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We present quantum algorithms for solving two problems regarding stochastic processes.
The first algorithm prepares the thermal Gibbs state of a quantum system and runs

in time almost linear in
√
Nβ/Z and polynomial in log(1/ε), where N is the Hilbert

space dimension, β is the inverse temperature, Z is the partition function, and ε is the
desired precision of the output state. Our quantum algorithm exponentially improves

the complexity dependence on 1/ε and polynomially improves the dependence on β of
known quantum algorithms for this problem. The second algorithm estimates the hitting

time of a Markov chain. For a sparse stochastic matrix P , it runs in time almost linear

in 1/(ε∆3/2), where ε is the absolute precision in the estimation and ∆ is a parameter
determined by P , and whose inverse is an upper bound of the hitting time. Our quantum

algorithm quadratically improves the complexity dependence on 1/ε and 1/∆ of the

analog classical algorithm for hitting-time estimation. Both algorithms use tools recently
developed in the context of Hamiltonian simulation, spectral gap amplification, and

solving linear systems of equations.
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1 Introduction

Two important problems in statistical mechanics and stochastic processes are sampling from

the thermal or Gibbs distribution of a physical system at a certain temperature and the

estimation of hitting times of classical Markov chains. The first such problem has a wide

range of applications as it allows us to compute quantities like the partition function, energy,

or entropy of the system, and understand its physical properties in thermal equilibrium [1].

This problem has also applications in many other scientific areas including optimization [2].

Hitting times are also paramount in the study of classical random processes and they allow

for a characterization of Markov chains [3]. Roughly, a hitting time is the time required by a

diffusive random walk to reach a particular configuration with high probability. Besides their

use in physics, hitting times are also important in solving search problems where the goal is
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to find a marked configuration of the Markov chain [4].

In a classical setting, these two problems are commonly solved using Monte-Carlo tech-

niques [5]. Each step in a Monte-Carlo simulation corresponds to applying a particular proba-

bility rule that determines a Markov chain and an associated stochastic matrix. In the case of

sampling from Gibbs distributions, for example, the fixed point of the Markov chain (i.e., the

eigenvector of the stochastic matrix with eigenvalue 1) corresponds to the desired distribution.

Such a distribution can then be prepared by repeated applications of the probability rule. To

sample from probability distributions associated with thermal Gibbs states of quantum sys-

tems, quantum Monte-Carlo techniques may be used [6]. The running time of a Monte-Carlo

simulation is typically dominated by the number of times the probability rule is applied to

prepare the desired distribution with some given precision. This running time depends on

properties of the Markov chain such as the spectral gap of the stochastic matrix [3].

In recent years, there has been significant interest in the development of quantum al-

gorithms for simulating stochastic processes. Quantum algorithms for thermal Gibbs state

preparation were developed in various works (c.f., [7, 8, 9, 10, 11, 12]) and showed to provide

polynomial quantum speedups in terms of various parameters, such as the spectral gap of the

stochastic matrix or the dimension of the Hilbert space. The notion of quantum hitting time

was also introduced in numerous works (c.f., [13, 14, 15, 16, 17]). Often, quantum hitting

times of quantum walks on different graphs are significantly (e.g., polynomially) smaller than

their classical counterparts. There are also various quantum algorithms to accelerate classical

Monte-Carlo methods for estimating different quantities, such as expected values or partition

functions (c.f., [18, 19]). Our results advance these areas further by providing new quantum

algorithms with various improvements in the running time with respect to known classical

and quantum algorithms for related problems.

In more detail, we present two quantum algorithms for preparing thermal Gibbs states

of quantum systems and for estimating hitting times, respectively. Our first algorithm runs

in time Õ(
√
Nβ/Z), where N is the Hilbert space dimension, β is the inverse temperature,

and Z is the partition function of the quantum system evaluated at β. The Õ notation hides

polylogarithmic factors in these quantities and 1/ε, where ε is the desired precision of the

output state. This is a polynomial improvement in β and an exponential improvement in 1/ε

with respect to a related algorithm presented in [8, 9]. In fact, the main difference between our

quantum algorithm and that of [8, 9] is in the implementation of the operator e−βH/2, where

H is the Hamiltonian of the system. Rather than using phase estimation, which has a pro-

hibitive complexity dependence on precision, we utilize the so-called Hubbard-Stratonovich

transformation [20] along with the techniques introduced in [21, 22, 23] to decompose e−βH/2

as a linear combination of unitary operations. We then show how to apply such a combina-

tion to a maximally entangled state using results on spectral gap amplification in [24] and

Hamiltonian simulation (c.f., [22]), thereby preparing the Gibbs state. A similar idea can be

used to improve the running time of the algorithm presented in [10].

Our second algorithm provides an estimate of th, the hitting time of a reversible, irre-

ducible, and aperiodic Markov chain. It relies on the observation that the hitting time can be

expressed as the expectation value of the inverse of a positive Hermitian matrix. This inverse

is approximated by a sum of exponentials which can be implemented using the techniques

from the first algorithm. It runs in time Õ(1/(ε∆3/2)), where ε is the absolute precision in
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the estimation and ∆ is a parameter that satisfies 1/∆ ≥ th. The Õ notation hides factors

that are polynomial in log(1/(ε∆)) and log(N), where N is the dimension of the configura-

tion space. To obtain an almost linear scaling in 1/ε, we invoke recent methods to estimate

expectation values at the so-called quantum metrology limit described in [18].

The paper is organized as follows. In Sec. 2 we describe the main techniques introduced

in [18, 22, 23, 24, 25] that are also used by our algorithms. Then, the quantum algorithm

for the preparation of thermal Gibbs states of quantum systems is described in Sec. 3 and

the quantum algorithm for estimating hitting times of classical Markov chains is described in

Sec. 4. We provide concluding remarks in Sec. 5.

2 Main techniques

Our algorithms are based on techniques developed in the context of spectral gap amplifica-

tion [24], Hamiltonian simulation [22, 25], quantum metrology [18], and solving linear systems

of equations [23]. We first consider an arbitrary finite-dimensional quantum system modeled

by a Hamiltonian H that satisfies

H |ψj〉 = Ej |ψj〉 . (1)

Ej are the eigenenergies and |ψj〉 are the eigenstates, j = 0, 1, . . . N−1, and N is the dimension

of the Hilbert space. We assume that H describes a system of n qubits and N = 2n [26, 21].

Furthermore, we assume that H can be decomposed as

H =

K∑
k=1

hk , (2)

where each hk ≥ 0 is a semidefinite positive Hermitian operator. In many cases, the assump-

tion on hk can be satisfied after a simple rescaling of H depending on its specification.

The results in [24] use the Hamiltonian

H̃ =

K∑
k=1

√
hk ⊗

(
|k〉〈0|a1

+ |0〉〈k|a1

)
, (3)

where a1 refers to an ancillary qubit register of dimension O(log(K)). The important property

is

(H̃)2 |φ〉 ⊗ |0〉a1
= (H |φ〉)⊗ |0〉a1

, (4)

for any |φ〉. Roughly, H̃ can be thought of as the square root of H. Our algorithms will

require evolving with H̃ for arbitrary time:

Definition 1 Let W̃ (t) := exp(−iH̃t) be the evolution operator of H̃ for time t, and ε > 0 a

precision parameter. We define W as a quantum circuit that satisfies ‖W̃ (t)−W‖ ≤ ε. The

number of two-qubit gates to implement W (i.e., the gate complexity) is CW (t, ε).

