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A basic building block of many quantum algorithms is the Phase Estimation algorithm

(PEA). It finds an eigenphase φ of a unitary operator using a copy of the corresponding
eigenstate |φ〉. Suppose, in place of |φ〉, we have a copy of an approximate eigenstate

|ψ〉 whose component in |φ〉 is at least
√

2/3. Then the PEA fails with a constant
probability. Using multiple copies of |ψ〉, this probability can be made to decrease
exponentially with the number of copies. Here we show that a single copy is sufficient
to find φ if we can selectively invert the |ψ〉 state. As an application, we consider the

eigenpath traversal problem (ETP) where the goal is to travel a path of non-degenerate
eigenstates of n different operators. The fastest algorithm for ETP is due to Boixo, Knill
and Somma (BKS) which needs Θ(lnn) copies of the eigenstates. Using our method,
the BKS algorithm can work with just a single copy but its running time Q increases to

O(Q ln2 Q). This tradeoff is beneficial if the spatial resources are more constrained than
the temporal resources.
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1 Introduction

The Phase estimation algorithm (PEA) is the backbone of many important quantum algo-

rithms [1, 2, 3, 4]. It estimates the eigenvalues of an operator using a copy of the corresponding

eigenstate. Let |φ〉 be an eigenstate of a unitary operator U with the eigenvalue ei2πφ. The

PEA uses µ ancilla qubits whose Hilbert space has the basis states |k〉 (k ∈ {0, 1, . . . , 2µ−1}).
The initial state of the PEA is |φ〉|0µ〉 where |0µ〉 denotes the state of all µ ancilla qubits in the

|0〉 state. This initial state is transformed to |φ〉|f(φ)〉 where |f(φ)〉 estimates φ as its measure-

ment yields only those |k〉’s with non-negligible probabilities for which k is within a narrow

interval of constant size centered at k(φ) = ⌊2µφ⌋. The PEA achieves this transformation by

applying an operator E(U) which needs 2µ applications of U .

Consider a variant of the PEA where we don’t have a perfect eigenstate |φ〉 but an ap-

proximate one |ψ〉 which satisfies |〈ψ|φ〉| = α ≥
√

2/3. Let PEA≈ denote this variant of the

PEA. If we simply use the PEA for this variant then |ψ〉|0µ〉 gets transformed by E(U) to

|ψ, f〉 = α|φ〉|f(φ)〉+ | ⊥〉|#〉 where 〈φ| ⊥〉 is zero and |#〉 is some state of ancilla qubits. The

component of |ψ, f〉 in |f(φ)〉 is α so φ can be estimated with a probability of α2 ≥ 2
3 and

the error probability can be as high as 1
3 . The PEA≈ aims to reduce this error probability

for which several methods can be used.
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804 Phase estimation using an approximate eigenstate

The simplest method is the multiple-repititions-method (MRM) which works as long as the

approximate eigenstate |ψ〉 is easy to prepare. Starting with a copy of |ψ〉, we apply the PEA

to get the state α|φ〉|f(φ)〉 + | ⊥〉|#〉 after which we measure the ancilla qubits. Assuming

that we can reliably distinguish between |f(φ)〉 and |#〉, φ can be estimated with a success

probability of α2 ≥ 2
3 . If we succeed then we stop else we prepare another copy of |ψ〉 and

repeat the process. The failure probability of a single process is (1 − α2) ≤ 1
3 and after r

repititions, this failure probability reduces exponentially as (1− α2)r. The expected number

of repititions required for the success is 1/α2 ≤ 3
2 which is Θ(1).

However, in general, a reliable distinction between |f(φ)〉 and |#〉 is not possible as it

requires a prior estimate of |f(φ)〉 and hence φ which is not available (in fact, we try to find it

using the PEA≈). Then the only way is to repeat the PEA r times (which involves r sequential

preparations of |ψ〉) and to keep track of all r measurement outcomes. The probability of

getting |f(φ)〉 in a single measurement is α2 ≥ 2
3 so the expected number of measurements

yielding |f(φ)〉 is at least 2
3r. Due to Hoeffding’s bound [5], the probability of getting |f(φ)〉

in less than r
2 measurements is at most e−2rt2 = e−Θ(r) where t = 2

3 − 1
2 = 1

6 . Hence more

than r
2 measurements yield |f(φ)〉 with a probability of 1− e−Θ(r) ≈ 1 for sufficiently large r.

