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We provide numerical evidence that the quantum Fourier transform can be efficiently
represented in a matrix product operator with a size growing relatively slowly with the

number of qubits. Additionally, we numerically show that the tensors in the operator

converge to a common tensor as the number of qubits in the transform increases. To-
gether these results imply that the application of the quantum Fourier transform to a

matrix product state with n qubits of maximum Schmidt rank χ can be simulated in

O(n (log(n))2 χ2) time. We perform such simulations and quantify the error involved in
representing the transform as a matrix product operator and simulating the quantum

Fourier transform of periodic states.
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1 Introduction

A central problem of quantum computing is determining the origin and nature of the speedup

provided over classical computing. One approach to this problem is to study which classes

of quantum computations can be simulated efficiently by classical means. Such computations

must be missing a central feature of quantum computing, separating it from the classical

counterpart. There have been many results in this area. These include the Gottesman-

Knill theorem [1, 2], which states that circuits composed only of Clifford group gates can

be efficiently simulated classically. Other results include the efficient classical simulation of

match-gate circuits [3, 4], circuits which generate limited entanglement [5, 6], circuits whose

graph representation has restricted topological properties [7, 8, 9] and circuits with sparse

output distributions [10].

The quantum Fourier transform (QFT) is an important part of several quantum algo-

rithms, including quantum simulation [11] and Shor’s algorithm [12]. Each of these provides
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2 Scaling and efficient classical simulation of the quantum Fourier transform

an exponential speedup over the fastest known classical alternatives. In our discussion of the

QFT we will focus on its role in Shor’s algorithm. The QFT is the most intuitively quantum

mechanical part of Shor’s algorithm. That is, it contains Hadamard and controlled phase-

rotation gates, neither of which have a classical analogue. The full QFT does not display

any of the features found in previous studies to allow efficient classical simulation. Despite

this, the approximate QFT (AQFT) is efficiently classically simulatable for input states with

limited entanglement. This was first shown in [13, 14] using a tensor contraction simulation

method. Together with results showing that the AQFT is sufficient for many computational

tasks including Shor’s algorithm [15, 16, 17, 18], this result is sufficient to show that the

QFT is efficiently classically simulatable to high fidelity for a limited class of input states.

It was shown in [19] using matrix product states that a terminating QFT can be efficiently

simulated for any input state with limited entanglement. Additionally, in [20] a classical al-

gorithm to obtain the results of the QFT on separable states is derived. That this algorithm

is simpler than the QFT suggests that the quantum speedup of the QFT lies in the quan-

tum parallelism of its input state rather than its innate complexity. A more general result

is presented in [21, 22], where it is shown that a circuit consisting of a polynomial number

of QFTs, automorphisms and quadratic phase gates can be efficiently classically simulated

over a restricted set of input states on an arbitrary abelian group. These results generalize

the Gottesman-Knill theorem and the restricted set of input states is much broader than in

earlier work.

In this paper, we use matrix product operators to simulate the quantum Fourier transform.

Our numerical results imply that for weakly entangled input states over n qubits and a

maximum Schmidt rank of χ, independent of n, the resources required for this simulation scale

as O(n (log(n))
2
χ2), a significant improvement on earlier results. The simulation tools we use

are also more straightforward than those found in [13, 14] and have a wider applicability than

other results concerning the classical simulatability of the QFT. In section 2 we will review

matrix product states and matrix product operators. Section 3 discusses their use to simulate

the QFT. In section 4 we will present numerical results showing the errors associated with

such simulation to be minimal. Finally we will discuss the implications of this work and how

it is related to the computational speedup of Shor’s algorithm in section 7.

2 Matrix product states and operators

A matrix product states (MPS) of n qubits is a quantum states with the form [23, 24]:

|ψ〉 =
∑

i1,i2,...,in

∑
α1,α2,...,αn

Γ
[1]α1

i1
λ[1]α1

Γ
[2]α1α2

i2
. . .