When H is a physical Hamiltonian described by local operators, H̃ may be efficiently

obtained with some classical preprocessing. To obtain CW (t, ε) in some instances, we note that

the results in [22, 25] provide an efficient method for simulating Hamiltonians of complexity
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polylogarithmic in 1/ε. In more detail, we could assume that we have a presentation of the

Hamiltonian as

H =

K∑
k=1

αkΠk , (5)

or

H =
1

2

K∑
k=1

αkUk , (6)

where the coefficients satisfy αk > 0. The operators Πk are projectors (i.e., (Πk)2 = Πk) and

Uk are unitaries of eigenvalues ±1 in this case. Many qubit Hamiltonians can be represented

in this way, where the Uk correspond, for example, to Pauli operators. We note that Eq. (6)

can be reduced to Eq. (5) by a simple rescaling in which Πk = (Uk + 1lN )/2 and disregarding

the factor proportional to the N × N identity operator 1lN . In either case, we assume that

there is a mechanism available to simulate Πk or Uk; that is, we assume access to a unitary

Q = −
K∑
k=1

eiπΠk ⊗ |k〉〈k|a2

=

K∑
k=1

Uk ⊗ |k〉〈k|a2
, (7)

where a2 is also an ancillary register. The gate complexity of Q is CQ and depends on the gate

complexity of each Uk, which is CU . These gate complexities strongly depend on the problem

and the way that the states |k〉a2
are encoded. For example, if we use a unary encoding where

a2 is a register of K qubits, then CQ = O(KCU ). In other examples, CQ may be significantly

improved.

Once the Hamiltonian H has been reduced to the form of Eq. (5), we obtain

H̃ =

K∑
k=1

√
αkΠk ⊗

(
|k〉〈0|a1

+ |0〉〈k|a1

)
. (8)

To be able to use the results in [25] for simulating H̃ in this case, we note that

|k〉〈0|a1
+ |0〉〈k|a1

=
i

2

[
e−i(π/2)(|k〉〈0|a1+|0〉〈k|a1 )−

−ei(π/2)(|k〉〈0|a1+|0〉〈k|a1 )
]
. (9)

This provides a decomposition of H̃ as a linear combination of K̃ = O(K) unitary operations

Ũk; that is,

H̃ =

K̃∑
k=1

α̃kŨk , (10)
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and α̃k > 0. The unitaries in the right hand side of Eq. (9) can be implemented with

O(log(K)) two-qubit gates using standard techniques. The algorithm in [25] assumes the

ability to implement the unitary

Q̃ =

K̃∑
k=1

Ũk ⊗ |k〉〈k|a2
. (11)

Since the unitaries Ũk are directly related to the Uk, the gate complexity of Q̃ is CQ̃ =

O(K log(K)CU ) when we use a unary encoding for a2.

Then, the results in [25] provide a Hamiltonian simulation method W to approximate

W̃ (t) for this case, within precision ε, with overall gate complexity

CW (t, ε) = O

(
(K log(K))CUτ

log(τ/ε)

log log(τ/ε)

)
. (12)

Here, τ = |t|
∑
k α̃k and thus τ = O(|t|

∑
k

√
αk).

In general, our quantum algorithm to sample from Gibbs distributions provides an ex-

ponential improvement in terms of 1/ε, with respect to other known algorithms [8, 9, 11],

whenever CW (t, ε) is polylogarithmic in 1/ε. As discussed, this is the case for a large class of

Hamiltonians such as those when the Uk are presented as Pauli operators, so that CU = O(n).

For the quantum algorithm that computes an estimate of the hitting time of a Markov

chain, we will assume that we have query access to the Hamiltonian H, and that H can be

presented as in Eq. (5). This assumes the existence of a procedure that outputs the matrix

elements of H. Constructing a quantum circuit W that approximates the evolution with H̃ in

this case is technically involved and we leave that analysis for Appx. 1. As in the previous case,

we use the methods in [22, 25] to show that CW (t, ε) is almost linear in |t| and sublogarithmic

in 1/ε.

Another useful technique for our quantum algorithms, also used in [21, 27, 25, 23], regards

the implementation of linear combinations of unitary operations. More specifically, assume

that X =
∑L−1
l=0 γlVl, where γl > 0 and Vl are unitary operations, and that there is a

mechanism to implement Vl. That is, we have access to the unitary

R =

L−1∑
l=0

Vl ⊗ |l〉〈l|a3
, (13)

where a3 is an ancillary register of O(log(L)) qubits. Lemma 6 of [23] implies that we can

prepare a normalized version of the state X |φ〉 with O(γ/‖X |φ〉 ‖) uses of R in addition to

O(Lγ/‖X |φ〉 ‖) two-qubit gates, where γ =
∑L−1
l=0 γl. When Vl = V l, for some unitary V , and

the gate complexity of V is CV , the gate complexity of R is O(LCV ). In this case, the overall

gate complexity of the algorithm is O(LCV γ/‖X |φ〉 ‖). This result follows from Lemma 8

of [23]. The implication is that the overall gate complexity is dominated by the largest gate

complexity of the unitaries in R times the number of amplitude amplification steps.

For completeness, the quantum algorithm to implement X is built upon O(γ/‖X |φ〉 ‖)
amplitude amplification steps [28]. The operation for state preparation starts by preparing
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the ancillary state

B |0〉a3
=

1
√
γ

L−1∑
l=0

√
γl |l〉a3

, (14)

where B is unitary. Applying B requires O(L) two-qubit gates and, in those cases where

we can exploit the structure of the coefficients γl, it can be done more efficiently. The state

preparation step then applies R followed by B†. One can show that the final state of this

step is (
X

γ
|φ〉
)
⊗ |0〉a3

+ |Θ⊥〉 , (15)

where |Θ⊥〉 is supported in the subspace orthogonal to |0〉a3
. Amplitude amplification allows

us to amplify the probability of observing the state |0〉a3
to a constant. This state corresponds

to the desired outcome. The number of amplitude amplification steps is linear in the inverse

of ‖(X/γ) |φ〉 ‖.
The third useful technique regards amplitude estimation [18]. Let T be a unitary that

implements

T |φ〉 |0〉 = (A |φ〉) |0〉+
∣∣Φ⊥〉 |1〉 , (16)

where A is an operator that satisfies ‖A‖ ≤ 1 and ‖
∣∣Φ⊥〉 ‖ ≤ 1. Our goal is to obtain an

estimate of 〈φ|A |φ〉 = 〈φ| 〈0|T |φ〉 |0〉. The results in [18] imply that there exists a quantum

algorithm that outputs an estimate of the expectation value of T within precision ε. For

constant confidence level (c ≈ 0.81), the quantum algorithm uses T and other two-qubit

gates O(1/ε) times. It also uses the unitary that prepares the initial state |φ〉, O(1/ε) times.

