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1. Introduction

The Heisenberg uncertainty principle [1] is one of the most known restrictions distinguishing

the quantum world from the classical one. Scientists have made a great effort to understand

and extend its scope and meaning. Basic developments in this direction are reviewed in [2, 3,

4]. Various quantitative measures can be used to describe quantum uncertainties formally [5].

In very traditional formulation [6, 7], we deal with the standard deviations of corresponding

observables. Such an approach was criticized in the papers [8, 9], in which entropic formulation

has been developed. The references [10, 11, 12, 13] considered the entropic principle in the

case of an observer with quantum side information. An attention is attracted to the entropic

formulation rather due to its connection with some topics of quantum information theory

[3, 10]. On the other hand, Heisenberg’s initial argument is better formulated in terms of

noise and disturbance [14, 15]. Thus, we cannot measure precisely an observable without

causing a disturbance to another incompatible observable.

There are more than one approaches to fit a quantitative formulation of trade-off between

noise and disturbance in quantum measurements. The first universal uncertainty relation of

noise-disturbance type was derived by Ozawa [15]. Other formulations have been proposed in

[16, 17, 18, 19, 20, 21]. The authors of [22] reported experimental evidences for violation of

so-called Heisenberg’s error-disturbance uncertainty relation. For a discussion of this conclu-

sion, see [23] and references therein. An information-theoretic approach to quantifying noise

and disturbance in quantum measurements has been examined in [24, 25]. Corresponding
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314 Rényi and Tsallis formulations of noise-disturbance trade-off relations

definitions are based on the notion of conditional entropy. Formulations of such a kind are

very useful due to several advances. The quantities introduced in [24] are invariant under

relabelling of outcomes. The possibility of quantum or classical correcting operations is nat-

urally taken into account. In addition, the information-theoretic noise can be related to the

error probability of used decision rule.

The present work is devoted to formulating noise-disturbance relations in terms of gener-

alized entropies. As information-theoretic measures, entropies of both the Rényi and Tsallis

types are used. One of motivations to develop entropic uncertainty relations is connected with

their potential applications in quantum cryptography [26, 27]. Although Rényi’s entropies are

rather meaningful in studies of such a kind, the role of Tsallis’ ones deserves investigations

as well. Another utility of uncertainty relations with a parametric dependence was illus-

trated in [9]. The presented measures of noise and disturbance in quantum measurements

are defined with using the conditional Rényi and Tsallis entropies. The paper is organized as

follows. Required material is reviewed in Section 2. First, we discuss quantum measurements

and instruments. Second, basic properties of Tsallis and Rényi entropies are recalled. In

particular, we consider relations between conditional entropies and error probability. Third,

formulations of entropic uncertainty relations for a pair of observables are discussed. Main

results are presented in Section 3. First, we introduce information-theoretic measures of

noise and disturbance in terms of the conditional Tsallis and Rényi entropies. Reasons for

proposed definitions are treated with the use of essential entropic properties. Using entropic

uncertainty relations, we further derive noise-disturbance trade-off relations with a parametric

dependence. In Section 4, we conclude the paper with a summary of results.

2. Preliminaries

In this section, preliminary material is reviewed. First, we recall the formalism of quantum

operations, including quantum measurements and quantum instruments. Second, we write

definitions and some properties of used entropic measures. In particular, we focus on existing

relations between conditional entropies and error probability. Some formulations of entropic

uncertainty relations are discussed as well.

2.1. Quantum measurements and instruments

Let L(H) be the space of linear operators on d-dimensional Hilbert space H. By Ls.a.(H)

and L+(H), we respectively denote the real space of Hermitian operators on H and the set

of positive ones. The state of a quantum system is described by a density matrix ρ ∈ L+(H)

normalized as Tr(ρ) = 1. A common approach to quantum measurements is based on the

notion of positive operator-valued measures (POVMs). A positive operator-valued measure

N = {N(y)} is a set of elements N(y) ∈ L+(H) satisfying the completeness relation [28]
∑

y
N(y) = 11 . (1)

Here, the symbol 11 denotes the identity operator on H. If the pre-measurement state is

described by ρ, then the probability of y-th outcome is Tr
(
N(y)ρ

)
[28]. The standard mea-

surement of an observable is described by a projector-valued measure, when POVM elements

form an orthogonal resolution of the identity. As an entropy-based approach deals with prob-

ability distributions, it does not refer to eigenvalues. Special types of POVM measurements
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are especially important. Informationally complete measurements are an indispensable tool

in many questions [29, 30, 31]. Entropic uncertainty relations for symmetric informationally

complete POVMs are derived in [32]. The informational power of such preparations and

measurements is considered in [33].

