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In this study, the dynamical behavior of quantum deficit and monogamy relation in
the Heisenberg XXZ model is investigated by implementing quantum renormalization
group theory. The results demonstrate that the quantum deficit can be used to capture
the quantum phase transitions point and show scaling behavior with the spin chain size

increasing. It was also found that the critical exponent has no change when varying mea-
sure from entanglement to quantum correlation. The monogamy relation is influenced by
the steps of quantum renormalization group and the ways of splitting the block states.
Furthermore, the monogamy relation of generalized W state also is given by means of

quantum deficit.
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1 Introduction

Entanglement is regarded as the most important resource in the past years since it can be

used to perform quantum teleportation, quantum key distribution, and quantum computation.

Because of its crucial role in quantum information processing, many efforts have been devoted

to study the properties of entangled state [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. One of

the meaningful results in these studies is called monogamy of entanglement, i.e., quantum

entanglement cannot be freely shared among the parties [13]. The monogamy of entanglement
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plays a key role in condensed matter physics and it is also extremely significant in making

quantum cryptography secure. There are many investigations [14, 15, 16] on this theme after

the seminal work of Coffman et al. [13]. However, some recent results suggest that the

concept of quantum correlation are more general than entanglement that contains nonlocal

correlations [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. The investigation on monogamy

relation using quantum discord or other quantum correlation measures implies that quantum

correlation does not necessarily obey the monogamy relation [29, 30]. These investigations

also have significant effects on some condensed matter physics areas, for example, quantum

phase transitions (QPTs).

QPTs are one of the most important subjects in many-body physics. The ground state

properties of a system will undergo an abrupt change around the critical point when the exter-

nal parameter is adjusted slightly. It occurs at absolute zero where the quantum fluctuations

play a dominant role [31, 32]. Mean field theory (MFT) is the traditional way to investigate

QPTs. But people have found that the theoretical results based on MFT are not in agreement

with the experiment because MFT ignores the effect of fluctuation. In 1971, Wilson success-

fully introduced the renormalization group idea into quantum statistical physics and estab-

lished the renormalization group theory of critical phenomena [33]. Investigating the relations

between entanglement and QPTs in solid state system is one of the important applications of

quantum renormalization group (QRG) theory. Surveys regarding Ising models and Heisen-

berg models have been done in previous studies [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45].

The results have shown that the implementation of QRG theory is valuable in detecting the

nonanalytic behavior of entanglement and the scaling behavior in the vicinity of critical point.

As is mentioned before, entanglement cannot capture all the quantum correlation in a

system. So, it is meaningful to study the relations between quantum correlation and QPTs by

means of QRG theory. Some quantum correlation measures like quantum discord, however,

are somewhat difficult to calculate the analytic result. Rajagopal and Rendell [46] have

proposed the quantum deficit to quantify the quantum correlation in a system. The quantum

deficit uses a decohered density matrix which maintains the same information contained in

the marginal states [46]. This measure is symmetric about the subsystems and it is most

readily suited to analytic investigation and does not need any optimal measurement schemes.

Here, we will use the quantum deficit to investigate the QPTs and the monogamy relation

in the Heisenberg XXZ model by implementing QRG theory. The XXZ model is well known

model, it is worthwhile to investigate the QPTs properties of such model by the quantum

correlation measures combing QRG theory. Especially we want to get the effects of QRG on

the monogamy relation.

The paper is organized as follows. In Section 2, we will introduce the concept of quantum

deficit. In Section 3, we briefly review the Heisenberg XXZ model and give the analytical

results of this model using quantum deficit. The scaling behavior of this model also is shown

in this part. In Section 4, we will investigate the monogamy relation behavior of this model.

In Section 5, we extend our result to the generalized W state. Finally a summary is given in

section 6.
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2 Quantum Deficit

For any bipartite state, the quantum deficit is defined as the relative entropy of the state ρAB

with its classically decohered counterpart ρdAB as below [28, 30, 46]:

DAB = S(ρAB‖ρdAB) = Tr(ρAB ln ρAB − Tr(ρAB ln ρdAB). (1)

The quantum deficit DAB determines the quantum excess of correlations in the state ρAB ,

with reference to its classical counterpart ρdAB . The classical state ρ
d
AB has the same marginal

states ρA, ρB as those of ρAB . It is diagonal in the eigenbasis {|a〉, |b〉} of ρA, ρB and the

expression is

ρdAB =
∑

ab

Pab|a〉〈a|
⊗

|b〉〈b|, (2)

where Pab = 〈a, b|ρAB |a, b〉 stand for the diagonal terms of ρAB , and
∑

ab Pab = 1.

So, it is easy to see that Tr(ρAB ln ρdAB) =
∑

ab Pab lnPab, which leads to

DAB = Tr(ρAB ln ρAB − Tr(ρAB ln ρdAB) =
∑

i

λi lnλi −
∑

ab

Pab lnPab. (3)

where λi denote the eigenvalues of the state ρAB .