This allows us to estimate φ as the measurement of |f(φ)〉 outputs only those k’s which are

within a narrow interval centered at k(φ) = ⌊2µφ⌋. If an algorithm uses n instances of the

PEA≈ then its success demands e−Θ(r) ≪ 1
n and hence r = Θ(lnn) sequential preparations

of |ψ〉.
Suppose |ψ〉 is not so easy to prepare so that r times sequential preparations of |ψ〉 are

not feasible. Then we can use the multiple-copies-method (MCM) which assumes access to

r parallel copies of |ψ〉. With each copy, we attach a register of µ ancilla qubits. We do r

parallel applications of E(U) to get |ψ, f〉⊗r which can be written as χ>| >〉+ χ<| <〉. Here

| >〉 (| <〉) is a normalized state in which more (less) than r
2 registers are in |f(φ)〉. The

probability of getting a single register in |f(φ)〉 is α2 ≥ 2
3 so the expected number of registers

in |f(φ)〉 is at least 2
3r. Due to Hoeffding’s bound [5], the probability of getting less than

r
2 registers in |f(φ)〉 is at most e−2rt2 where t = 2

3 − 1
2 = 1

6 and hence χ< = e−Θ(r). It is

easy to distinguish between the | >〉 and | <〉 states by reversibly determining whether more

than half registers are in |f(φ)〉 or not. This measures |ψ, f〉⊗r in the {| >〉, | <〉} basis to

yield | >〉 with a probability of 1 − χ2
<. Then k(φ) can be reversibly computed to estimate

φ. After this, r parallel applications of [E(U)]
†
on | >〉 yield the state (|ψ〉|0µ〉)⊗r + |χ<〉,

where |χ<〉 has a length of χ<. As desired, all r copies of |ψ〉 remain intact up to an error

term O(χ<) which is e−Θ(r). If an algorithm uses n instances of the PEA≈ then its success

demands χ< ≪ 1
n and hence r = Θ(lnn) copies of |ψ〉.

In this paper, we present a different method for the PEA≈ with some advantageous

features. We refer to our method as the multiple-selective-inversions-method (MSIM). The

MSIM only requires easy implementations of the selective phase inversion of |ψ〉, i.e. Rψ =

1− 2|ψ〉〈ψ|. This is always less demanding than the easy preparations of |ψ〉 as required by

the MRM. Also, the MSIM works using only a single copy of |ψ〉, unlike the MCM which

needs multiple copies. The paper is organized as following. In the next section, we motivate

our readers by presenting an important application of our method to the Eigenpath Traversal

Problem. In Section 3, we present an overlap detection subroutine S used by our method

which is presented in Section 4. We discuss and conclude in Section 5.
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2 Motivation

Our method finds an important application in the Eigenpath Traversal Problem (ETP) which

may be considered as a digital analogue of the quantum adiabatic evolution [6, 7]. It has

important applications ranging from quantum physics simulation to optimization problems

as discussed in detail in [8]. In the ETP, we have a path of nondegenerate eigenstates |θs〉
of operators Vs with the eigenvalues ei2πθs for s ∈ {1, 2, . . . , n}. For any s, the eigenphase

θs has a minimum spectral gap of ∆ from non-θs eigenphases of Vs. The goal is to evolve

|θ1〉 to |θn〉 using minimum number of applications of the operators Vs. The best algorithm

for the ETP is due to Boixo, Knill, and Somma (BKS) [6] which is a sequence of n − 1

transformations Ts = |θs〉 → |θs+1〉 for s ∈ {1, 2, . . . , n − 1} starting with s = 1. Assuming

|〈θs|θs+1〉|2 ≥ 1
3 , the transformation Ts is implemented using a fixed-point quantum search

algorithm [9, 10] which needs Θ(1) applications of the selective phase inversions Rθ,s and

Rθ,s+1 where Rθ,s = 1− 2|θs〉〈θs| and similarly for Rθ,s+1 (Theorem V.1 of [6]).

The BKS algorithm does not need any kind of phase estimation algorithms (PEA or

PEA≈) if we have a prior knowledge of the eigenphases θs up to an accuracy of ∆
4 . Using this

prior knowledge, the operator Rθ,s can be implemented using 1
∆Θ(ln 1

ǫ0
) applications of Vs

where ǫ0 is the desired error probability (see [11], Definition III.3 of [6] and Section III of [12]).

