group. Thus, with Nmaj = 6, the operator γ1γ2
will correspond to the string 110000. The sign of the operator is irrelevant to the bit string,

so that γ1γ2 and −γ1γ2 = γ2γ1 correspond to the same bit string. This bit string can equally

be regarded as a vector in F
Nmaj

2 . Given two operators O1, O2 with corresponding bit strings

b1, b2, the product O1O2 will correspond to the bit string b1 + b2 where addition is in F
Nmaj

2 .

Thus, the stabilizer group is some subspace of F
Nmaj

2 , with dimension Nstab.

So, Majorana fermion codes will correspond to subspaces of F
Nmaj

2 with the requirement

that the inner product of any two vectors in the subspace is equal to 0; in the language of

classical coding theory, these subspaces are self-orthogonal codes (note that in the case of

Majoranas this subspace describes stabilizers while in the case of classical coding theory we

interpret as a space of codewords). To see this, note that the inner product of any vector in

the subspace with itself must be zero (because stabilizers are products of an even number of

Majorana operators). The inner product of any two different vectors in the subspace must

also be zero as follows: recall that any pair of operators O1, O2 in the stabilizer group must

commute with each other. We commute each operator γa in O2 through O1 and keep track of

the total sign; if γa is also in O1, then γa anti-commutes with O1 and otherwise it commutes

(this follows because O1 has an even number of Majorana operators and so if γa is in O1

then there are an odd number of operators in O1 which anti-commute with γa); so, if O1, O2

commute then there are an even number of bits for the corresponding bit strings both contain

a 1.

The dimension of the code space is equal to

2Nmaj/2−Nstab .

We write

K = Nmaj/2−Nstab, (2)

and we term K the number of “logical qubits”.

A logical operator is a product of Majorana operators which commutes with all operators in

the stabilizer group but which is not itself in the stabilizer group. As shown in Ref. [3], one can

find 2K logical operators X1, . . . , XK , Z1, . . . , ZK which obey the usual Pauli commutation

relations. This motivates saying that there are K logical qubits.

2.2 Distance

The “weight” of an operator is the Hamming weight of the corresponding bit string. The

distance of a code is defined to be the minimum of the weight of all nontrivial logical operators

(here, nontrivial means not corresponding to the identity operator).

In this paper, we restrict to the case that the so-called “fermion parity” operator γ1γ2 . . . γNmaj

is in the stabilizer group; when we refer to optimality properties of codes, we will always be

considering this case, even though we will not state it from now on. Thus, all logical operators

must have even weight (otherwise, they would not commute with fermion parity) and so the

distance of the code must be even and at least 2. There are two motivations for requiring

that the fermion parity operator is in the stabilizer group. First, physical implementations
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may naturally produce a code where it is in the stabilizer group due to charging energy ef-

fects [7, 8, 9, 10, 11, 6]. Second, one cannot create superpositions of states with different

fermion parity in some subsystem without entangling it with another subsystem so that the

total fermion parity is fixed, as the universe has a definite fermion parity[12]. Conversely, in

Ref. [3] it was suggested that codes with an odd weight logical operator might have better

error correction properties by combining topological and parity protection.

Let Kmax(Nmaj , d) denote the maximal possible number of logical qubits (over all possible

codes) for a code with Nmaj physical Majorana modes and distance d. A code with distance d

can detect any error acting on fewer than d Majorana modes and can correct any error acting

on fewer than d/2 Majorana modes. Codes with distance d = 2 are then not particularly

useful: they cannot correct an error on a single Majorana mode; the simplest example of

such a d = 2 code is simply to take the stabilizer group to be generated by the fermion

parity operator so that all even weight operators commute with the stabilizer group and no

odd weight operators do. In this paper, we will investigate some possible codes with small

distance, d = 4 and d = 6.