Increasing the confidence level can be done with an additional overhead that is logarithmic

in 1/|1− c|.

3 Preparation of Gibbs states

The thermal Gibbs state of a quantum system H at inverse temperature β ≥ 0 is the density

matrix

ρ =
1

Z
e−βH , (17)

where Z = Tr[e−βH ] =
∑
j e
−βEj is the partition function. Then, the probability of encoun-

tering the system in the quantum state |ψj〉, after measurement, is pj = e−βEj/Z.

Given a precision parameter ε > 0, a quantum algorithm to sample from the Gibbs

distribution pj can be obtained from a unitary V̄ that satisfies

Tra

[
V̄ (|0〉〈0| ⊗ |0〉〈0|a) V̄ †

]
= ρ̂ (18)

and

1

2
‖ρ̂− ρ‖1 ≤ ε . (19)
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We use the label a for an ancillary qubit system that will be discarded at the end of the

computation. The dimension of a depends on the algorithm. The requirement on the trace

distance in Eq. (19) implies that no measurement can distinguish between ρ and ρ̂ with

probability greater than ε [29].

The main result of this section is:

Theorem 2 There exists a quantum algorithm that prepares an approximation of the Gibbs

state. The quantum algorithm implements a unitary V̄ of gate complexity

O

(√
N

Z
(CW (t, ε′) + n+ log(J))

)
, (20)

with t = O(
√
β log(1/ε′)), ε′ = O(ε

√
Z/N), and J = O(

√
‖H‖β log(1/ε′)).

When H is presented as in Eq. (5), we can replace CW (t, ε′) by Eq. (12) if we use the

best-known Hamiltonian simulation algorithm. The overall gate complexity in this case is

O

(√
N

Z

(
K log(K)CUτ

log(τ/ε′)

log log(τ/ε′)
+ n+ log(J)

))
(21)

where τ ≤ t
√
K
∑
k αk. In cases of interest, such as qubit systems given by Hamiltonians

that are linear combinations of Pauli operators, we have αk = O(1), CU = O(n) = O(log(N)),

and K = O(n) = O(log(N)). In this case, the overall gate complexity is

O

(√
Nβ

Z
polylog

(√
Nβ

Z
1

ε

))
. (22)

The important result is that the complexity of our algorithm is polylogarithmic in 1/ε and

also improves upon the complexity in β with respect to the methods in [8, 9].

Our quantum algorithm to sample from Gibbs distributions uses the two techniques dis-

cussed in Sec. 2. In this case, we will be interested in implementing an operator proportional to

e−βH/2. To find a decomposition as a linear combination of unitaries, we invoke the so-called

Hubbard-Stratonovich transformation [20]:

e−βH/2 =

√
1

2π

∫ ∞
−∞

dy e−y
2/2e−iy

√
βH . (23)

In our case, we do not have a method to simulate the evolution with
√
H. Nevertheless, we

assume that we can evolve with H̃, which satisfies Eq. (4). Then,

(e−βH/2 |φ〉)⊗ |0〉a1
= (24)

=

(√
1

2π

∫ ∞
−∞

dy e−y
2/2e−iy

√
βH̃

)
|φ〉 |0〉a1

,

for any state |φ〉. Note that the ancilla a1 remains in the state |0〉a1
and will be discarded at the

end of the computation. Equation (24) implies that the operator e−βH/2 can be approximated

by a linear combination of evolutions under H̃. Because y ∈ (−∞,∞), we will need to find

an approximation by a finite, discrete sum of operators e−iyj
√
βH̃ . We obtain:
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Lemma 3 Let

X ′ =

√
1

2π

J∑
j=−J

δy e−y
2
j/2e−iyj

√
βH̃ , (25)

where yj = jδy, for some J = Θ(
√
‖H‖β log(1/ε′)) and δy = Θ(1/

√
‖H‖β log(1/ε′)). Then,

if ‖H‖β ≥ 4 and log(1/ε′) ≥ 4,

‖(e−βH/2 |φ〉)⊗ |0〉a1
−X ′ |φ〉 |0〉a1

‖ ≤ ε′/2 , (26)

for all states |φ〉.
Proof: Consider the real function

f(x̃) =
1√
2π

∞∑
j=−∞

δy e−y
2
j/2e−iyj

√
βx̃ (27)

where x̃ ∈ R and assume |x̃| ≤ a < ∞. The Poisson summation formula and the Fourier

transform of the Gaussian imply

f(x̃) =

∞∑
k=−∞

e−ω
2
k/2 , (28)

where ωk = −
√
βx̃+ k/δy. Then, there exists

δy = Ω

(
1

a
√
β +

√
log(1/ε′)

)
(29)

such that |f(x̃)− e−ω2
0/2| ≤ ε′/4. Note that if a

√
β ≥ 2 and

√
log(1/ε′) ≥ 2, we can choose

δy = Θ

(
1

a
√
β log(1/ε′)

)
. (30)

Also, ∣∣∣∣∣∣ 1√
2π

∞∑
j=J

δy e−y
2
j/2e−iyj

√
βx̃

∣∣∣∣∣∣ ≤ δy√
2π

∞∑
j=J

e−y
2
j/2

≤ δy√
2π

∞∑
j=J

e−yJyj/2

≤ δy√
2π

e−y
2
J/2

1− e−yJδy/2
.

It follows that there exists a value for J , which implies yJ = Θ(
√

log(1/ε′)), such that∣∣∣∣∣∣f(x̃)− 1√
2π

J∑
j=−J

δy e−y
2
j/2e−iyj

√
βx̃

∣∣∣∣∣∣ ≤ ε′/4 . (31)
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Using the triangle inequality we obtain∣∣∣∣∣∣e−ω2
0/2 − 1√

2π

J∑
j=−J

δy e−y
2
j/2e−iyj

√
βx̃

∣∣∣∣∣∣ ≤ ε′/2 , (32)

and we can represent

e−ω
2
0/2 =

1√
2π

∫ ∞
−∞

dy e−y
2/2e−iy

√
βx̃ . (33)

To prove the Lemma, it suffices to act with X ′ on the eigenstates of H̃. We can then

use the previous bounds if we assume that x̃ denotes the corresponding eigenvalue of H̃. In

particular, a = ‖H̃‖. Then, if ‖H̃‖
√
β ≥ 2 and

√
log(1/ε′) ≥ 2, it suffices to choose

δy = Θ

(
1

‖H̃‖
√
β log(1/ε′)

)
(34)

and

J =
yJ
δy

= Θ
(

log(1/ε′)‖H̃‖
√
β
)
. (35)

The result follows from noticing that ‖H̃‖ = O(
√
‖H‖) and that X ′ then approximates

e−β(H̃)2/2. Since we act on initial states of the form |φ〉 |0〉a1
, the action of e−β(H̃)2/2 is the

same as that of e−βH/2 on these states.