3 The Model Hamiltonian and the Solutions

The Hamiltonian of the Heisenberg XXZ model on a periodic chain of N sites is given by [35]

H =
J

4

N
∑

i=1

(σx
i σ

x
i+1 + σy

i σ
y
i+1 +∆σz

i σ
z
i+1), (4)

where J is the exchange interaction, ∆ is the anisotropy parameter, and στ
i are standard

Pauli matrices at site i.

Fig. 1. A schematic description of QRG for three sites in a block.

To get a self-similar Hamiltonian after each QRG step, we can divide the spin chain into

three-site blocks, see figure 1. The corresponding block Hamiltonian has two degenerate

ground states as follows,
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|ψ0〉 = 1√
2+q2

(|110〉+ q|101〉+ |011〉),
|ψ′

0〉 = 1√
2+q2

(|100〉+ q|010〉+ |001〉), (5)

where

q = −∆+
√
∆2 + 8

2
. (6)

The effective Hamiltonian of the renormalized chain is again a XXZ chain with the scaled

couplings

H =
J ′

4

N/3
∑

i=1

(σx
i σ

x
i+1 + σy

i σ
y
i+1 +∆′σz

i σ
z
i+1), (7)

here the renormalized couplings are

J ′ = J( 2q
2+q2 )

2,

∆′ = ∆q2

4 .
(8)

The density matrix of the ground state is defined as

ρABC = |ψ0〉〈ψ0|,
ρABC = |ψ′

0〉〈ψ′
0|.

(9)

Now, we first investigate the pairwise dynamical behavior of reduced density matrices ρAB

and ρAC by tracing over site C or B.

ρAB =
1

2 + q2









1 0 0 0
0 q2 q 0
0 q 1 0
0 0 0 0









, (10)

ρAC =
1

2 + q2









q2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0









. (11)

The diagonal elements of ρdAB and ρdAC are given by

ρdAB = 〈χiχi|ρAB |χiχi〉 =
1

2 + q2
diag{1, q2, 1, 0}, (12)

ρdAC = 〈χiχi|ρAC |χiχi〉 =
1

2 + q2
diag{q2, 1, 1, 0}, (13)

where |χi〉 = |0〉, |1〉, i = 1, 2 is the eigenstate of ρA = 1
2+q2 diag{q2 + 1, 1} . The eigenvalues

of ρAB are q2+1
2+q2 and 1

2+q2 . The eigenvalues of ρAC are q2

2+q2 and 2
2+q2 . Therefore, we can

derive the quantum deficit of ρAB and ρAC as

DAB =
1

2 + q2
(q2 ln

q2 + 1

q2
+ ln(q2 + 1)), (14)

DAC =
2

2 + q2
ln 2. (15)
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3.1 Dynamical properties of renormalized quantum deficit
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Fig. 2. The quantum deficit DAB (a) and DAC (b) of the model versus ∆ at different QRG steps.

We have plotted DAB (left) and DAC (right) versus ∆ in figure 2 at different QRG steps.

After enough steps of renormalization, DAB and DAC will develop two saturated values,

DAB=0.4774 for 0 ≤ ∆ < 1 and 0 for ∆ > 1, while DAC =0.3466 for 0 ≤ ∆ < 1 and 0 for

∆ > 1 . In the region of 0 ≤ ∆ < 1 the model represents spin-fluid phase and for ∆ > 1 the

model stands for Neel phase [35]. So, the sudden change of quantum deficit at ∆c = 1 reflect

that the QPTs occur at this point. The cross point coordinates for DAB and DAC are (1,

0.417) and (1, 0.231) respectively. Moreover, the saturated value of DAB is larger than that

of DAC for 0 ≤ ∆ < 1. This means that the quantum correlation of asymmetric ρAB is larger

than that of symmetric ρAC .

3.2 The scaling behavior

∆

∆
∆

∆

∆ ∆

Fig. 3. The scaling behavior of ln |dD/d∆|m and ∆m in terms of system size lnN .

Figure 3 depicts the scaling behavior of |dD/d∆|m and ∆m with respect to N . In this

figure, the x-axis stands for the length of the spin chain N . In figure 3(a), the y-axis stands

for the minimum value of the first derivative of |dD/d∆|m. In figure 3(b), the y-axis stands

for the position of the minimum ∆m of |dD/d∆|m approaches the critical point. The linear

behavior exists both for ln |dD/d∆|m and ln(∆m −∆c) with respect to lnN . The exponent

relations are |dD/d∆|m ∼ N−0.47 and ∆m ∼ ∆c+N
−0.47 respectively. Like concurrence [35],
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quantum deficit also can reflect the critical long-range correlation. Furthermore, we notice

that the critical exponent have no change when varying the measure from concurrence to

quantum deficit.