The number Kmax is non-decreasing in Nmaj :

Kmax(Nmaj + 2, d) ≥ Kmax(Nmaj , d). (3)

To see this, consider a code C with Nmaj physical Majoranas and K logical qubits. Define

a new code C ′ for Nmaj + 2 physical Majoranas by taking the stabilizer group of C ′ to be

generated by the stabilizers of C (acting on the first Nmaj operators out of the Nmaj + 2

physical Majoranas of C ′) and also by the operator γNmaj+1γNmaj+2. Then, any product of

Majorana operators which commutes with the stabilizer group of C ′ must be of the form O

or Oγnphys+1γnphys+2 where O is either a logical operator of C or O is in the stabilizer group

of C. If O is not a logical operator for C (i.e., O is in the stabilizer group of C), then O and

Oγnphys+1γnphys+2 are both in the stabilizer group of C ′. If O is a logical operator, then it

must have weight at least equal to the distance of C and so C ′ has the same distance as C.

Conversely, given a code C ′ on Nmaj Majoranas which has an element of the stabilizer

group with weight 2, then such an element is equal to (after possibly relabelling the Majorana

operators) γNmaj−1γNmaj and C ′ can be formed from a code C with Nmaj − 2 Majorana

operators using the construction of the above paragraph.

A Majorana fermion code will be said to be “degenerate” if there exists a nontrivial (i.e.,

not proportional to the identity) element of the stabilizer group with weight smaller than d,

and it is said to be non-degenerate otherwise.

2.3 Majorana Fermion Codes from Qubit Stabilizer Codes

We very briefly review the construction of Majorana fermion codes given a qubit stabilizer

code. Given a qubit stabilizer code with Nqub qubits, construct a Majorana fermion code with

Nmaj = 4Nqub as follows. For each qubit i of the qubit stabilizer code, define 4 Majorana

fermions labelled by a pair (i, a), where a ∈ {1, . . . , 4}. The stabilizer group of the Majorana

fermion code is generated by the following stabilizers. First, for every i, we have the stabilizer

γ(i,1)γ(i,2)γ(i,3)γ(i,4). The four Majorana fermions i, a have a four dimensional Hilbert space,

but the +1 eigenspace of this stabilizer is only two dimensional and so corresponds to a

qubit. Then, we can identify the operator Xi in the qubit code with γ(i,1)γ(i,2) and identify
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the operator Zi with γ(i,1)γ(i,3). Then, for every stabilizer of the qubit code, we map that

stabilizer to a stabilizer of the Majorana fermion code, by replacing each Xi or Zi with the

appropriate γ(i,1)γ(i,2) or γ(i,1)γ(i,3), respectively.

As shown in Refs. [3, 2], the distance of the resulting Majorana fermion code is twice the

distance of the qubit stabilizer code.

3 Distance d = 4 Codes: Analytical Results

In this section, we consider codes with distance d = 4, and give some analytical results. In

the next section we give the results of a numerical search for d = 4 codes as well as d = 6

codes.

3.1 Upper Bounds

Let Kd
max(Nmaj , d) denote the maximal number of logical qubits for a degenerate code with

distance Nmaj physical qubits and distance d and let Knd
max(Nmaj , d) denote the maximal

number of logical qubits for a non-degenerate code with Nmaj physical qubits and distance d.

For a degenerate code with d = 4, there must be an element of the stabilizer group with weight

2, and so, by the discussion below Eq. 3, we have Kd
max(Nmaj , 4) = Kmax(Nmaj − 2, 4). If, in

turn, Kmax(Nmaj−2, 4) = Kd
max(Nmaj−2, 4) then Kmax(Nmaj−2, 4) = Kmax(Nmaj−4, 4).

Proceeding in this fashion, we find that

Kd
max(Nmaj , 4) = max0≤M<Nmaj

M even

Knd
max(M, 4). (4)

Further,

Kmax(Nmaj , 4) = max
(
Knd

max(Nmaj , 4),Kd
max(Nmaj , 4)

)
. (5)

and so

Kmax(Nmaj , 4) = max0≤M≤Nmaj

M even

Knd
max(M, 4). (6)

Thus, it suffices to determineKnd
max(M, 4) for allM ≤ Nmaj in order to determineKmax(Nmaj , 4)

and so that is what we now consider.