In general, we cannot implement the unitaries e−iyj
√
βH̃ exactly but we can do so up to

an approximation error. We obtain:

Corollary 4 Let log(1/ε′) ≥ 4, ‖H‖β ≥ 4, and Wj be a unitary that satisfies

‖Wj − e−iyj
√
βH̃‖ ≤ ε′/4 (36)

for all j = −J,−J + 1, . . . , J . Let

X =

√
1

2π

J∑
j=−J

δy e−y
2
j/2Wj . (37)

Then,

‖(e−βH/2 |φ〉)⊗ |0〉a1
−X |φ〉 |0〉a1

‖ ≤ ε′ . (38)

Proof: The coefficients in the decomposition of X ′ in Lemma 3 satisfy∣∣∣∣∣∣
√

1

2π

J∑
j=−J

δy e−y
2
j/2 − 1

∣∣∣∣∣∣ ≤ ε′/2 ≤ 1/4 , (39)

and thus ∣∣∣∣∣∣
√

1

2π

J∑
j=−J

δy e−y
2
j/2

∣∣∣∣∣∣ ≤ 5/4 . (40)
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This follows from Eq. (26) for the case of H = H̃ = 0. The triangle inequality and Eq. (36)

imply

‖X −X ′‖ ≤ (5/16)ε′ , (41)

and together with Eq. (26) we obtain the desired result.

In Sec. 2 we described a technique to implement X =
∑L−1
l=0 γlVl. In this case, l = j + J

and L = 2J+1. The coefficients and unitaries are e−y
2
j/2 and Wj , respectively. The quantum

algorithm for preparing Gibbs states will aim at preparing a normalized version of X |φ0〉, for

a suitable initial state |φ0〉, using the technique of Sec. 2.

3.1 Algorithm

We set ε′ = O(ε
√
Z/N). Our quantum circuit V̄ is defined in two basic steps. The first step

regards the preparation of a maximally entangled state

|φ0〉 =
1√
N

N−1∑
j=0

|ψj〉 ⊗
∣∣ψ∗j 〉a4

⊗ |0〉a1,a2,a3
(42)

where we used an additional ancillary system a4 of n qubits. a1, a2, a3, and a4 build the

ancillary register a of Eq. (18). Note that |φ0〉 coincides with the maximally entangled state

|φ0〉 =
1√
N

N−1∑
σ=0

|σ〉 |σ〉a4
⊗ |0〉a1,a2,a3

, (43)

where |σ〉 is a n-qubit state in the computational basis, i.e., |σ〉 = |0 . . . 0〉 , |0 . . . 1〉 , . . ..
The second step regards the preparation of a normalized version of X |φ0〉. This step uses

the algorithm for implementing linear combinations of unitary operations described in Sec. 2

and also uses amplitude amplification. The operator X is defined in Eq. (37) and requires a

Hamiltonian simulation method for implementing Wj .

3.2 Validity and complexity

As described, our quantum algorithm prepares the normalized state

X |φ0〉
‖X |φ0〉 ‖

, (44)

with constant probability. We also note that

‖e−βH/2 |φ0〉 ‖ =
√
Z/N (45)

and Eq. (38) implies ∣∣∣‖X |φ0〉 ‖ −
√
Z/N

∣∣∣ = O(ε
√
Z/N) (46)

for our choice of ε′. Then, the prepared state satisfies∥∥∥∥ X |φ0〉
‖X |φ0〉 ‖

− e−βH/2 |φ0〉
‖e−βH/2 |φ0〉 ‖

∥∥∥∥ ≤ ε/2 . (47)
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We note that

e−βH/2 |φ0〉 =

=
1√
N

N−1∑
j=0

e−βEj/2 |ψj〉 ⊗
∣∣ψ∗j 〉a4

⊗ |0〉a1,a2,a3
. (48)

If we disregard the ancillary system a, this is the Gibbs state: The probability of obtaining

|ψj〉, after measurement, is proportional to e−βEj . Then, the property of the trace norm

being non-increasing under quantum operations and Eq. (47) imply

1

2
‖ρ̂− ρ‖ ≤ ε , (49)

where

ρ̂ = Tra

[
X |φ0〉〈φ0|X†

‖X |φ0〉 ‖2

]
; (50)

see Eq. (18). That is, ρ̂ is the state prepared by our algorithm after tracing out the ancillary

register a.

The number of amplitude amplification steps is O(1/‖X |φ0〉 ‖) and Eq. (45) implies that

this number is also O(
√
N/Z). The gate complexity of each step is the gate complexity of

preparing |φ0〉 in addition to the gate complexity of implementing X. The former is O(n) as

|φ0〉 takes the simple form of Eq. (43) and can be prepared with O(n) controlled operations.

X is implemented in three stages as described in Sec. 2. The first stage requires the unitary

B used in Eq. (14). In this case, the coefficients γl are proportional to e−y
2
j/2. Then, the gate

complexity of B is O(log(J)) in this case if we use one of the methods developed in [30, 31].

The second stage regards the implementation of R. In this example, R is the unitary that

implements Wj conditional on the state |j〉a3
:

R =

J∑
j=−J

Wj ⊗ |j〉 〈j|a3
. (51)

Since Wj corresponds to a Hamiltonian simulation algorithm that approximates evolutions

with H̃, the gate complexity of R is dominated by the largest gate complexity of Wj , as

explained in Lemma 8 of [23]. In particular, Wj approximates e−iH̃t within precision ε′ and

for maximum t = O(
√
β log(1/ε′)). Then the gate complexity of R is order CW (t, ε′).

The overall gate complexity is then

O

(√
N

Z
(CW (t, ε′) + n+ log(J))

)
, (52)

with t = O(
√
β log(1/ε′)) and ε′ = O(ε

√
Z/N). This proves Thm. 2.

4 Estimation of Hitting times

We consider a stochastic process that models a Markov chain. The number of different con-

figurations is N and P is the N × N stochastic matrix. We label each configuration as
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σ = 0, 1, . . . , N − 1 and the entries of P are transition or conditional probabilities Pr(σ′|σ).

We will assume that P is reversible and irreducible, satisfies the so-called detailed balance con-

dition [5], and has nonnegative eigenvalues. The unique fixed point of P is the N -dimensional

probability vector π. It is useful to use the bra-ket notation, where |ν〉 represents a vector

ν ∈ CN and 〈v| = (|v〉)†. Then, P |π〉 = |π〉,

|π〉 =
∑
σ

πσ |σ〉
.
=

 π0

...
πN−1

 , (53)

and πσ is the probability of finding configuration σ when sampling from the fixed point of P .

The hitting time of a stochastic process is roughly defined as the first time at which the

process is encountered in a particular subset of configurations. To define the hitting time in

detail, we assume that there is a subset M of NM configurations that are “marked” and the

remaining NU configurations constitute the “unmarked” subset U . Here, NM + NU = N .

With no loss of generality, the stochastic matrix P takes the form

P =

(
PUU PMU
PUM PMM

)
, (54)

where PUU and PMM are matrices (blocks) of dimension NU×NU and NM×NM, respectively,

and PUM and PMU are rectangular blocks. The entries of the block PSS′ determine the

transition probabilities of finding a configuration in the subset S ′ given that the configuration

was initially in the subset S. Our assumptions imply U ,M 6= {∅} and PUM, PMU 6= 0. The

hitting time is the expected time to find a marked configuration if the initial probability vector

is |π〉. That is, as in [17], we define the hitting time of P via the following classical algorithm:

1. Set t = 0

2. Sample σ from |π〉

3. If σ ∈M, stop

4. Otherwise, assign t← t+ 1, apply P , and go to 3.

The hitting time th is the expected value of the random variable t.