A unified description of the operation of a laboratory detector is provided by the concept of

quantum instruments [34]. Consider a linear map Φ : L(HA) → L(HB). This map is positive,

when Φ(A) ∈ L+(HB) for each A ∈ L+(HA) [35, 36]. To describe physical processes, linear

maps must be completely positive [35, 36]. Let idR be the identity map on L(HR), where the

space HR is assigned to a reference system. The complete positivity implies that the map

Φ ⊗ idR with the input space HA ⊗HR is always positive irrespectively to a dimensionality

of HR. Any completely positive map can be represented in the form [35, 36]

Φ(A) =
∑

n
K(n)AK(n)† . (2)

Here, the Kraus operators K(n) map the input space HA to the output space HB . When

physical process is closed, the corresponding map preserves the trace, Tr
(
Φ(A)

)
= Tr(A).

Trace-preserving completely positive (TPCP) maps are often called quantum channels [35, 37].

For a quantum channel, the Kraus operators satisfy

∑
n
K(n)† K(n) = 11A . (3)

Let us consider a collection of completely positive maps M =
{
Φ(m)

}
. The collection M

is a quantum instrument, when the maps Φ(m) are summarized to a trace-preserving map

[24]. For all A ∈ L(HA), one obeys

∑
m
Tr
(
Φ(m)(A)

)
= Tr(A) . (4)

If the pre-measurement state of an input system is described by density matrix ρ, then the

m-th outcome occurs with probability

p(m) = Tr
(
Φ(m)(ρ)

)
. (5)

In this case, the measuring apparatus will return an output system in the state described by

[24]

ρ
′ = p(m)−1 Φ(m)(ρ) . (6)

It is convenient to use a trace-preserving completely positive map defined as

ΦM(ρ) :=
∑

m
Φ(m)(ρ)⊗ |m〉〈m| . (7)

The “flag” states |m〉 of an auxiliary system are orthonormal and, herewith, perfectly distin-

guishable [24]. Such states are used for encoding measurements outcomes.

2.2. Rényi and Tsallis entropies

Together with the Shannon entropy, other entropic measures are extensively used. Among

them, the Rényi and Tsallis entropic functionals are especially important [37]. Let discrete
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random variable X take values on the finite set ΩX , and let {p(x)} be its probability distri-

bution. For 0 < α 6= 1, the Rényi entropy is defined as [38]

Rα(X) :=
1

1− α
ln

(
∑

x∈ΩX

p(x)α

)
. (8)

If the set ΩX has cardinality |ΩX | = d, then the maximal value of (8) is equal to ln d. It is

reached with the uniform distribution. The entropy (8) is a non-increasing function of order α

[38]. Other properties related to the parametric dependence are discussed in [39]. In the limit

α → 1, the entropy (8) gives the Shannon entropy. For α ∈ (0, 1), the entropy (8) is certainly

concave [40]. Convexity properties of Rα(X) with orders α > 1 depend on dimensionality of

probabilistic vectors [37, 41]. For instance, for every α > 1 there exist an integer d⋆ such that

the entropy (8) is neither convex nor concave for all d > d⋆ [41]. The two-dimensional case

is of special interest. As was explicitly shown in [41], the binary Rényi entropy is concave for

0 < α ≤ 2. We also recall that the Rényi entropy is Schur-concave.

Tsallis entropies also form an important family of generalized entropies. The Tsallis

entropy of degree 0 < α 6= 1 is defined as [42]

Hα(X) :=
1

1− α

(
∑

x∈ΩX

p(x)α − 1

)
. (9)

For brevity, we will omit in sums the symbols such as ΩX . For 0 < α 6= 1 and ξ > 0, we will

use the α-logarithm lnα(ξ) =
(
ξ1−α − 1

)
/(1− α). One can rewrite the entropy (9) as

Hα(X) = −
∑

x
p(x)α lnα p(x) =

∑
x
p(x) lnα

(
1

p(x)

)
. (10)

When |ΩX | = d, the maximal value of (9) is equal to lnα(d). It is reached with the uni-

form distribution. In the limit α → 1, we also obtain the Shannon entropy H1(X) =

−∑x p(x) ln p(x). Applications of generalized entropies in quantum theory are reviewed

in [37]. Entropic trade-off relations for a single quantum channel are discussed in [43, 44].