Further, we claim that

Knd
max(Nmaj , 4) ≤ Nmaj/2− dlog2(Nmaj)e − 1. (7)

To see this, note that in a non-degenerate code, any nontrivial operator with weight t < d will

fail to commute with at least one stabilizer. The set of stabilizer generators that the operator

does not commute with is called the “error syndrome”. This set can be written as a bit

string of length Nstab, or, equivalently, as a vector in FNstab
2 . For d = 4, this means that any

operator γaγb with a 6= b has weight t = 2 < d = 4 and so this operator has a nontrivial error

syndrome (here, nontrivial means the syndrome includes at least one generator). Further, the

operators γa and γb also have nontrivial error syndromes and so because γaγb has a nontrivial

error syndrome, the error syndromes of γa and γb must be distinct because the error syndrome

of the product of two operators is simply the sum of the error syndromes, viewed as vectors

in F
Nmaj

2 . Thus, each single Majorana operator γa for a ∈ {1, . . . , Nmaj} must correspond to

a unique error syndrome. There are Nstab generators and hence 2Nstab − 1 nontrivial error

syndromes. However, one generator is fermion parity and all single Majorana operators γa
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anti-commute with this operator and hence there are only 2Nstab−1 possible error syndromes

for a single Majorana operator (the error syndrome will always be nontrivial since any single

Majorana operator anti-commutes with fermion parity). Hence, for a non-degenerate code,

2Nstab−1 ≥ Nmaj ; using Eq. (2), this implies Eq. (7).

Another way to see that each single Majorana operator must correspond to a unique error

syndrome is that single Majorana operator errors are correctable and so for a non-degenerate

code it must be possible to determine the error from the syndrome.

Given Eq. (7) and Eq. (6), it follows that

Kmax(Nmaj , 4) ≤ Nmaj/2− dlog2(Nmaj)e − 1. (8)

3.2 “Hamming Majorana Codes” with Nmaj = 2m

Naively, one might think that for any Nmaj one can construct a code with a K that saturates

this inequality (8). After all, it would seem that one could always choose the stabilizers such

that the error syndrome gives enough information to uniquely identify any single Majorana

fermion error, i.e., to ensure that each single Majorana fermion operator has a unique error

syndrome. However, the constraints that the stabilizers must be bosonic and must commute

with each other may make this impossible for some Nmaj . In this subsection, we show that

the inequality is saturated for the particular case that Nmaj is a power of 2:

m ≥ 3 → Kmax(2m, 4) = Knd
max(2m, 4) = 2m−1 −m− 1. (9)

For m = 3, the construction of this section will give a code with K = 0 but which has a

unique syndrome for each single Majorana error.

The class of codes we construct is closely related to the classical Hamming code, so we

call them “Hamming Majorana codes”.

We generate the stabilizer group by m different stabilizers, labelled S1, S2, . . . , Sm, and by

the fermion parity operator, so that Nstab = m+ 1. The stabilizer Sm will be the product of

all operators γa such that the m-th bit of a− 1 in binary is equal to 1 (we count the m-th bit

from the right, so that the first bit is the least significant, and so on; the order in which we

count it is completely arbitrary but we choose to count from the right as it makes the matrix

below look nicer). Note that a − 1 ranges from 0 to Nmaj − 1. Thus, in the case m = 4,

consider the following matrix:

S = ( 0 ) 000000100100011010001010110011110001001101010111100110111101111.

The matrix S is a 16-by-4 matrix. The rows of S label different Majorana operators and

the columns of S label different stabilizers, S1, ..., S4. So, for example, the operator γ13
corresponds to the 12-th row of this table; in binary, 12 is 1100 and so stabilizers S3 and S4

include operator γ13.