We let |πU 〉 and |πM〉 represent the probability vectors obtained by conditioning |π〉 on U
and M, respectively. These are

|πU 〉 =

∑
σ∈U π(σ) |σ〉

πU
, |πM〉 =

∑
σ∈M π(σ) |σ〉

πM
, (55)

with πU =
∑
σ∈U π(σ) and πM =

∑
σ∈M π(σ). It is useful to define the modified Markov

chain

P ′ =

(
PUU 0
PUM 1lNM

)
, (56)

which refers to an “absorbing wall” for the subset M. Here, 1lNM is the NM ×NM identity

matrix. As defined, P ′ does not allow for transitions from the subsetM to the subset U . We

will observe below that P ′, and thus PUU , play an important role in the determination of th.
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Our definition of hitting time implies

th =

∞∑
t=0

t Pr(t) , (57)

where Pr(t) is the probability of finding a marked configuration after t steps using the previous

classical algorithm. In particular, Pr(t = 0) = πM. We rewrite

th =

∞∑
t′=0

Pr(t > t′) (58)

so that we take into account the factor t in Eq. (57), i.e., Pr(t > t′) = Pr(t′+1)+Pr(t′+2)+. . ..

Note that

Pr(t > t′) = πU 〈1U | (P ′)t
′
|πU 〉

= πU 〈1U | (PUU )t
′
|πU 〉 , (59)

where |1U 〉 =
∑
σ∈U |σ〉. This is because, conditional on t > 0, which occurs with probability

πU , the initial probability vector is |πU 〉. The second equality easily follows from Eq. (56).

Then, the probability of having t > t′ is measured by the probability of remaining in U after

PUU was applied t′ times. Equations (58) and (59) imply

th = πU 〈1U | (1lNU − PUU )−1 |πU 〉 , (60)

where we used (1− x)−1 =
∑∞
t′=0 x

t′ . We note that 1l− PUU is invertible under our assump-

tions, since the eigenvalues of PUU are strictly smaller than 1 (see below).

The complexity of a method that estimates th using the previous classical algorithm also

depends on the variance of the random variable t. This is

σ2 =

∞∑
t=0

t2Pr(t)− (th)2 , (61)

and after simple calculations, we can rewrite it as

σ2 = 2πU 〈1U |
∞∑
t′=0

t′(PUU )t
′
|πU 〉+ th − (th)2 . (62)

For constant confidence level and precision ε in the estimation of th, Chebyshev’s inequality

implies that the previous classical algorithm must be executed M = O((σ/ε)2) times to obtain

t1, . . . , tM and estimate th as the average of the ti. The expected number of applications of

P is then Mth = O(th(σ/ε)2).

To bound the classical complexity, we consider the worst case scenario in which |πU 〉 is an

eigenvector of PUU corresponding to its largest eigenvalue 1−∆ < 1. In that case, th = πU/∆

and σ2 = O(πU/∆
2). When ∆ � 1, the expected number of applications of P is then

O(1/(∆3ε2)) in this case. This determines the average complexity of the classical algorithm

that estimates th for the general case.
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The entries of the symmetric discriminant matrix S of P are

Sσσ′ =
√

(P ◦ P †)σσ′ , (63)

where ◦ is the Hadamard product. The detailed balance condition implies

π(σ′)Pr(σ|σ′) = Pr(σ′|σ)π(σ) (64)

and thus √
Pr(σ|σ′)Pr(σ′|σ) = Pr(σ|σ′)

√
π(σ′)

π(σ)
. (65)

Then,

S = D−1PD , (66)

where D is a diagonal matrix of dimension N with entries given by
√
π(σ). The symmetric

matrix or Hamiltonian H̄ = 1lN − S is known to be “frustration free” [32] and can be repre-

sented as in Eq. (5) using a number of techniques. For example, if P has at most d nonzero

entries per row or column (i.e., P is d-sparse), the number of terms K in the representation

of H̄ can be made linear or quadratic in d; see Appendix A or [33] for more details.

We now let ΠU be the projector into the subset U and define

H = ΠUH̄ΠU . (67)

Note that

H = 1lNU −D−1
U PUUDU , (68)

where DU is the diagonal matrix obtained by projecting D of Eq. (66) into the subspace U .

That is, DU = ΠUDΠU and Eq. (68) implies H > 0. Then, Eqs. (66) and (60) imply

th = πU 〈
√
πU | (1/H)|

√
πU 〉 , (69)

where we defined |√πU 〉 =
∑
σ∈U

√
π(σ) |σ〉 /√πU so that |√πU 〉 is normalized according to

the Euclidean norm. A similar expression for th was obtained in [17].

In Appendix A we describe how H can be specified as H =
∑K
k=1 αkΠk, where αk > 0

and Πk are projectors. Then H is of the form of Eq. (5) and we write H̃ for the associated

Hamiltonian according to Eq. (3). CW (t, ε) is the complexity of approximating W̃ (t) =

exp(−iH̃t), and we roughly describe a method for simulating W̃ (t) below.

A quantum algorithm to obtain th can be constructed from the relation in Eq. (69). That

is, th coincides with πU times the expected value of the operator 1/H in the pure state
∣∣√πU〉.

For our quantum algorithm, we also assume that there is a unitary procedure (oracle) QU
that allows us to implement the transformation

QU |σ〉 = − |σ〉 if σ ∈ U (70)

and QU |σ〉 = |σ〉 otherwise. We also assume access to a unitary Q√π such that

Q√π |0〉 =
∣∣√π〉 . (71)

We write CU and C√π for the respective gate complexities. The main result of this section is:
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Theorem 5 There exists a quantum algorithm to estimate th within precision ε and constant

confidence level that implements a unitary V̄ of gate complexity

O

(
1

ε′
(
CW (t, ε′) + CU + C√π + CB

))
, (72)

where CB = O(log(1/(∆ε))), ε′ = O(ε∆/ log(1/(ε∆))) , and t = O
(

log(1/(ε∆))/
√

∆
)

.