Γ
[n−1]αn−2αn−1

in−1
λ[n−1]αn−1

Γ
[n]αn−1

in
|i1〉 . . . |in〉, (1)

where |ij〉 is the state of the jth qubit in the system. The determination of a coefficient of

this state requires the contraction of a series of one and two-dimensional tensors {Γ[j]αj−1αj

ij
}

and one dimensional vectors λ
[j]
αj where the ij are set to specify the coefficient required in

the computational basis. The αi are ancillary indices and will henceforth be referred to

as bonds between different parts of the system. The connectivity of the tensors reflects a

one-dimensional ordering of the qubits in a state.
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In the canonical form of a MPS, the decomposition from a state vector to matrix product

form is accomplished by a series of singular value decompositions, in which the Γ tensors

are unitary and the λ vectors contain the singular values. Each bond joins two tensors and

corresponds to a bipartition of the state. The rank of a bond is the Schmidt rank of this

bipartition. A state with little entanglement will have low Schmidt ranks and so the tensors

used to encode the state in a MPS will be small. As such, it is possible to efficiently simulate

quantum states with low entanglement with a MPS [24, 5]. The MPS form is also useful

because it allows the truncation of the number of singular values in each bipartition. As the

singular values are ordered, it is straightforward to remove the smallest ones and then to

normalize the state.

It is possible to generalise the structure of matrix product states in several ways. A

simple generalisation is to keep the linear connectivity of the tensor network but to encode

an operator rather than a state.

O =
∑

i1,...,in

∑
j1,...,jn

∑
α1,...,αn−1

O
[1]α1

i1j1
γ[1]α1

O
[2]α1α2

i2j2
. . .

O
[n−1]αn−2αn−1

in−1jn−1
γ[n−1]αn−1

O
[n]αn−1

injn
|i1〉 . . . |in〉〈j1| . . . 〈jn|.

This is called a Matrix Product Operator (MPO) and was introduced in [25, 26]. Similarly to

MPSs, the canonical form of a MPO is created with a series of singular value decompositions.

The bond ranks of the MPO are then the Schmidt numbers of the operator. The maximal

bond dimension of a MPO thus gives the Hartley strength of the operator [27].

The Schmidt rank of a state is a measure of the amount of entanglement in the state.

However, the Schmidt number of an operator does not have as straight-forward an inter-

pretation. An operator with a high Schmidt number may have a high amount of classi-

cal correlating power but little entangling ability. This is illustrated in the case of two-

qubit unitary operations by the SWAP gate, which has the Schmidt-operator decomposition

1/2(I ⊗ I +X ⊗X + Y ⊗ Y +Z ⊗Z). The Schmidt number of four is the maximum possible

for a two-qubit operator, but the gate has no entangling power.

Applying a MPO to a MPS produces a new MPS in which each tensor is the product of

a tensor in the original MPS and a tensor in the MPO, each representing the same qubit:

|ψ′〉 =
∑

i1,i2,...,in

∑
β1,β2,...,βn

Γ
′[1]β1

i1
λ
′[1]
β1

Γ
′[2]β1β2

i2
. . .

Γ
′[n−1]βn−2βn−1

in−1
λ
′[n]
βn−1

Γ
′[n]βn−1

in
|i1〉 . . . |in〉, (2)

where we have relabelled the new ancillary indices to include those from both the state and

the operator: c Γ
′[l]βl−1βl

il
= Γ

′[l]αl−1αlµl−1µl

il
=
∑
jl

Γ
[l]αl−1αl

jl
O

[l]µl−1µl

jlil
,

λ
′[l]
βl

= λ
′[l]
αlµl = λ

[l]
αlγ

[l]
µl . This multiplication can be followed by a new singular value decom-

position at each bipartition to return the state to canonical form. Before the singular value

decomposition, the new state will have a bond rank of cjdj at site j where cj is the bond

rank of the MPS and dj is the bond rank of the MPO. This rank invites an interpretation of

the Schmidt number of an operator as an upper bound for the amount by which the Schmidt

rank of a state can increase upon application of the operator. If the MPO has bond rank d

for that partition, the Schmidt rank will be at most multiplied by d. However, in many cases

the Schmidt rank after application will be much lower than this.
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3 Simulation of the QFT with a MPO

The quantum Fourier transform can be written in operator form:

1√
N

N−1∑
j,k=0

e2πijk/N |j〉〈k|, (3)

where N = 2n.