It is clear that such a choice of stabilizers gives each γa a unique error syndrome. Indeed,

the pattern of violated stabilizers is given by the binary representation of a−1. Further, each

Si has weight 2m−1 and so has even weight for m ≥ 2. Also, given any pair Si, Sj for i 6= j,

the number of operators γa which are in both Si and Sj is equal to 2m−2 and so is even for

m ≥ 3. So, for m ≥ 3, this defines a valid code.

For m = 4, this defines a code Nmaj = 16,K = 3, d = 4. It is interesting to compare this to

another code on 16 Majorana fermions. There is a 4 qubit code with distance 2 and 2 logical
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B)A)

Fig. 1. (A) shows stabilizers for a 16 Majorana code derived from the 4 qubit code. Each circle
represents a Majorana mode. Each rounded rectangle (surrounded by either a solid or a dashed

line) represents a stabilizer; the stabilizer is the product of Majorana operators on the modes

contained inside that rectangle. There are 6 independent stabilizers and hence K = 2. The
rounded rectangles with dashed lines indicate generators acting on 4 Majorana operators; these

are the stabilizers γi,1γi,2γi,3γi,4 of the mapping of subsection 2.3. (B) shows stabilizers for the

Hamming Majorana code with Nmaj = 16. There are now only Nstab = 5 independent stabilizers.
One of the dashed rounded rectangles in (B) surrounds all qubits; this is the parity operator. The

solid rounded rectangles are the same in (B) as in (A). The dashed rounded rectangles in (B)

generate a subgroup of the dashed rounded rectangles in (A).

qubits with stabilizers X1X2X3X4 and Z1Z2Z3Z4. Applying the mapping of subsection 2.3

to this 4 qubit code gives a Majorana fermion code with Nmaj = 16,K = 2, d = 4. Fig. 1

shows the stabilizers for these two codes.

Note also that there is no qubit stabilizer code on 4 physical qubits with distance 2 and 3

logical qubits (we leave this as an exercise for the reader or see Ref. [4]). Hence, no Majorana

fermion code with Nmaj = 16 derived by mapping from a qubit stabilizer code has as many

logical qubits as the Hamming Majorana code.

Eq. 7 shows that no code with Nmaj ≤ 10 and distance d = 4 can have K > 0. We

show in the next paragraph that no code with Nmaj = 12 has K > 0. For Nmaj = 14, we

performed a numerical search (described in the next section) for a code with Nstab = 6 and

did not succeed. Hence, we believe that no such code exists, i.e., we believe that Nmaj = 16

is the minimum number of modes to have d = 4,K > 0.

For Nmaj = 12, in order to have K > 0 we must have Nstab = 5. We now show that this is

not possible. One of these generators is the fermion parity operator. Call the other generators

g1, g2, g3, g4. Of the other stabilizers, there must be one (which we will call g4) with weight 4

(proof: stabilizers have event weight, so possible nontrivial weights are 2, 4, 6, 8, 10. We can

multiply a stabilizer of weight w by the fermion parity operator to give a stabilizer with weight

12−w. So, we can assume the generators have weights 2, 4, 6. For a non-degenerate code, no

generators have weight 2, so we can take generators to have weights 4, 6. Given two distinct

generators with weights 6 (such that their product is not the fermion parity operator), their

product must be 0 mod 4 (since they commute, so there are an even number of modes that

they both act on), so we can assume the product has weight 4). Given a stabilizer of weight

4, without loss of generality let it be γ9γ10γ11γ12. There are 8 possible single Majorana errors

which commute with this stabilizer (errors on Majorana modes γ1, . . . , γ8), so we need the

remaining 3 generators to uniquely identify those errors. The only way to uniquely identify

those errors (since there are 8 possible errors and 23 syndromes) is to use something similar



1198 Small Majorana fermion codes

to a Hamming Majorana code: the remaining 3 stabilizer generators g1, g2, g3 must each be a

generator of the Hamming Majorana code with Nmaj = 8 on the first 8 modes multiplied by

some product of γ9, . . . , γ12. Call these products p1, p2, p3, respectively; i.e., ga is equal to a

Hamming Majorana generator on the first 8 modes multiplied by pa. Since g1, g2, g3 commute

with each other, the operators p1, p2, p3 commute with each other, and further all have even

weight. Hence, up to multiplication by g4, and up to permutation of modes 9, 10, 11, 12, the

operators pa are equal to either identity or γ9γ10. Hence, we cannot have a unique syndrome

for each single Majorana error.