In Appendix A we describe a method to simulate the evolution with H̃. To this end, we also

assume that there exists a procedure QP that computes the locations and magnitude of the

nonzero entries of the matrix P . More specifically, QP performs the map

QP |σ〉 → |σ〉 |σ′1, . . . , σ′d〉⊗ (73)

⊗ |Pr(σ|σ′1),Pr(σ′1|σ), . . . ,Pr(σ|σ′d),Pr(σ′d|σ)〉 ,

where d is the sparsity of P . The configurations σ′i are such that Pr(σ|σ′i),Pr(σ′i|σ) 6= 0. We

write CP for the complexity of implementing QP . In Appendix A we describe a decomposition

of H̃ =
∑K̃
k=1 Ũk/2 in terms of K̃ = O(d2) unitaries, so that we can use the results of [25] to

simulate W̃ (t) = exp(−iH̃t). Each Ũk can be implemented with O(1) uses of QU and QP ,

and O(d log(N)) additional gates. Using the results of [25] and Sec. 2, the complexity for

simulating W̃ (t) within precision ε′, obtained in Eq. (A.25), is

CW (t, ε′) = O

(
(d log(N) + CP + CU )

τ log(τ/ε′)

log log(τ/ε′)

)
, (74)

where τ = |t|d2. Note that CW (t, ε′) is almost linear in |t| and polynomial in d, and the

dependence on d may be improved by using the results in [34]. Then, assuming access to QP ,

we obtain:

Corollary 6 There exists a quantum algorithm to estimate th within precision ε and constant

confidence level that implements a unitary V̄ of gate complexity

Õ

(
1

ε∆

(
d2

√
∆

(d log(N) + CP + CU ) + C√π

))
. (75)

The Õ notation hides factors that are polylogarithmic in d/(ε∆).

The dominant scaling of the complexity in terms of ∆ and ε is then Õ(1/(ε∆3/2)), which

is a quadratic improvement over the classical complexity obtained above.

Our quantum algorithm uses the three techniques described in Sec. 2 and uses some other

results in [23]. In fact, since H > 0, we can improve on some of the results in [23] by providing

a more efficient decomposition of the inverse of H as a linear combination of unitaries. That

is, for a positive matrix H, we can use the identity

1

H
=

1

2

∫ ∞
0

dβ e−βH/2 , (76)

and use the Hubbard-Stratonovich transformation of Eq. (24) to simulate e−βH/2. Such an

identity does not apply if H is nonpositive. Roughly, 1/H can be simulated by a linear
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combination of unitaries, each corresponding to an evolution with H̃ for time y
√
β. Since

β ∈ [0,∞) and y ∈ (−∞,∞), we will need to find an approximation by a finite, discrete sum

of operators e−iyj
√
zkH̃ . We obtain:

Lemma 7 Let

X ′ =
1√
2π

K∑
k=0

δz

J∑
j=−J

δy e−y
2
j/2e−iyj

√
zkH̃ , (77)

where yj = jδy, zk = kδz, and ‖H‖ ≥ ∆ > 0. Then, there exists J = Θ(
√

1/∆ log3/2(1/(∆ε))),

K = Θ((1/∆) log(1/(∆ε))/ε), δy = Θ(
√

∆/ log(1/(∆ε))), and δz = Θ(ε) such that∥∥∥∥( 1

H
|φ〉
)
⊗ |0〉a1

−X ′ |φ〉 |0〉a1

∥∥∥∥ ≤ ε/2 (78)

for all states |φ〉.
Proof: We first consider the approximation of 1/x by a finite sum of e−zkx:∣∣∣∣∣ 1x − δz

K−1∑
k=0

e−zkx

∣∣∣∣∣ =

∣∣∣∣ 1x − δz 1− e−zKx

1− e−δzx

∣∣∣∣ (79)

=

∣∣∣∣ 1xO(δzx+ e−zKx)

∣∣∣∣ (80)

Assuming that 1 ≥ x ≥ 1/κ so that 1/x ≤ κ, we can upper bound the above quantity by ε/4

if we choose e−zK/κ = Θ(ε/κ) and δz = Θ(ε). These imply

zK = Θ(κ log(κ/ε)) (81)

and

K = zK/δz = Θ(κ log(κ/ε)/ε) . (82)

In the next step, we invoke the proof of Lemma 3 and approximate each e−zkx as

gk(x) =
1√
2π

J∑
j=−J

δy e−y
2
j/2e−iyj

√
zkx , (83)

and we need to choose J and δy so that the approximation error is bounded by ε/(4zK).

Then, ∣∣∣∣∣δz
K−1∑
k=0

(e−zkx − gk(x))

∣∣∣∣∣ ≤ (δzK)
ε

4zK

≤ ε/4 . (84)

Lemma 3 then implies

δy = Θ

(
1√

zK log(zK/ε)

)

= Θ

(
1√

κ log(κ/ε) log(κ log(κ/ε)/ε)

)

= Θ

(
1√

κ log(κ/ε)

)
, (85)
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and

J = Θ (
√
zK log(zK/ε))

= Θ
(√

κ log3/2(κ/ε)
)
. (86)

Thus far, we presented an approximation of 1/x, for 1 ≥ x ≥ 1/κ, as a doubly weighted

sum of terms exp(−iyj
√
zkx). To obtain the desired result, it suffices to act with X ′ on any

eigenstate of H̃ and replace
√
x by the corresponding eigenvalue, as we did in Lemma 3. Since

H ≥ ∆, we need to replace κ by 1/∆ in the bounds obtained for δz, δy, K, J , zK , and yJ .

In general, we cannot implement the unitaries e−iyj
√

2zkH̃ exactly but we can do so up to

an approximation error. We obtain:

Corollary 8 Let ε > 0 and Wjk be a unitary that satisfies

‖Wjk − e−iyj
√

2zkH̃‖ ≤ ε

4zK
. (87)

Let

X =
1√
2π

K∑
k=0

δz

J∑
j=−J

δy e−y
2
j/2Wjk . (88)

Then, ∥∥∥∥( 1

H
|φ〉
)
⊗ |0〉a1

−X |φ〉 |0〉a1

∥∥∥∥ ≤ ε . (89)

Proof: If we replace each e−iyj
√
zkx by a term that is an ε/(2zK) approximation in the

definition of gk(x), it yields an approximation of 1/x within precision ε/2 plus

δzK√
2π

J∑
j=−J

δye−y
2
j/2(ε/(4zK)) =

ε

4
√

2π

J∑
j=−J

δye−y
2
j/2 . (90)

Our choice of parameters in Lemma 7 implies∣∣∣∣∣∣1− 1√
2π

J∑
j=−J

δye−y
2
j/2

∣∣∣∣∣∣ ≤ ε/4 (91)

so that the additional error is bounded by ε/2. The proof follows by replacing
√
x by the

corresponding eigenvalue of H̃ and gk(x) by the linear combination of the Wjk with weights

δye−y
2
j/2.

So far we showed that 1/H can be approximated within precision ε by a linear com-

bination of unitaries that correspond to evolutions under H̃ for maximum time yJ
√
zK =

Θ((1/
√

∆) log(1/(∆ε))). Each time evolution must be implemented by a method for Hamil-

tonian simulation that approximates it within precision ε′ = O(ε/zK) = O(ε∆/(log(1/(ε∆)))).

Note that 1/∆ is an upper bound on the condition number of H, κ, since the lowest eigen-

value of H is ∆ and ‖H‖ ≤ 1. It follows that the maximum evolution time with H̃ in our

decomposition is almost linear in
√
κ. However, the results in [23] would have provided a way
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to apply 1/H by implementing a linear combination of evolutions with H for maximum time

that is almost linear in κ. This quadratic improvement is only possible for positive operators

H and when evolutions with H̃ are available.