As the BKS algorithm uses Θ(n) implementations of Rθ,s, we must choose ǫ0 = Θ( 1n ) to be

successful. Hence we need Q = ∆−1Θ(n lnn) applications of Vs which is the time complexity

of the BKS algorithm. Also, Lemma V.3 of [6] shows that another sequence of eigenstates

|θ′s〉 can be found such that |θ′1〉 = |θ1〉 and |θ′n′〉 = |θn〉, where n′ = O(L) ≤ n. Here L is the

angular path length whose value is sup
(
∑n
s=1 cos

−1 |〈θs|θs−1〉|
)

. Thus the time complexity

becomes 1
∆Θ(L lnL) which is better than Θ(L2/∆), the complexity of a previous algorithm

based on phase randomization [8]. It has been proved that the optimal time complexity is

Θ(L/∆) [13].

More generally, we don’t have any prior knowledge of the eigenphases θs. In such sit-

uations, we must use the phase estimation algorithms to estimate θs so that Rθ,s can be

implemented. Suppose we have somehow obtained a copy of |θs〉 and now we want to trans-

form it to |θs+1〉 using the transformation Ts. As mentioned earlier, Ts uses Θ(1) applications

of both Rθ,s and Rθ,s+1. Using the available copy of |θs〉, the PEA can be used to estimate

θs up to an accuracy of O(∆) using O( 1
∆ ) applications of Vs. This estimate can be used then

to implement Rθ,s. The question is: how do we implement another necessary transformation

Rθ,s+1 which requires an estimate of θs+1. The PEA cannot be used to estimate θs+1 as, un-

like |θs〉, we don’t have a copy of the |θs+1〉 state. In fact, |θs+1〉 is the final state of the desired
transformation Ts. To overcome this problem, the BKS algorithm assumes |〈θs|θs+1〉|2 ≥ 2

3

(Theorem V.2 of [6]) for all s so that |θs〉 can serve as an approximate eigenstate for the

operator Vs+1. Then the PEA≈ algorithms can use the available copy of |θs〉 to estimate

θs+1. The estimates of both θs and θs+1 enable us to implement Rθ,s and Rθ,s+1 respectively

and hence to implement the desired transformation Ts.
The BKS algorithm becomes highly inefficient if we use the simplest multiple-repitition-

method (MRM) for the PEA≈. The initial state is |θ1〉. We need r times preparations of |θ1〉
for a single preparation of |θ2〉, r times preparations of |θ2〉 (which needs r2 times preparations

of |θ1〉) are needed for a single preparation of |θ3〉 and so on. Thus we need rs
′

preparations of

|θs〉 for a single preparation of |θs+s′〉. To get |θn〉, we need a total of rn−1 times preparations
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of |θ1〉 and as r = Θ(lnn), the time complexity is exponential in n and hence highly inefficient.

This exponential complexity is true even if we can somehow distinguish between |f(φ)〉 and

|#〉 states as mentioned in Section 1. Then the expected number of preparations of |θs〉 for a
single preparation of |θs+1〉 is 1/α2 ≤ 3

2 . Hence the time complexity can be as high as (3/2)n.

We note that the MRM method fails miserably in the case of the BKS algorithm only because

it assumes easy preparations of |ψ〉. This assumption becomes very costly if many sequential

applications of the PEA≈ are required as in the BKS algorithm.

To overcome this problem, the BKS algorithm uses the method of multiple copies (MCM)

of |θ1〉. As it uses Θ(n) instances of the PEA≈, we need r = Θ(lnn) copies of |θ1〉. These

r copies of |θ1〉 are transformed to r copies of |θ2〉, which are then transformed to r copies

of |θ3〉 and so on. This process continues till we get r copies of the desired final state |θn〉.
Using the MCM, the BKS algorithm works using Q = ∆−1Θ(n lnn) applications of Vs and as

discussed earlier, this is same as the case when we have a prior estimate of the eigenphases θs.

The only problem is that we need a parallel processing on Θ(lnn) copies of the eigenstates

and this adds to the burden on the spatial resources.