4 Numerical Search For Other Codes

We now describe a numerical search for other codes with d = 4, 6. We begin with the case

d = 4, and describe the algorithm there. This algorithm is based on a random walk through

codes. We then describe some properties of the walk. Finally, we discuss modifications to the

algorithm for the case d ≥ 6 and give results for d = 6.

4.1 Distance d = 4 Codes

The Hamming Majorana codes give distance 4 codes with optimal K for Nmaj = 16, 32.

For other values of Nstab with 18 ≤ Nstab ≤ 30, we conducted a numerical search for other

distance d = 4 codes. We searched only for non-degenerate codes.

The search was a random search, implemented as follows. We choose given values of Nmaj

and Nstab. The algorithm searches through codes until either it finds that a distance 4 code

or until it gives up after a sufficiently large number of iterations. One stabilizer generator will

be the fermion parity operator, which is not explicitly stored, so in fact the algorithm only

stores the remaining Nstab − 1 generators as the way it defines the code. We refer to these

Nstab − 1 generators as the “stored list”.

We initialize the stored list to γ1γ2 and γ3γ4 and so on, up to γ2(Nstab−1)−1γ2(Nstab−1). In

addition, there is the fermion parity operator, as mentioned above. This is a valid code (in

that all stabilizers have even weight and commute with each other) but it has only distance

2.

Then, the algorithm iterates the following for some number of steps. First, it randomly

updates the stabilizers. This is done by choosing 4 different Majorana modes at random. Let

these modes be i, j, k, l. Then, it performs the replacements:

γi → γjγkγl, (10)

γj → γiγkγl, (11)

γk → γiγjγl, (12)

γl → γiγjγk. (13)

That is, for each stabilizer generator in the stored list, it replaces every occurrence of γi
by γjγkγl. These replacements are all performed in parallel; that is, γiγj is replaced by

γjγkγlγiγkγl. Note that we do not care about the sign of the stabilizer generator (different

choices of signs define a code with the same d,Nstab), so we do not track the sign during this

replacement. Note also that this replacement does not change the fermion parity operator.

This update procedure allows us to perform a rapid random walk through different codes.

The advantage of doing it this way is that each time we generate a new code, we are guaranteed
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Nmaj Nstab K
16 5 3
18 7 2
20 6 4
22 7 4
24 6 6
26 7 6
28 7 7
30 7 8

Table 1. Table showing non-degenerate codes found for Nmaj = 16, . . . , 30. The value for 16 is the

Hamming Majorana code, others are from computer search as explained in text. The value Nstab

is the smallest value of Nstab for the given Nmaj for which we found a non-degenerate distance 2

code. Lines with a checkmark indicate that that code has larger K than any code we found with

smaller Nmaj ; these lines are used to make table 2.

that it will be valid, having even weight stabilizers that commute with each other, as the

replacements maintain the algebra of anti-commutation relations obeyed by the Majorana

operators.

An alternative way to define the replacement is that if a stabilizer generator contains an

odd number of operators γi, γj , γk, γl then that generator is multiplied by γiγjγkγl, up to signs.

This update can be performed very quickly using bitwise operations, storing each stabilizer

as a bit string, then ANDing the bit string with a mask which is a 1 in the bits corresponding

to i, j, k, l (we pre-compute these masks for all
(
N
4

)
choices of i < j < k < l) and then count

the number of 1 bits; if this number is odd, we XOR the bit string with the mask.