This equation can be expanded to give output values at individual qubits:

|j1, . . . , jn〉 →
1

2n/2
(
|0〉+ e2πi0.jn |1〉

)
. . .
(
|0〉+ e2πi0.j1...jn |1〉

)
, (4)

where j = j12n−1 + j22n−2 + . . .+ jn20 and 0.jl . . . jm = jl/2 + . . .+ jm/2
m−l+1. This form of

the equation motivates the canonical decomposition of the QFT into quantum gates, which

is shown in figure 1.

• • • H

• • H R2

• H R2 R3

H R2 R3 R4

Fig. 1. The canonical decomposition of the quantum Fourier transform with four qubits.

The operator-Schmidt decomposition of the QFT has been calculated exactly [28] and

the maximal Schmidt number of a n qubit transform is 2n. Additionally, all of the singular

values are equal. Simulating the QFT using a MPO representation of (4) would thus entail

an exponential scaling in terms of execution resources as the number of qubits is increased.

From (4) we note that the output at the first qubit depends only upon the input value

at the last qubit, the input at the second depends upon the output at the last two qubits

and so on. As such, the operator displays similar classical correlations between the input and

output values to those in our earlier swap gate example. These correlations are expensive to

encode in a MPO. A simple re-ordering of the input or output qubit values (but not both)

from equation (4) produces a more easily encoded operator:

|j1, . . . , jn〉 →
1

2n/2
(
|0〉+ e2πi0.j1 |1〉

)
. . .
(
|0〉+ e2πi0.jn...j1 |1〉

)
. (5)

In (5) the output at the first qubit depends only upon the input at the first qubit, the output

at the second qubit upon the input at the first two qubits and so on. This ordering thus

requires less information to be communicated across bonds and can be encoded in a smaller

MPO.

To construct a MPO encoding (5) one can construct a MPO of (4) and then apply the

SWAP gates leading to the required ordering to only one side of the MPO. This has the
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disadvantage that the MPO for (4) must be calculated first, which is computationally in-

tractable for large numbers of qubits. A better approach is to apply a swap gate to the input

qubits whenever one is applied to the output qubits. This makes the ordering of the input

qubits the same at all times as that of the output qubits. This approach also produces the re-

quired ordering and invites an interpretation that the resulting MPO contains only interesting

correlations rather than expensive swap correlations.

We constructed MPOs encoding equation (5) with a simple nearest neighbour circuit [29].

The bond ranks of the MPO encoding (5) were much lower than those required to encode (4).

Figure 2 shows the size of each element in a bond in the center of a MPO representing (5) for

24 qubits. We display the probability distribution derived from the singular values pi = s2i /D

where si are singular values and D is the dimension of the Hilbert space (224 in this case).
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0.001
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128Bit Precision

Fig. 2. The probability distribution derived from the singular values of a bipartition at the center

of MPOs representing the QFT with 24 qubits at two different precisions.

The sizes of the bond elements displays a characteristic drop-off from lower to higher rank.

This characteristic was present regardless of the size of the MPO (MPOs with up to 50 qubits

were tested). Initially the rate of decrease is slow, but it quickly becomes exponential with the

bond rank included. The exponential decrease of bond element size halted at a probability of

around 10−40 at quadruple precision (128 bits), which corresponds to a singular value of size

relative to the largest value of 10−20. There were many additional bond elements of this size or

slightly smaller displaying a large amount of random variation in each MPO. While their size

is much larger than machine precision (these results were produced for quadruple precision

numbers with ε ≈ 10−35), the condition number of a singular value decomposition in this

problem is very large and so instability at small element sizes is likely to result. Additionally,

computing the operator with a lower numerical precision (double precision with 64 bits for

example) leads to a curve with the same exponential dropoff initially, but with the dropoff

halting at a larger size. It is thus likely that these elements are a result only of numerical

imprecision.

The exponential dropoff of probability distribution values shown in figure 2 has the im-

plication that the Schmidt strength of the rearranged QFT converges to a constant value as

the number of qubits in the transform is increased. The Schmidt strength is the maximum

entropy of the probability distribution following from the singular values of an operator U

along any bipartition. It also gives the maximum entropy E(U |α〉|β〉) where |α〉 and |β〉 are
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states in two different quantum systems corresponding to any bipartition of the operator U .