We present our method of the MSIM to address the problem of spatial resources. Using

the MSIM, the BKS algorithm can work using just a single copy of the initial state |θ1〉. As

mentioned earlier, the MSIM uses multiple applications of the selective phase inversions of the

approximate eigenstate |ψ〉 to get an estimate of φ. In the case of the BKS algorithm, we need

to implement a series of n− 1 transformations Ts which use Rθ,s and Rθ,s+1 to transform an

available copy of |θs〉 to a desired copy of |θs+1〉. As |θs〉 is an exact eigenstate of Vs, the PEA

can be used to estimate θs which enables us to implement Rθ,s. This implementation of Rθ,s
can be used in our method of the MSIM to estimate θs+1 as the assumption |〈θs|θs+1〉|2 ≥ 2

3

makes |θs〉 to serve as an approximate eigenstate of Vs+1. The estimate of θs+1 enables us to

implement Rθ,s+1 which, alongwith the implementation of Rθ,s, allows us to implement the

desired transformation Ts.
However, the cost of using multiple selective inversions is that the time complexity in-

creases from Q to O(Q ln2 Q). This space-time tradeoff is beneficial if the spatial resources

are more constrained than the temporal resources. Typically Q ≫ 1 and increasing the time

from Q to O(Q ln2 Q) is not a big concern if doing so removes the necessity of Θ(lnn) copies

of the eigenstates. For example, a 50-qubit quantum computer can handle larger quantum

systems using our method. Next, we present an overlap detection subroutine used by our

method.

3 Overlap Detection Subroutine

In this section, we present an Overlap Detection Subroutine S to detect if the overlap magni-

tude of an unknown quantum state |σ〉 with a known subspace is at least
√

4/9 or less than
√

5/9. Both of these inequalities may be true, but detecting only one is sufficient for our pur-

pose. Let |λ〉 and |λ⊥〉 denote the projections of |σ〉 on mutually complementary subspaces

Λ and Λ⊥ respectively. Then

|σ〉 = sinω|λ〉+ cosω|λ⊥〉, Pλ(σ) = sin2 ω, (1)

where Pλ(σ) is the probability of getting |λ〉 after measuring |σ〉. We wish to detect if

Pλ(σ) ≥ 4
9 or Pλ(σ) <

5
9 .
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The previous overlap detection subroutines are based on the quantum amplitude am-

plification [14] to estimate sinω. But they don’t preserve the |σ〉 state with sufficiently

high probability. For example, the subroutine used by the BKS algorithm (Definition III.4

of [6]) preserves |σ〉 while detecting if sinω < η0 − η or sinω > η0 + η. But it fails if

sinω ∈ [η0 − η, η0 + η]. Choosing a small η increases the time complexity as O( 1η ) and a

careful calculation shows that the time complexity becomes significantly large in case when

multiple estimations are needed.

Preserving the |σ〉 state is crucial for our purpose. Our subroutine S does it with a

sufficiently high probability. It becomes simpler if Pλ(σ) can be lower bounded. This is done

by attaching an ancilla qubit in the state 1√
10
(|0〉+ 3|1〉) to |σ〉. The joint state is

√
10|σ′〉 = sinω|0λ〉+ cosω|0λ⊥〉+ 3 sinω|1λ〉+ 3 cosω|1λ⊥〉. (2)

Let |λ′〉 be the projection of |σ′〉 on the subspace Λ′ spanned by {|0λ〉, |0λ⊥〉, |1λ〉}. Then

|σ′〉 = sinω′|λ′〉+ cosω′|λ′⊥〉, P ′
λ(σ) = sin2 ω′ = (9/10)Pλ(σ) + (1/10). (3)

Here |λ′⊥〉 is orthogonal to |λ′〉. Thus P ′
λ(σ) ≥ 1/10 as desired. Also,

Pλ(σ) ≥ 4/9 =⇒ P ′
λ(σ) ≥ 5/10, Pλ(σ) < 5/9 =⇒ P ′

λ(σ) < 6/10. (4)

Thus, for our purpose, we need to detect if P ′
λ(σ) ≥ 5

10 or P ′
λ(σ) <

6
10 .

Consider the amplitude amplification operator A = Rσ′Rλ′ , where Rϑ is 1− 2|ϑ〉〈ϑ|, the
selective inversion of |ϑ〉. To implement Rλ′ , we invert the Λ′ subspace. First, we apply the

single qubit gate −Z = R0 on the ancilla qubit to invert |0λ〉 and |0λ⊥〉. Then, to invert |1λ〉,
we apply Rλ if and only if the ancilla qubit is in the |1〉 state. To implement Rσ′ , let C be a

single qubit gate such that |σ′〉 = C|0σ〉. Then Rσ′ = CR0σC
† where R0σ is implemented by

applying Rσ if and only if the ancilla qubit is in the |0〉 state. The eigenspectrum of A has

been analysed in Section 2 of [14]. It is shown there that

A|Ω±〉 = e±i2ω
′ |Ω±〉,

√
2|Ω±〉 = |λ′〉 ± |λ′⊥〉,

√
2|σ′〉 = eiω

′ |Ω+〉 − e−iω
′ |Ω−〉. (5)