Then, once the new code is generated, we check if it has distance 4. This can again be

done with bitwise operations. For of the
(
N
2

)
different operators γiγj with i < j, we generate

a mask with a 1 in the bits corresponding to i, j. We then check whether, for each mask, there

is at least one stabilizer generator which anti-commutes; if so, the code has distance d > 2.

This can be done by ANDing the mask with the bit string corresponding to the generator

and counting if there are an odd number of 1s in the result. If we find a code with distance

d > 2 we report success, otherwise we continue.

For each Nmaj , we tried increasing values of Nstab until we found a code. For each value

of Nstab we did 2000 independent runs with 108 steps on each run. Only if all those runs

failed did we increase the value of Nstab and try again. The results are shown in Table 1.

This gives the best non-degenerate codes found; note that K is non-monotonic with Nmaj .

Using this table and Eq. (4), we give the best codes in table 2, and also compare to the best

codes derived from qubit stabilizer codes using the mapping of subsection 2.3. Generators for

some of the codes are given in the Appendix.

As a test of the algorithm, we also ran it for Nmaj = 32, Nstab = 6, where on 882 out of

the 2000 runs it succeeded in finding a code with distance 4. We know such a code exists (the

Hamming Majorana code), so this gives some indication that the algorithm will find a code

when it exists.
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Nmaj Nstab K Kqubit

16 5 3 2
18 6 3
20 6 4 2
22 7 4
24 6 6 4
26 7 6
28 7 7 4
30 7 8
32 6 10 6

Table 2. Table showing codes found for Nmaj = 16, . . . , 32, including both degenerate and non-

degenerate codes. The table is built using the codes with a checkmark in Table 1 and using Eq. (4).
The final column, called Kqubit and given only for codes where Nmaj is a multiple of 4, is the

maximum possible number of logical qubits for a distance 4 Majorana fermion code derived from

a distance 2 qubit stabilizer code; we use the bounds from Ref. [4] to get Kqubit for the qubit
stabilizer codes.

4.2 Properties of Random Walk

There are two important properties of the random walk described above. First, the transition

probabilities obey detailed balance as follows. Let c represent the state of the algorithm,

namely the stored list of stabilizers. Let Pc,c′ denote the transition probability from state c

to some other state c′. Then, these probabilities obey detailed balance in that Pc,c′ = Pc′,c.

To see this, note that if some given choice of i, j, k, l leads to a transition from c to c′, then

the same choice of i, j, k, l leads to a transition from c′ to c.

Second, consider any stored list c such that the list has Nstab − 1 independent stabilizers,

and such that the fermion parity operator is not in the group generated by the stored list of

stabilizers. We will show that there is a sequence of replacements that turns this stored list

into the list of stabilizers γ1γ2, γ3γ4, . . . , γ2(Nstab−1)−1γ2(Nstab−1), up to possibly a permutation

of the Majorana operators. Combined with detailed balance above, this implies that, up to a

permutation of the Majorana operators, the random walk will ultimately explore all possible

codes with the given Nstab up to permutation of the Majorana operators.

Consider the first stabilizer in the list. We show how to turn it into γ1γ2. The stabilizer

cannot have weight Nmaj since it is not equal to the fermion parity operator. If it has weight

between 4 and Nmaj − 2, we can find i < j < k such that the stabilizer includes γi, γj , γk
and we can find an l such that the stabilizer does not include γl. Performing the replacement

with the given i, j, k, l reduces the weight of the stabilizer by 2. Continue in this fashion until

it has weight 2. Once has weight 2, then we can turn it into γ1γ2 by permutations.

We now repeat the procedure for the second stabilizer in the list, but we only consider the

action of the stabilizer on modes γ3, . . . , γNmaj
. That is, we ignore the bits in the bit string

corresponding to modes 1, 2, and define the “weight” to be the number of other bits which

are nonzero. The weight of the stabilizer must be less than Nmaj − 2 since the fermion parity

operator is not in the group generated by the first two stabilizers. We find i, j, k, l as in the

above paragraph, choosing 2 < i, j, k, l, reducing the weight of the stabilizer until it is equal

to 2. Then, once the weight is equal to 2, we permute until the stabilizer is equal to γ3γ4,

possibly multiplied by γ1γ2.