In Sec. 2 we described a technique to implement X =
∑L−1
l=0 γlVl. In this case, the

coefficients and unitaries are δzδye−y
2
j/2/
√

2π and Wjk, respectively. From Lemma 7 and

Eq. (91), it is simple to show

|zK − γ| ≤
K∑
k=0

δz

∣∣∣∣∣∣1− 1√
2π

J∑
j=−J

δye−y
2
j/2

∣∣∣∣∣∣
≤ zKε/4 (92)

and thus γ ≈ zK or γ = Θ((1/∆) log(1/(∆ε))).

Last, we define the unitary T = (T2)†T1 such that

T1 |0〉 |0〉a =
√
πU

X ′

γ
|
√
πU 〉 |0〉a + |Θ⊥〉 , (93)

and |Θ⊥〉 is supported in the subspace orthogonal to |0〉a. The ancillary register a includes

the ancillary registers a1, a2, a3 as needed for evolving with H̃ and implementing X ′. That

is, |0〉a = |0〉a1,a2,a3
. T1 can be implemented as follows. It first uses Q√π to prepare the

quantum state |
√
π〉. It then uses QU to prepare

√
πU
∣∣√πU〉 |0〉a′ +

√
πM

∣∣√πM〉 |1〉a′ , where

the ancilla qubit a′ is part of the register a. Then, conditional on |0〉a′ , it implements X ′/γ

as discussed in Sec. 2. T2 is the unitary that prepares
√
πU
∣∣√πU〉 |0〉a +

√
πM

∣∣√πM〉 |0⊥〉a,

where |0⊥〉a is orthogonal to |0〉a. Then, if T = (T2)†T1, we obtain

〈0| 〈0|a T |0〉 |0〉a =
πU
γ
〈
√
πU |X ′ |

√
πU 〉 . (94)

The algorithm described below uses the quantum metrology methods of [18] to estimate

expectation values within precision ε′ and achieve optimal complexity, which is almost linear

in 1/ε′. In contrast, other methods for estimating expectation values, such as those based on

a measurement of a single ancilla qubit, can result in suboptimal complexities that depend

on 1/(ε′)2.

4.1 Algorithm

We set ε′ = O(ε∆/ log(1/(ε∆))). The quantum algorithm first uses the amplitude estimation

algorithm of [18]. It returns t̃h, an estimate of 〈0| 〈0|a3
T |0〉 |0〉a3

within precision ε′ and

constant confidence level (c ≈ 0.81). The output of the algorithm is t̂h = zK t̃h, where the

factor zK is known from Lemma 7.

4.2 Validity and complexity

As described, our quantum algorithm provides a O(ε′zK) estimate of zK 〈0| 〈0|a3
T |0〉 |0〉a3

.

Using Eqs. (69) and (94), the output is an estimate of (zK/γ)th within precision O((zK/γ)ε+

zKε
′). Our choice of ε′ implies that this is O((zK/γ)ε). Also, using Eq. (92), we obtain∣∣∣∣1− zK

γ

∣∣∣∣ = O(ε). (95)
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Then, our quantum algorithm outputs t̂h, an estimate of th within absolute precision O(ε).

Our quantum algorithm uses T , O(1/ε′) times. Each T uses QU and Q√π two times, in

addition to the unitaries needed to implement X ′. Each such unitary requires evolving with

H̃ for maximum time t = O((1/
√

∆) log(1/(∆ε))). In addition, each such unitary requires

preparing a quantum state proportional to

1
√
γ

∑
j,k

(
δyδze−y

2
j/2

√
2π

)1/2

|j, k〉 . (96)

The gate complexity for preparing this state using the results in [30, 31] is CB = O(log(J) +

log(K)) and then CB = O(log(1/(∆ε))). The overall gate complexity is

O

(
1

ε′
(
CW (t, ε′) + CU + C√π + CB

))
. (97)

This proves Thm. 5. Using Eq. (A.25) and replacing for ε′ and t, and disregarding terms that

are polylogarithmic in d/(ε∆), the gate complexity is

Õ

(
1

ε∆

(
d2

√
∆

(d log(N) + CP + CU ) + C√π

))
. (98)

5 Conclusions

We provided quantum algorithms for solving two problems of stochastic processes, namely the

preparation of a thermal Gibbs state of a quantum system and the estimation of the hitting

time of a Markov chain. Our algorithms combine many techniques, including Hamiltonian

simulation, spectral gap amplification, and methods for the quantum linear systems algorithm.

They provide significant speedups with respect to known classical and quantum algorithms

for these problems and are expected to be relevant to research areas in statistical physics and

computer science, including optimization and the design of search algorithms.

We first showed that, starting from a completely entangled state, we can prepare a state

that is ε-close (in trace distance) to a thermal Gibbs state using resources that scale polylog-

arithmic in 1/ε. This is an exponential improvement over previously known algorithms that

rely on phase estimation and have complexity that depends polynomially in 1/ε [8, 9]. Our

algorithm circumvents the limitations of phase estimation by approximating the exponential

operator as a finite linear combination of unitary operations and using techniques developed

in [25] to implement it. We also used techniques developed in the context of spectral gap

amplification [24] to improve the complexity dependence on the inverse temperature, from

almost linear in β to almost linear in
√
β.

Next, we presented a quantum algorithm to estimate the hitting time of a Markov chain,

initialized in its stationary distribution, with almost quadratically less resources in all param-

eters than a classical algorithm (in a worst-case scenario). This is done by first expressing the

hitting time as the expectation value of the inverse of an operator H, which is obtained by a

simple transformation of the Markov chain stochastic matrix. We then used results from [23]

to apply 1/H; in this particular case, H is positive and we showed that the implementation of

1/H can be done more efficiently than the algorithm in [23], in terms of the condition number

of H. Such an expected value can be computed using methods for amplitude estimation. For



60 Quantum algorithms for Gibbs sampling and hitting-time estimation

constant confidence level (c ≈ 0.81), the use of amplitude estimation limits us to a complexity

dependence that is Õ(1/ε), where ε is the absolute precision of our estimate. It is possible to

increase the confidence level towards c with an increase in complexity that is O(log(1/|1−c|)).
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Appendix A: Simulation of H̃

We provide a method to simulate H̃ in time polylogarithmic in 1/ε, as required by the

algorithm for estimating hitting times of Sec. 4. We assume that there exists a procedure

QP that computes the locations and magnitude of the nonzero entries of the matrix P . More

precisely, QP performs the map

QP |σ〉 = |σ〉 |σ′1, . . . , σ′d〉⊗ (A.1)

⊗ |Pr(σ|σ′1),Pr(σ′1|σ), . . . ,Pr(σ|σ′d),Pr(σ′d|σ)〉 ,

where d is the sparsity of P , i.e., the largest number of nonzero matrix elements per row or

column. The transition probabilities are assumed to be exactly represented by a constant

number of bits and we disregard any rounding-off errors. We also assume access to the oracle

QU such that

QU |σ〉 |b〉 = |σ〉 |b⊕ b′σ〉 , (A.2)

where b, b′σ ∈ {0, 1} and b′σ = 1 if σ ∈ U or b′σ = 0 otherwise. Such QU also allows us to

implement the “phase” oracle using standard techniques, i.e.,

QU |σ〉 = − |σ〉 if σ ∈ U , (A.3)

and QU |σ〉 = |σ〉 otherwise.