The states |α〉 and |β〉 are maximally entangled with ancillary systems [27]. We compute this

strength to be 0.8208. For comparison, the Schmidt strength of a CNOT or CPHASE gate is

1 and the Schmidt strength of a SWAP gate is 2.

The convergence of the bond sizes is shown in figure 3 where we plot the mean difference

between the size values obtained with a given number of qubits and those of the largest MPO

created (44 qubits). It is clear that the values are converging towards the characteristic visible

in figure 2a. Note that for reasons of speed these results were computed at double precision

and so the halting of the convergence at 34 qubits represents the calculation reaching machine

precision.
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Fig. 3. The mean difference between the probability distribution of the middle bond of the QFT
computed with each number of qubits and that computed with the largest number of qubits (44).

After truncation of the smaller bond elements in the MPOs encoding (5), the tensors

in the middle of the transform converged to a constant tensor as the number of qubits was

increased. This convergence completely specifies tensors in the middle of the transform up

to phase rotations which result from the lack of uniqueness of the SVD, which can be easily

corrected. The convergence is illustrated in figure 4, which shows the mean difference between

the absolute values of the elements of the middle tensor of each MPO and the absolute values

of the elements of middle tensor of the largest MPO computed (44 qubits). Again, these

results were computed at double precision.

Two different exponential decay rates are visible in the plot. The first of these rates is

the region at which we must truncate the middle tensor of the largest MPO to compare it to

smaller tensors in smaller MPOs while from 20 qubits onwards, the truncation occurred at a

bond size of 30 during calculation of the MPO and so the tensors are the same size.

It is clear from our results that the sizes of each bond in a MPO of the QFT decrease

exponentially with increasing bond size. Truncating a bond to size t would thus create an error

of O(e−t), and O(n) truncations in a n qubit transform would create errors of size O(ne−t).

To maintain a constant error as the number of qubits is increased, the bond size required

would thus be O(log(n)). The convergence towards a common tensor in the middle of the

transform implies that it would be possible to find a standard MPO form for the QFT with a

relatively small number of qubits determined by a given error tolerance. The middle tensor of

this standard QFT could then be replicated a number of times to apply the transformation to

any required larger number of qubits. With a n qubit QFT applied to a MPO with maximum



K.J. Woolfe, C.D. Hill, and L.C.L. Hollenberg 7

10 15 20 25 30 35 40
10-11

10-9

10-7

10-5

Number of qubits
D

if
fe

re
n

ce

Fig. 4. The mean difference between the size of the values in a tensor in the middle of a MPO

and those of a tensor in the middle of a MPO of the largest size (44 qubits). These differences are
normalised by the size of the maximum value in the tensor. Two different decay rates are shown.

Schmidt rank χ, this would allow simulation of the QFT in O(n (log(n)χ)
2
) time.

4 Truncation Errors

Truncation of bonds of even small size will necessarily introduce error into the representation

of an operator. In order to confirm that an efficient MPO simulation of the QFT can be

run with the bond size scalings suggested by figure 2 without compromising accuracy, it is

necessary to quantify this error. It is difficult to quantify the error in a large MPO because

the computational cost of calculating any interesting metric will in general grow exponentially

with the number of qubits. This is true of any calculation which does not take advantage of

the structure of the MPO. For example, many matrix norms require the calculation of the

eigenvalues or decompositions of the full matrix of an operator, or maximisation of a function

defined on the full matrix. The matrix representation of the QFT is not sparse, and so the

exact calculation of such quantities is intractable.

Instead, we have calculated two less rigorous but more easily computed norms. In order

to perform the calculations at large system sizes, these calculations had to be performed with

double precision.

Firstly, we computed the Hilbert-Schmidt inner product 1
D tr(UV ∗) where U is a MPO

representing the QFT and whose bonds are truncated to a given size, V is the same operator

but is not truncated and D is the dimension of the Hilbert space. The value obtained measures

the inner product between U |ψ〉 and V |ψ〉 averaged over all states |ψ〉. The error in the result

1− 1
D tr(UV ∗) is shown in figure 5. It can be seen from this calculation that the error drops off

exponentially as the bond rank is increased, and increases sub-exponentially as the number

of qubits is increased. However, this regime only extends as far as a maximum bond rank of

8, after which the observed error was zero. At these ranks, the average error is thus below the

machine precision of around 10−16. It is worth noting that this is only an average measure of

error and so does not reflect the worse case error involved in applying a truncated MPO.