We continue this procedure for the third, fourth, etc... stabilizers. On the j-th stabilizer,
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we ignore the first 2(j− 1) bits in the bit string, and reduce the weight of the remaining bits.

We then apply permutations until the stabilizer is equal to γ2j−1γ2j , possibly multiplied by

earlier stabilizers in the list.

This procedure required using permutations. If Nmaj ≥ 5 (as it is in all cases of interest),

the group generated by Eq. (10) includes permutations, so in fact the random walk explores

all possible permutations. To see that the group includes permutations in this case, consider

five modes, γ1, . . . , γ5. Apply Eq. (10) three times, using first i = 1, j = 2, k = 3, l = 4, then

i = 2, j = 3, k = 4, l = 5 and finally i = 1, j = 2, k = 3, l = 4. Then, up to signs, the effect is

to map γ1 ↔ γ5, while preserving γ2, γ3, γ4. Since any exchange of a pair of Majoranas is in

the group, the group contains all permutations.

4.3 Distance d = 6 Codes

We also performed a numerical search for codes with distance d = 6. In this case, we searched

for all possible codes, degenerate or not. We used a similar algorithm to the search for d = 4

codes. We initialized the stored list of generators in the same way as in the search for d = 4.

We used the same Eq. (10) to update stabilizer generators to perform a random walk through

codes. However, we also store a set of generators for 2K independent logical operators. These

are initialized to logical operators of the initial code, and then are also updated using Eq. (10).

This list is used in checking distance of the code.

The only change is how we tested the distance of the code. Since we are looking for a

code with distance 6, we need to check operators with weight 4 as well as those with weight 2,

and since we might be including degenerate codes, we need to check if there is an operator of

weight 2 or 4 which commutes with all generators and which does not commute with at least

one logical operator. Checking that an operator of weight 2 or 4 commutes with a generator

is done in the same way as in the search for d = 4 codes (we store a mask for each such

operator, and we AND the mask we each generator and count the bits in the result). To

check commutation with logical operators, we use the list of logical operators of the code that

we have stored and again use bitwise operations.

We used the algorithm in the same way, choosing a given Nmaj and increasing Nstab until

a d = 6 code was found. As before, we ran the algorithm 2000 times, taking 108 steps for

each run, until giving up and increasing Nstab. The results are shown in Table 3, as well as

a comparison to the best distance 6 Majorana fermion codes derived from a qubit stabilizer

code. Generators for these codes are shown in the Appendix.

The code with Nmaj = 20 has the same number of qubits as a code derived from a qubit

stabilizer code. Indeed, the Majorana fermion code that we found (at least for all runs we

inspected) was a code derived from a qubit stabilizer code. For Nmaj = 28, the code has more

logical qubits than a code derived from a qubit stabilizer code. We found in this case (at

least for all runs that we inspected) that the code had one weight 4 stabilizer in the stabilizer

group; thus, one may also build such a code out of 1 qubit and 24 Majorana fermions. With

Nmaj = 30, for all runs that we inspected, there were no weight 4 stabilizers in the stabilizer

group.
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Nmaj Nstab K Kqubit

20 9 1 1
28 12 2 1
30 12 3

Table 3. Table showing optimal codes found for Nmaj ≤ 32. If an entry is not present in the

table for a given Nmaj , it means that the best code found for that Nmaj had the same K as a
code in the table with a smaller Nmaj . For example, the optimal code found with Nmaj = 32

has Nstab = 13 and hence K = 3, the same as the code shown in the table with Nmaj = 30. No

distance d = 6 codes were found with Nmaj < 20. The column Kqubit, given only for codes where
Nmaj is a multiple of 4, gives the maximum possible number of logical qubits for a distance 6

Majorana fermion code derived from a distance 3 qubit stabilizer code; we use the bounds from

Ref. [4] to get Kqubit for the qubit stabilizer codes.