Consider a state |κ〉 satisfying |〈κ|Ω±〉| = 1√
2
. We attach an ancilla qubit and start with

2|κ〉|+〉 = eiκ+ |Ω+〉|0〉+ eiκ+ |Ω+〉|1〉+ eiκ− |Ω−〉|0〉+ eiκ− |Ω−〉|1〉. (6)

We apply A on |κ〉 if the ancilla qubit is in the |1〉 state. Up to a factor of 2, we get

eiκ+ |Ω+〉
(

|0〉+ ei2ω
′ |1〉

)

+ eiκ− |Ω−〉
(

|0〉+ e−i2ω
′ |1〉

)

. (7)

We apply the Hadamard gate H on the ancilla qubit. Up to a factor of
√
2, we get

(

ei(κ++ω′)|Ω+〉+ ei(κ−−ω′)|Ω−〉
)

cosω′|0〉 − i
(

ei(κ++ω′)|Ω+〉 − ei(κ−−ω′)|Ω−〉
)

sinω′|1〉.

Measuring the ancilla qubit yields the |κ+ 1〉 state. The probabilities of outcomes Xκ are

Prob(Xκ = 1) = sin2 ω′ = P′
λ(σ), Prob(Xκ = 0) = 1− P′

λ(σ). (8)
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It is easy to check that (κ+ 1)+ = κ+ + ω′ and (κ+ 1)− = κ− − ω′ + πXκ, so
√
2|κ+ 1〉 = ei(κ++ω′)|Ω+〉+ (−1)Xκei(κ−−ω′)|Ω−〉. (9)

We iterate this process q times to get the state |κ+ q〉 for which

(κ+ q)+ = κ+ + qω′, (κ+ q)− = κ− − qω′ + π(N1mod2). (10)

HereN1 =
∑κ+q−1
κ Xκ is the total number of 1’s as measurement outcomes during q iterations.

In a single iteration, the measurement probability of getting 1 is P ′
λ(σ) due to Eq. (8). Hence

N1 has a binomial probability distribution having a sharp peak at Nmax
1 = qP ′

λ(σ) and

decaying exponentially away from Nmax
1 . Quantitatively, Hoeffding’s bound [5] implies

Prob (|N1 −Nmax
1 |/q > t) = Prob (|(N1/q)− P′

λ(σ)| > t) ≤ e−2qt2 . (11)

Thus, with the error probability e−q/200, the value of N1 detects P ′
λ(σ) as

N1 ≥ 0.55q =⇒ P ′
λ(σ) ≥ 0.5, N1 < 0.55q =⇒ P ′

λ(σ) < 0.6. (12)

To get back the |κ〉 state, we choose q to be even. If N1 is also even then Eqs. (5) and

(10) imply that |κ + q〉 = Aq/2|κ〉 and |κ〉 is obtained by q
2 applications of A† on |κ + q〉.

If N1 is odd, we choose q = q + 2 by adding 2 extra iterations. It keeps q even and N1

remains odd only if Xκ’s are {0, 0} or {1, 1} in extra iterations, the probability of which is

1 − 2P ′
λ(σ)[1 − P ′

λ(σ)] ≤ 0.82 = 0.912 as P ′
λ(σ) ≥ 1

10 . We keep on adding extra iterations

till N1 becomes even. The error probability of N1 remaining odd after qe extra iterations

is at most 0.91qe < e−0.09qe . Choosing qe = q/10, this is negligible compared to the error

probability e−q/200 of Eq. (12). Hence q + qe = 1.1q iterations reduce the error probability

to e−q/200. If ǫ1 is the desired error probability then we must choose q = Θ(ln 1
ǫ1
). Thus, if

the initial state |κ〉 is |σ〉 then the subroutine S needs 3q
2 = Θ(ln 1

ǫ1
) applications of A: q for

q iterations and q
2 to get back the |σ〉 state. This subroutine S is used by our method which

is presented in the next section.

4 Method of Multiple Selective Inversions (MSIM)

In this section, we present our method of phase estimation algorithm using an approximate

eigenstate |ψ〉. We define the operators Uγ having |φ〉 as their eigenstate with the eigenvalue

ei2πφγ , i.e.