The second measurement of error we computed is the amount of error associated with

Fourier transforming a periodic state. A periodic state with L qubits and period r takes the

form
∑(2L/r)−1
n=0 |k0 + nr〉. These states are produced by the modular exponentiation stage of

Shor’s algorithm. Applying the QFT to a periodic state produces a state which is strongly
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Fig. 5. The error in the trace inner product between two MPOs of the QFT, one with truncation

and one without any truncation.

peaked around the values
∣∣(i/r) 2L

〉
for i < r and so measuring the Fourier Transform of a

periodic state reveals the period. This is the basis of Shor’s algorithm.

15 20 25 30 35

2

4

6

8

10

12

Number of qubits

M
ax

im
u

m
b

on
d

di
m

en
si

on

1 ´ 10-22

1 ´ 10-20

1 ´ 10-18

1 ´ 10-16

1 ´ 10-14

1 ´ 10-12

1 ´ 10-10

1 ´ 10-8

1 ´ 10-6

0.0001

0.01

1

Fig. 6. The difference between the probability of measuring a peak after simulating a QFT with

a MPO on a periodic state and the analytic probability. Shown for a period of 9.

We prepared periodic states with a range of periods and numbers of qubits between 10

and 28 and computed the deviation of the sizes of the peaks from the analytic values. These

results are shown in figure 6 for period 9. The results were similar for other periods for other

values tested (2 ≤ r ≤ 15). As with the trace inner product, the error seems to decrease

exponentially as the bond rank is increased at low bond ranks. At higher bond ranks, the

error appears to increase quickly as the number of qubits is increased. It is difficult to obtain

data with larger numbers of qubits due to the exponential scaling of the calculation of the

analytic size of the peaks.
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The results in figure 2 indicate that many extra bond elements appear at double precision

with sizes relative to the largest element of 10−13 or less. We would expect that errors observed

after simulating the QFT of periodic inputs would be at less than or equal to these levels.

This is the case for the range of qubits tested.

5 Fragility of the scaling

It is difficult to apply precise phase shifts in a physical quantum computer. As such, we

consider the effect of small errors in the controlled phase gates. Doing so also allows us to

determine how robust the scaling of the size of the MPO with increasing numbers of qubits

is to a particular kind of noise in the quantum circuit. We prepared MPOs of the QFT, but

when applying a controlled phase of θ between qubits a and b, we instead applied a controlled

phase of θ+δr, where δ is the size of the random error and r is a uniformly distributed random

number between 0 and 1. While operational noise in a physical quantum computer is generally

modelled by a normally distributed random phase, our choice of a uniform distribution allows

us to relate these results with those reported in section 3.

We compared the MPOs with errors to those without by fixing the number of qubits and

subtracting the singular value vector in the middle bond with errors from the singular value

vector of the MPO without errors. Each bond vector with errors deviated from the error-free

vector by a roughly constant amount along the length of the vector. Because the singular

values of the QFT exponentially decay, this leads to characterstics similar to those shown in

figure 2. We show a set of probability distributions derived from four MPOs with different δ

values in figure 7.
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Fig. 7. The probability distribution derived from the singular values of the middle bonds of MPOs

representing the QFT with 15 qubits computed with random phases errors of size δ. These MPOs

were produced at double precision.

It is no coincidence that the curves in figures 2 and 7 look similar. Because controlled

phase rotations constitute most of the gates in the QFT (not including SWAP, which is a

permutation of a two qubit tensor), introducing a small random error of order δ to the angle

of the phase rotation has a similar effect to limiting the precision of the calculation of the

MPO to δ. As such, by varying the value of δ we are doing a similar operation to computing

the MPO of the QFT at arbitrary precision.

We show the mean error in the middle bond vector that resulted from varying δ in figure 8.

These errors were computed by forming 100 MPOs for each value of δ and averaging over the
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deviations from the error free MPO. Also shown is a linear fit between the logarithm of the

error and the logarithm of δ. This is a log-log plot with a clear linear relationship, and so the

error varies polynomially with δ and the gradient of the fit gives the power of this dependence.