5 Discussion and Implementation

We have given several small Majorana fermion codes. Interestingly, there exist codes whose

performance is better than that of any code derived from a qubit code. The simplest one, the

Hamming Majorana code with Nmaj = 16 in fact has a stabilizer group which is a subgroup

of the stabilizer group of the Majorana code derived from a 4 qubit code.

We have also given a numerical search algorithm. Using bitwise operations, this search can

be run extremely quickly. It is not exhaustive, so the failure of the algorithm does not prove

the non-existence of a code, but we believe that the codes we have found are optimal. It may

be possible to run a similar numerical search for qubit codes. The basic idea of the random

search is that it allows us to turn a valid set of stabilizers (obeying commutation relations)

to another valid set; one could construct a similar search algorithm for qubit stabilizer codes

by randomly applying operations from the Clifford group.

Efficient implementation of this code can be most easily be done if it is possible to measure

the stabilizers directly, as in the scheme of Ref. [13]. One property of these codes is that

each stabilizer (except for the fermion parity operator) can be written in two different, non-

overlapping ways. For example, with Nmaj = 16, the operators γ1 . . . γ8 and γ9 . . . γ16 agree,

up to fermion parity. Hence, this provides two distinct ways to measure the same stabilizer;

these independent measurements may allow one to reduce the effect of measurement errors.

The Nmaj = 16 Hamming Majorana code has a physical layout, shown in Fig. 1, which may

simplify some of these measurements, as the generators are all contained in local regions

(squares or rectangles).
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Appendix A Table of Codes Found For d = 4

We give in Table A.1 a table of some of the codes found using numerical search for distance

d = 4. We show stabilizers for non-degenerate codes with Nmaj = 20, 24, 28, 30. These are

the codes shown with a checkmark in table 1.

Appendix B Table of Codes Found For d = 6

We give in Table B.1 a table of the codes found using numerical search for distance d = 6.
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Nmaj = 20
01001101010001011101
10011010110101111100
11010110101011000100
01101010101100101001
10100111001010111101
Nmaj = 24
110110110100100010101001
000010110111010010010111
111000100000001011110111
101000011001000000001011
001111100001011000101101
Nmaj = 28
0010000001110101010011011010
0110110010100110101001010110
0111110111011011110101010010
0001110000101110010001101111
1001011110000111001111000001
0000111000011001110100111110
Nmaj = 30
010010100111011011011000000110
001010110011100100001010111010
100001011011011100011100010001
011011001001100000110000011001
101000010110001101111001100001
011010101001001101001111111101

Table A.1. Distance d = 4 codes. We give Nstab − 1 stabilizer generators for each code as bit
strings of length Nmaj ; a 1 in the string in some position indicates that the generator contains
the given Majorana operator. In addition, the fermion parity operator (not shown in the table) is

a generator.
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Nmaj = 28
1100110110001100000001000010
0001100110010000010100111110
0011001010100001100111101101
1011100100010101011010111000
0000010101110010101010000001
0010011100000011101100101001
0000101001101111110110111111
0010010100101000100101110000
1101100001101001101010101001
1010010101101110011001110000
0101011000001111010111111111
Nmaj = 30
011100000111001010010110011100
000111111101001001001010011110
111001000011101100110011100110
100111111010111000111011011101
010110101011000011011011110010
001100001100111011001110111100
100001110110010011100111101010
011000000001111110000100011001
101001001111000111110011101011
000100001001011011111100011001
100110000010011101111110100000

Table B.1. Distance d = 6 codes. We give Nstab − 1 stabilizer generators for each code as bit

strings of length Nmaj ; a 1 in the string in some position indicates that the generator contains
the given Majorana operator. In addition, the fermion parity operator (not shown in the table) is

a generator.