Uγ = U2γ =⇒ Uγ |φ〉 = ei2πφγ |φ〉, φγ = 2γφ. (13)

We choose µ = 5 and work in the Hilbert space HJ = Hm ⊗ H32. Here Hm is the Hilbert

space spanned by the eigenstates of U and H32 is the Hilbert space of 5 ancilla qubits. Each

basis state |k〉 of H32 encodes an integer k ∈ {0, 1, . . . , 31} which is the decimal value of the

binary number encoded by |k〉. The PEA operator E(Uγ) transforms |φ〉|0µ〉 to |φ〉|fγ〉 where
|fγ〉 estimates φγ . To quantify this estimate, let [a, b] be the set of integers ranging from a to

b in the increasing order modulo 32. For example, [16, 15] is the set {16, 17, . . . , 31, 0, . . . , 15},
not {16, 15}. Let [a± c] be the set [a− c, a+ c]. Let Λba be the subspace of HJ in which |k〉
satisfy k ∈ [a, b] and let Πba be the projection operator on Λba. For any state |σ〉 in HJ , the

probability P ba(σ) of getting an integer k ∈ [a, b] after measurement is

P ba(σ) = |〈σ|λba(σ)〉|2, |λba(σ)〉 = Πba|σ〉. (14)



A. Tulsi 809

In our notation, Eq. (5.34) of [2] (based on the analysis of [3]) can be written as

Pk(φγ)±c(φ, fγ) = P
k(φγ)+c

k(φγ)−c (φ, fγ) ≥ 1− [2(c− 1)]−1, k(φγ) = ⌊32φγ⌋, c > 1. (15)

With the choice c = 4, we find that Pk(φγ)±4(φ, fγ) is at least
5
6 .

For an approximate eigenstate |ψ〉|0µ〉 is transformed by E(Uγ) to |ψ, fγ〉 = α|φ〉|f(φγ)〉+
| ⊥〉|#〉 where 〈φ| ⊥〉 = 0 due to which | ⊥〉|#〉 only adds to the probabilities of getting any

k. Thus

Pk(φγ)±4(ψ, fγ) ≥ α2Pk(φγ)±4(φ, fγ) ≥ (2/3)× (5/6) = (5/9). (16)

Let Mγ [x] be the (γ + 1)th most significant bit of x. Then Eqs. (13) and (15) imply

Mγ′ [φγ ] = Mγ+γ′ [φ], γ ≤ 4 =⇒ Mγ [k(φγ)] = Mγ [φγ ]. (17)

If k(φγ) ∈ [0, 7] then [k(φγ)± 4] ⊂ [28, 11]. As [a, b] ⊂ [a′, b′] implies P b
′

a′ (σ) ≥ P ba(σ), we get

k(φγ) ∈ [0, 7] =⇒ P 11
28 (ψ, fγ) ≥ 5/9, P 11

28 (ψ, fγ) < 5/9 =⇒ k(φγ) /∈ [0, 7], (18)

where we have used Eq. (16). Relabeling the basis states as |k〉 −→ |(k + 16)mod32〉, we get

P 27
12 (ψ, fγ) < 5/9 =⇒ k(φγ) /∈ [16, 23]. By definition, P 27

12 (σ) + P 11
28 (σ) = 1. Hence

P 27
12 (ψ, fγ) ≥ 4/9 =⇒ k(φγ) /∈ [0, 7], P 27

12 (ψ, fγ) < 5/9 =⇒ k(φγ) /∈ [16, 23]. (19)

Relabeling the basis states again as |k〉 −→ |(k + 8)mod32〉, we get

P 3
20(ψ, fγ) ≥ 4/9 =⇒ k(φγ) /∈ [8, 15], P 3

20(ψ, fγ) < 5/9 =⇒ k(φγ) /∈ [24, 31]. (20)

These relations are summarized in Table 1 where P0γ ≡ P 27
12 (ψ, fγ) and P1γ ≡ P 3

20(ψ, fγ).

The entries of column G are easy to check. For example, k(φγ) /∈ [0, 7] and k(φγ) /∈ [24, 31]

imply k(φγ) ∈ [8, 23] and M0[k(φγ)] = 1 − M1[k(φγ)]. To get the entries of column H, we

have used Eq. (17).

Table 1. Finding the most significant bits of φ using the values of P0γ and P1γ .