In this case the power was found to be 1.031 ± 0.005, an almost linear relationship between

the random errors introduced in the controlled phases and the resulting errors in the singular

values.

10-14 10-11 10- 8 10- 5 0.01
10-14
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10- 8

10- 5

0.01

∆

M
ea
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er
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r

Fig. 8. The mean differences between the singular value vectors of the middle bonds of the QFT

with 15 qubits and random phase errors of size δ, and of the QFT with no phase errors. These
values are normalised by the largest singular value in the bond.

The middle bond vectors found in each of the random MPOs generated for each value of δ

displayed a similar dependence on element number to those displayed in figure 7. Each small

additional singular value in the vectors generated with errors will create a random error in

the final coefficients of the QFT operator. As the deviations from the more accurate set of

singular values result from a random phase, we do not expect that the random errors created

by each singular value will add to produce a much larger error. Despite there being a large

number of additional singular values created by the noise in each case, we thus expect that

if the size of the mean error in the singular value vector is ε, the error in the coefficients will

be O(ε). A phase imprecision of δ will then bring about an overall error in coefficients of

the resulting QFT operator of roughly the same size. Conversely, if the coefficients of the

QFT are required to a precision of ε, the MPO only needs to be computed with numbers of

approximately the same precision.

6 Reasons for the efficient representation

The fact that ordering the input values of the qubits differently to the output values can

lead to a dramatic reduction in MPO complexity raises the question of whether a different

ordering to that considered in (5) may be optimal. We tested this by constructing MPOs

with all possible input qubit orderings for QFTs with up to twelve qubits. In every case the

ordering in (5) was optimal. For the reasons described above (the output at the nth qubit

depends only upon the input at the first n qubits), we expect this to be the case for larger

numbers of qubits as well.

It would seem natural to explain the exponential decrease of bond element size shown in

figure 2 with the small effect of the rotation gates correlating far away qubits. That is, the full

QFT introduces correlations across every qubit pairing. However, these correlations take the
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• • H

• • H R2

• • H R2 R3

• H R2 R3

H R2 R3

Fig. 9. The AQFT for five qubits with a maximum of three controlled phase gates.

form of controlled phase rotations and the size of the rotations decreases inverse-exponentially

with the one-dimensional distance between qubits. As such, we should be able to neglect long

range correlations. We would expect this to cause the sizes of the tensors at the qubits within

the MPO to be almost entirely unaffected by the number of far-away qubits. This is the idea

behind the AQFT [15], where the number of controlled phase gates conditioned upon each

qubit, henceforth the bandwidth, is set at a fixed value irrespective of the number of qubits

in the transform.
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Fig. 10. The maximum bond rank in MPOs corresponding to AQFTs with different numbers of

qubits. Each AQFT was constructed with a different maximum number of controlled phase gates
conditioned on each qubit.

However, we constructed MPOs using a nearest neighbour quantum circuit of the AQFT

and found that the bond ranks produced were larger than those produced for the full trans-

form. The maximum bond ranks for a series of AQFTs after truncation are shown in figure

10. Maximum bond ranks in an AQFT increased by a factor of 2 per additional controlled

phase rotation included. This increase levelled off in the middle of the transform but still

quickly became computationally intractable. Furthermore, the trace inner product between

an operator truncated at any bond rank and a series of operators with reduced bandwidths

was a maximum for the full transform and decreased monotonically as the bandwidth de-

creased. It thus seems that the low required bond ranks observed in (5) are a feature of the

full QFT.

While the low required bond rank of the QFT cannot be attributed entirely to decreasing

phase rotations, the size of these rotations and the rate of their decrease are important.

We found that transforms with the same structure as the QFT but with phase rotations

decreasing as exp (2πi/kn) instead of exp
(
2πi/2k

)
, where k is the qubit distance and n an

integer, did not display the characteristic dropoff of bond size. Rather, the required bond

ranks appeared to increase with increasing numbers of qubits, presumably until the phase
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rotations become smaller than machine precision. Using a rotation with some randomness

in the form of exp
(
2πi/2k+δ

)
or exp

(
2πi/(2 + δ)k

)
, with δ a small random number, also

removed the exponential dropoff. Rotations of the form exp
(
2πi/nk

)
for n ≥ 2 still lead to

Fourier transforms, although not over Z2m , and were found to still lead to an exponential

dropoff in bond element size. The rate of this dropoff increased as n increased.