4 Monogamy Relation of Quantum Deficit

In general, the monogamy relation is given by [47, 48, 49, 50]

QAB +QAC ≤ QA(BC) (16)

for a three-partite system. HereQAB is the quantum correlation of the state ρAB = TrC(ρABC)

and similarly for QAC . QA(BC) is the quantum correlation between A and BC.

The monogamy relation of quantum deficit adopted here can be expressed as

DAB +DAC ≤ DA(BC),

DBA +DBC ≤ DB(AC).
(17)

The state QABC is monogamous with respect to quantum deficit iif the Eq. (17) is obeyed

and polygamous otherwise.

In order to obtain the quantum deficit DA(BC), we need to evaluate the eigenbasis of

ρBC = TrA(ρABC). The results are

|ψ1〉 = |00〉,
|ψ2〉 = (−q|10〉+ |01〉)/

√

q2 + 1,

|ψ3〉 = q(|10〉/q + |01〉)/
√

q2 + 1,
|ψ4〉 = |11〉.

(18)

The decohered counterpart ρdA(BC) can thus be got

ρdA(BC) = 〈χi, ψi|ρABC |χi, ψi〉 =
1

q2 + 2
diag(q2 + 1, 1). (19)

Since ρABC is a pure state, the result of DA(BC) is expressed by

DA(BC) = − 1

2 + q2
[(q2 + 1) ln

q2 + 1

q2 + 2
+ ln

1

q2 + 2
]. (20)

Similarly, we can also evaluate the result of DB(AC) as

DB(AC) = − 1

2(2 + q2)
[(q − 1)2 ln

(q − 1)2

2(q2 + 2)
+ (q + 1)2 ln

(q + 1)2

2(q2 + 2)
+ 2 ln

1

q2 + 2
]. (21)

Now we define the quantities

DiffA(BC) ≡ DAB +DAC −DA(BC), (22)

DiffB(AC) ≡ DBA +DBC −DB(AC). (23)

It is easy to get the analytical result of the above two expressions. Next, we mainly investigate

the numerical result.
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Fig. 4. The change of DiffA(BC) (a) and DiffB(AC) (b) of the model versus ∆ at different QRG
steps.

In figure 4, we demonstrate the evolution of DiffA(BC) and DiffB(AC) versus ∆ in terms

of QRG iteration steps. The DiffA(BC) always is positive and shows polygamous in figure

4(a). But the values of DiffB(AC) in figure 4(b) can be positive or negative. This indicates

that the system may change from polygamous to monogamous by varying ∆. The steps of

QRG also have influence on such change. From this figure, we found that the monogamy

relation depends on how the subsystems are partitioned and it also can be used to detect the

critical point ∆c = 1.

5 The Monogamy Relation for the Generalized W States

From Eq. (5) we notice that this state is a W state. Therefore, it is more meaningful if

we extend our result to the generalized W state. Here we will investigate the two kinds

of monogamy relations with respect to quantum deficit for the generalized W state. The

generalized W state of three-qubits has the form

|ψW 〉 = a|110〉+ b|101〉+ c|011〉,
|a|2 + |b|2 + |c|2 = 1.

(24)

After some algebra, the analytical monogamy inequality for this state is

DAB +DAC ≤ DA(BC),

DBA +DBC ≤ DB(AC),
(25)

where DAB = (|a|2+ |b|2) ln(|a|2+ |b|2)−|a|2 ln(|a|2)−|b|2 ln(|b|2), DAC = (|a|2+ |c|2) ln(|a|2+
|c|2)−|a|2 ln(|a|2)−|c|2 ln(|c|2), DA(BC) = − |b|2(|a|−|c|)2

|a|2+|b|2 ln |b|2(|a|−|c|)2

|a|2+|b|2 − (|b|2+|ac|)2

|a|2+|b|2 ln (|b|2+|ac|)2

|a|2+|b|2 −
a2 ln |a|2, DBA = DAB , DBC = (|b|2 + |c|2) ln(|b|2 + |c|2)− |b|2 ln(|b|2)− |c|2 ln(|c|2), DB(AC) =

− (|ab|−|c|2)2

|a|2+|c|2 ln (|ab|−|c|2)2

|a|2+|c|2 − |c|2(|a|+|c|)2

|a|2+|c|2 ln |c|2(|a|+|c|)2

|a|2+|c|2 − a2 ln |a|2.

6 Conclusions

In conclusion, we have contributed to investigate the monogamy relation of quantum deficit

by employing the QRG theory. It is found that quantum deficit will develop two different

saturated values divided by the critical point, and the values depend on which two subsystems

are considered. The scaling behavior is observed in the model. We also analyze the monogamy

relation of this model and find that the monogamy relation depend on how to split the systems,
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the values of ∆, and the steps of QRG. In addition, the monogamy relation is given for the

generalized W state via quantum deficit. We hope our result will improve the understanding

about the dynamical behavior of monogamy relation.
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