A B C D E F G H
Case P0γ k(φγ) /∈ P1γ k(φγ) /∈ k(φγ) ∈ M0[k(φγ)] Mγ [φ]
1 ≥ 4/9 [0,7] ≥ 4/9 [8, 15] [16, 31] 1 1
2 ≥ 4/9 [0, 7] < 5/9 [24, 31] [8, 23] 1−M1[k(φγ)] 1−Mγ+1[φ]
3 < 5/9 [16, 23] ≥ 4/9 [8, 15] [24, 7] M1[k(φγ)] Mγ+1[φ]
4 < 5/9 [16, 23] < 5/9 [24, 31] [0, 15] 0 0

Let Sgγ (g ∈ {0, 1}) denote the overlap detection subroutine S to determine if Pgγ ≥ 4
9

or Pgγ <
5
9 . To estimate φ, we start with γ = 0 and find either M0[φ] or its value in terms

of M1[φ]. We increase γ by 1 and find either M1[φ], which also determines M0[φ], or the

value of M1[φ] in terms of M2[φ]. We keep on increasing γ by 1 till γ = Γ when we find

either MΓ[φ] in cases (1, 4), which also determines Mγ [φ] for all γ < Γ, or we find the value

of MΓ[φ] in terms of MΓ+1[φ] in cases (2, 3). Suppose case 2 is true and k(φΓ) ∈ [8, 23].

We define U+ as U+|φ〉 = ei2πφ
+ |φ〉 where φ+ is φ + 2−Γ−2. Thus φ+Γ = φΓ + 0.25 and

k(φ+Γ ) = k(φΓ)+8 ∈ [16, 31] implying MΓ[φ
+] = 1. Similarly, MΓ[φ

+] = 0 if case 3 is true. So
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we find either MΓ[φ
+] or MΓ[φ]. We again use the subroutines Sgγ for g = (0, 1) and γ ≤ Γ

for the operator U+. This either determines Mγ [φ
+] for γ < Γ or determines them in terms

of already known MΓ[φ
+].

Thus we can find either Mγ [φ] or Mγ [φ
+] for all γ ≤ Γ to estimate φ or φ+ up to an

accuracy of 2−Γ−1. As φ+ = φ + 2−Γ−2, we find φ up to an accuracy of 2−Γ. We need to

apply Sgγ for g = (0, 1) and γ ≤ Γ, once for U and once for U+, making a total of 4(Γ + 1)

applications. If the desired accuracy in estimation of φ is δ = 2−Γ then 4[log2
1
δ +1] = Θ(ln 1

δ )

applications of Sgγ are needed with 4 applications for each value of γ.

To implement Sgγ , we choose |σ〉 = |ψ, fγ〉 and Λ = Λ27
12 for g = 0 whereas Λ = Λ3

20 for g =

1. It uses Θ(ln 1
ǫ1
) applications of Agγ = Rψ,f ′

γ
Rλ′ which requires implementations of Rψ,fγ

and Rλ as discussed before Eq. (5). We use our knowledge of the subspace Λ to implement

Rλ. To implement Rψ,fγ , we use |ψ, fγ〉 = E(Uγ)|ψ〉|05〉 to get Rψ,f = E(Uγ)Rψ,05E(Uγ)† and
implement Rψ,05 by applying Rψ if and only if all 5 ancilla qubits are in the |0〉 state. By

definition, E(Uγ) uses 25+γ applications of U . Hence Agγ needs 26+γ applications of U and

1 application of Rψ. So Sgγ needs Θ(2γ ln 1
ǫ1
) applications of U and Θ(ln 1

ǫ1
) applications of

Rψ where ǫ1 is the desired error probability.

As the PEA≈ uses Θ(ln 1
δ ) applications of Sgγ , we must choose ǫ1 = Θ(ǫ ln−1 1

δ ) if ǫ is the

desired error probability in the PEA≈. Thus Sgγ uses Θ(2γ)F δǫ and Θ(1)F δǫ applications of

U and Rψ respectively where F δǫ is ln 1
ǫ1

= ln
[

ln 1
δ /ǫ

]

. We sum these two terms from γ = 0

to γ = Γ = ln 1
δ to find Nǫ(Y ), the total number of applications of Y ∈ {U,Rψ} needed to

estimate φ to an accuracy of δ with the success probability 1− ǫ. Thus

Nǫ(U) = Θ(δ−1)F δǫ , Nǫ(Rψ) = Θ(ln(δ−1))F δǫ . (21)

Above equation determines the time complexity of our algorithm.