As such, while the small bond rank required to accurately represent the QFT with a MPO

is not due solely to the decreasing size of the phase rotations used, it is related to them. It

is likely the exponential dropoff of bond size is the result of a symmetry in the structure of

the QFT. In order to obtain a low bond rank it is necessary to have phase rotations which

decrease at least exponentially with the distance between qubits and to have the same phase

rotation for each conditioned gate at a given linear qubit distance.

7 Discussion

While we have not proven that the QFT can be efficiently represented as a MPO, our numerical

results are strongly suggestive of this. If appears that the numerical error associated with

the very small amount of truncation required for a tractable representation is very close to

zero over a range of numbers of qubits. Additionally, the differences between a matrix in the

middle of each operator and an adjacent matrix decreases as the system size increases.

Together, these results suggest that a MPO representing a QFT for an arbitrary number

of qubits can be created from the MPO representation of a QFT of a smaller size. With an

appropriate bond rank, this would allow the QFT to be performed on a MPO with maximum

Schmidt rank χ with computational cost O(n (log(n))
2
χ2). It could similarly be performed

on weakly correlated mixed states. Our method allows the QFT to be efficiently simulated in

a straightforward fashion in any case in which the qubits are ordered linearly.

Application of the QFT to a MPS of n qubits with this method increases the bond rank

by at most a factor scaling as O(log(n)). Denoting this factor by d, the application of m

QFTs increases the bond ranks by a maximum factor of dm. As such, the application of a

constant number of QFTs can be efficiently simulated with a large number of qubits. These

QFTs can be interspersed by quantum circuits that do not increase the Schmidt rank.

Our results strengthen earlier work. In [14] the AQFT is show to be classically simulatable

in polynomial time, although an explicit scaling is not derived. Our method of simulation

uses the full QFT and has a more advantageous scaling with respect to the number of qubits

of O(n (log(n))
2
).

In [14] a condition is also derived for when two efficiently simulatable quantum circuits

composed may be efficiently simulated. From this condition it follows that any circuit com-

posed of a constant number of AQFTs and log-depth limited interaction range circuits can be

efficiently classically simulated. We provide a different perspective on the composability cri-

teria. That is, our method makes explicit the scaling of the cost of the QFT with the Schmidt

rank of the bipartitions in the input state. We have shown the difficulty of simulating the

QFT to be mostly determined by the complexity of the state being transformed. A log-depth

limited interaction circuit will produce an input state with small Schmidt ranks across each

bond partition, and so the previous result follows from our results.

That the QFT can be represented to very high fidelity with a MPO with limited bond ranks

implies that the QFT can produce only a limited amount of entanglement. This conclusion
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was originally shown in [30], however our methods are more straightforward.

We take a different approach to simulating the QFT to that presented in [21, 22], which

uses an algebraic extension of stabilizer techniques to efficiently simulate a range of circuits

including a polynomial number of QFTs. These results also allow the QFT to be simulated

on highly entangled states and on different abelian groups. Our results take a tensor network

approach and only allow a constant number of QFTs to be simulated efficiently on states with

entanglement that grows polynomially with the number of qubits. Additionally, our results

allow a classification of the difficulty of simulating the QFT on arbitrary input states to be

calculated.

With respect to the question of where the quantum speedup in Shor’s algorithm originates,

our results provide further evidence that it originates in the highly entangled state generated

by modular exponentiation. Periodic states are generated by modular exponentiation, and

a state of period r will have bond ranks in a MPS of r. As the maximum period of a

modular exponentiation process factoring a number N scales as O(N) [18], states with very

high Schmidt numbers are generated. These states are very difficult to represent in a MPS

and thus are very difficult to Fourier transform. This conclusion is similar to that reached

in other works such as [14, 20]. It is additionally worth noting that while our method makes

very clear the connection between the Schmidt rank of the input state and the difficulty in

Fourier transforming it, the same conclusion can be drawn about the computational speedup

from the results of [14].
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