The Hamiltonians H̄ and H can be constructed as follows. For each pair (σ, σ′), such that

σ 6= σ′ and Pr(σ|σ′) 6= 0, we define an unnormalized state

|µσ,σ′〉 =
1√
2

(
√

Pr(σ|σ′) |σ′〉 −
√

Pr(σ′|σ) |σ〉) . (A.4)
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Then, if σf 6= σ0,

〈σf |
∑
σ,σ′

|µσ,σ′〉 〈µσ,σ′ |σ0〉 = −
√

Pr(σf |σ0)Pr(σ0|σf ) , (A.5)

and if σf = σ0,

〈σ0|
∑
σ,σ′

|µσ,σ′〉 〈µσ,σ′ |σ0〉 =
∑
σ′ 6=σ

Pr(σ′|σ)

= 1− Pr(σ|σ) . (A.6)

These are the same matrix entries of H̄ and the implication is that

H̄ =
∑
σ,σ′

|µσ,σ′〉 〈µσ,σ′ | . (A.7)

This is the desired representation of the H̄ as a sum of positive operators. In particular, we

can normalize the states and define

|µ̄σ,σ′〉 =
|µσ,σ′〉
‖ |µσ,σ′〉 ‖

, (A.8)

√
ᾱσ,σ′ = ‖ |µσ,σ′〉 ‖ =

√
Pr(σ|σ′) + Pr(σ′|σ)

2
. (A.9)

Then,

H̄ =
∑
σ,σ′

ᾱσ,σ′ |µ̄σ,σ′〉 〈µ̄σ,σ′ | . (A.10)

We let ΠU be the projector into the subspace U . The Hamiltonian is H = ΠUH̄ΠU , and using

Eq. (A.7), we obtain

H =
∑

σ,σ′∈U
ᾱσ,σ′ |µ̄σ,σ′〉〈µ̄σ,σ′ |+

+
∑
σ′∈U

(∑
σ∈M

Pr(σ|σ′)

)
|σ′〉〈σ′| , (A.11)

which is the desired decomposition as a linear combination of rank-1 projectors.

To build H̃, we need to take square roots of the projectors. In principle, the dimension

NU is large and we want to avoid a presentation of H̃ as a sum of polynomially many terms

in NU . We are also interested in a decomposition of H̃ in terms of simple unitary operations

so that we can use the results of [25] to devise a method to simulate exp(−iH̃t). We begin

with the second term in the right hand side of Eq. (A.11). Its square root is

∑
σ′∈U

√∑
σ∈M

Pr(σ|σ′)

 |σ′〉〈σ′| . (A.12)
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This term can be simply obtained as a sum of two diagonal unitary operations:

1

2
(UD + U†D) . (A.13)

UD applies a phase to the state |σ′〉 as

UD |σ′〉 = eiθσ′ |σ′〉 (A.14)

with

cos(θσ′) =

√∑
σ∈M

Pr(σ|σ′) , (A.15)

if σ′ ∈ U . Otherwise, UD |σ′〉 = i |σ′〉. UD can then be implemented by first using QU to

detect if σ′ is in U or not. It next applies QP and computes θσ′ in an additional register.

Conditional on the value of θσ′ , it applies the corresponding phase to |σ′〉. It then applies the

inverse of QP to undo the computation. That is, UD requires O(1) uses of QU and QP , and

the additional gate complexity is O(d) due to the computation of θσ′ .

The first term in the right hand side of Eq. (A.11) can be written as a sum of K ′ = O(d2)

terms as follows. Using QP we can implement a coloring of the graph G with vertex set

V (G) = {σ : σ ∈ U} and edge set E(G) = {(σ, σ′) : σ, σ′ ∈ U,Pr(σ|σ′) 6= 0}. We can use the

same coloring as that described in [22], which uses a bipartite graph coloring and was used

for Hamiltonian simulation. Each of the K ′ terms corresponds to one color and is then a sum

of commuting rank-1 projectors. That is, the first term in the right hand side of Eq. (A.11)

is
∑K′

k=1 hk and

hk =
∑

σ,σ′∈ck

ᾱσ,σ′ |µ̄σ,σ′〉 〈µ̄σ,σ′ | , (A.16)

where ck are those elements of E(G) associated with the k-th color. By the definition of

coloring, each rank-1 projector in Eq. (A.16) is orthogonal and commutes with each other,

and then √
hk =

∑
σ,σ′∈ck

√
ᾱσ,σ′ |µ̄σ,σ′〉 〈µ̄σ,σ′ | . (A.17)

We can write √
hk =

−iZk + iZ†k
2

, (A.18)

where Zk is the unitary

Zk = exp

i ∑
σ,σ′∈ck

δσ,σ′ |µ̄σ,σ′〉 〈µ̄σ,σ′ |

 . (A.19)

The coefficients are chosen so that

sin(δσ,σ′) =
√
ᾱσ,σ′ , (A.20)
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and 0 ≤ ᾱσ,σ′ ≤ 1.

We can simulate each Zk as follows. Note that

Zk |σ〉 = ξσ,σ′ |σ〉+ ξ′σ,σ′ |σ′〉 (A.21)

where σ′ is such that (σ, σ′) ∈ ck. The complex coefficients ξσ,σ′ and ξ′σ,σ′ can be simply

obtained from the δσ,σ′ , and depend only on Pr(σ|σ′) and Pr(σ′|σ). Then, on input |σ〉, we

first use QU to decide whether |σ〉 ∈ U or not. We then apply QP once and look for σ′ such

that (σ, σ′) ∈ ck. We use an additional register to write a classical description of a quantum

circuit that implements the transformation in Eq. (A.21). We apply the inverse of QP and QU
and only keep the last register. This is sufficient information to apply the map in Eq. (A.21).

We can then erase all the additional registers by applying the inverse of the operation that

computed the quantum circuit. This works because the quantum circuit is invariant under

the permutation of σ and σ′. To implement Zk we need to use QU and QP , O(1) times. The

additional gate complexity is O(d log(N)) for searching for σ′ and describing the quantum

circuit.

In summary, we found a decomposition of H̃ as

H̃ =
1

2

K̃∑
k=1

Ũk (A.22)

where Ũk are unitaries. The number of terms is K̃ = O(d2). Using Eq. (9) and the results

above, each Ũk can be implemented with O(1) uses of QU and QP , and at most O(d log(N))

additional gates.

Using the results of [25] (see Sec. 2), the complexity for simulating exp(−iH̃t) within

precision ε for this case is as follows. The number of uses of QU and QP is

O (τ log(τ/ε)/ log log(τ/ε)) , (A.23)

where τ = |t|d2. The additional gate complexity is

O (d log(N)τ log(τ/ε)/ log log(τ/ε)) . (A.24)

If we write CU and CP for the gate complexities of QU and QP , respectively, the overall gate

complexity to simulate the evolution under H̃ is

CW (t, ε) = O

(
(d log(N) + CU + CP )τ

log(τ/ε)

log log(τ/ε)

)
. (A.25)