Application to the BKS algorithm: We have briefly discussed the BKS algorithm in

Section 2. Here |ψ〉 = |θs〉 is an approximate eigenstate of U = Vs+1 and we find θs+1 up to

an accuracy of δ = ∆
4 . The BKS algorithm uses Θ(n) instances of the PEA≈ and we must

choose ǫ = Θ( 1n ) for success. Thus F δǫ is Θ(ln(n ln 1
∆ )). As n > 1 and typically ∆ < 1,

the terms lnn and ln 1
∆ are O(lnQ) implying that F δǫ = O(lnQ) where Q = ∆−1Θ(n lnn)

is the time complexity of the BKS algorithm. Also, Θ(n) instances of the PEA≈ will need

Θ(n)Nǫ(Vs) = n
∆O(lnQ) applications of Vs and Θ(n)Nǫ(Rθs) = nO(ln2 Q) applications of

Rθs where we have used Eq. (21). As mentioned in Section 2, each Rθs can be implemented

using O(ln 1
ǫ0
/∆) applications of Vs and nO(ln2 Q) applications of Rθs are successful if we

choose 1
ǫ0

= Θ(n ln2 Q). Then each Rθs needs Θ( 1
∆ ) ln(n ln2 Q) applications of Vs. Thus, with

our method, the number of applications of Vs used by the BKS algorithm is

n∆−1O(lnQ) +
(

nO(ln2 Q)×Θ
(

∆−1
)

ln(n ln2 Q)
)

= O(Q ln2 Q). (22)

Though this is larger than Q by a logarithmic factor, we don’t need multiple copies of the

eigenstates which we will need if we don’t use our method.

5 Discussion and Conclusion

We assumed |〈ψ|φ〉|2 ≥ 2
3 only for simplicity but similar ideas can be used if |〈ψ|φ〉|2 ≥ 1

2 + h

for any small positive h. Then, in Eq. (15), we choose c such that 1/2(c− 1) is h or c ≈ 1/2h

and the lower bound in Eq. (16) becomes ( 12 + h)(1 − h) = 1
2 + h

2 . We increase µ from 5 to
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6+ log2 h to get a 128c-dimensional Hilbert space of ancilla qubits used in the PEA. Doing so

also increases exponentially the required number of applications of U . Also, the subroutines

Sgγ need to detect if Pgγ ≥ (1−h)/2 or Pgγ < (1+h)/2. This increases the required number

of iterations q as the error probability decreases as e−qh
2/2 which is much larger than e−q/220

for small h. To compensate for it, we must choose suitably large values of q. The details can

be worked out easily.

An important application of the Eigenpath Traversal Problem is the quantum adiabatic

evolution (QAE) where Vs = exp(−iHŝt) with ŝ = (s− 1)/(n− 1) and Hŝ = (1− ŝ)H0 + ŝH1

is the interpolating Hamiltonian between H0 and H1. It has applications to quantum com-

putation [15]. In this case, L is O(‖H0 + H1‖/∆). Childs et.al. presented an algorithm to

simulate the QAE by a discrete-time quantum circuit [16] using O(L2/∆) = O(1/∆3) time

steps. The BKS algorithm can do this using O(L/∆) = O(1/∆2) time steps. The time com-

plexity O(1/∆2) of the BKS algorithm is same as the evolution time O(1/∆2) required by

the folk adiabatic approximation [7] and better than the evolution time O(1/∆3) required

by the rigorous adiabatic approximations [17, 18, 19]. Note that the operators Vs = e−iHŝt

can be efficiently simulated for sparse Hamiltonians using recently developed simulation al-

gorithms [20]. Recently, it was shown that if the QAE involves only the ground state then

L = O(1/∆1/2), much less than O(1/∆) for ∆ ≪ 1 [21]. Then the BKS algorithm has the

time complexity Θ(1/∆3/2). Using our method, the BKS algorithm can work with just a

single copy of the initial eigenstate.

We point out that in our method, the information |〈ψ|φ〉|2 ≥ 2
3 is used to distinguish |φ〉

from other eigenstates of U . Our method assumes the correctness of this information and in

general, our method cannot determine whether this assumption is correct or not.

As illustrated in this paper, our method finds significant applications only in those proce-

dures where many sequential instances of the phase estimation procedures with approximate

eigenstates are needed. The Eigenpath traversal problem is one such example but other quan-

tum algorithms may also be improved with this method and the possibilities are currently

under investigation.
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