In the following, we will also use conditional entropic forms. Let Y be another random

variable. The standard conditional entropy is defined as [45]

H1(X|Y ) :=
∑

y
p(y)H1(X|y) = −

∑
x

∑
y
p(x, y) ln p(x|y) . (11)

Here, we use joint probabilities p(x, y) and the particular functional

H1(X|y) = −
∑

x
p(x|y) ln p(x|y) , (12)

where p(x|y) = p(x, y)/p(y). Similarly to (12), we introduce the quantity

Hα(X|y) := 1

1− α

(∑
x
p(x|y)α − 1

)
. (13)

Keeping (10) in mind, the two kinds of conditional Tsallis entropy can be considered

[46, 47]. These forms are respectively defined as

Hα(X|Y ) :=
∑

y
p(y)α Hα(X|y) , (14)

H̃α(X|Y ) :=
∑

y
p(y)Hα(X|y) . (15)
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For all α > 0, the first form (14) shares the chain rule [46, 48]. In this paper, we will rather

need another property. It is natural to demand that conditioning on more may only reduce

the entropy. In effect, the standard conditional entropy satisfies [45]

H1(X|Y,Z) ≤ H1(X|Y ) . (16)

For all α > 0, the second form (15) of conditional α-entropy obeys [49]

H̃α(X|Y,Z) ≤ H̃α(X|Y ) . (17)

The first form (14) satisfies such a property only for α ≥ 1 [49]. Since the mentioned property

is of great importance in our research, we will use the second form. It should be noted that

the form (15) does not share the chain rule. As the first form (14) of conditional α-entropy

obeys the chain rule for all α > 0 [46, 48], it may be more appropriate in some questions. In

the present work, however, the chain rule is not used.

The Rényi case is similar to the Tsallis case in the following respect. There is no generally

accepted approach to the definition of conditional Rényi entropy [50]. We will use the following

one. For 0 < α 6= 1, the conditional α-entropy is put by [51, 52, 53]

Rα(X|Y ) :=
∑

y
p(y)Rα(X|y) , (18)

where

Rα(X|y) := 1

1− α
ln
(∑

x
p(x|y)α

)
. (19)

Like (8), the conditional entropy (18) is a non-increasing function of α. Another approach for

constructing conditional entropies is connected with the notion of relative entropy [13]. Then

conditional entropies are defined via an optimization problem. The corresponding formula-

tion of conditional Rényi’s entropy is considered in [13], mainly in quantum setting. In the

following, we will use the definition (18) due to its connection with error probability.

The limit α → ∞ gives the conditional min-entropy. For the given value y, we define

x̂(y) := Argmax
{
p(x|y) : x ∈ ΩX

}
. (20)

It maximizes p(x|y), i.e., p(x|y) ≤ p(x̂|y) for all x ∈ ΩX . Note that a value (20) may be not

unique. Any of such values corresponds to the standard decision in the Bayesian approach

[54]. We then write

R∞(X|y) = − ln p(x̂|y) . (21)

The conditional min-entropy R∞(X|Y ) is defined according to (18) and (21). The following

property is related to conditioning on more. For 0 < α ≤ 1, the conditional entropy (18)

satisfies

Rα(X|Y,Z) ≤ Rα(X|Y ) . (22)

This relation immediately follows from concavity of the entropy [49]. If |ΩX | = 2, then

the relation (22) is valid for all α ∈ (0, 2]. Indeed, the binary Rényi entropy is concave for

0 < α ≤ 2 [41]. Here, the proof holds irrespectively to dimensionality of any of Y and Z. The

only restriction is that the variable X is two-dimensional. With arbitrary finite |ΩX |, we can

use (22) only for α ∈ (0, 1].
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The conditional entropy (18) has interesting properties and applications in some questions

[51, 52, 53]. However, this form does not share the chain rule. Conditional Rényi’s entropy

can be defined in a way connected with the chain rule [55, 56]. In our study, we are rather

interested in properties related to conditioning on more.

2.3. Relations between conditional entropies and error probability

Although entropic functions are basic measures of uncertainty, the channel coding theorems

are usually stated in terms of the error probability [45]. Hence, relations between entropies

and the error probability are of interest. Fano’s inequality provide an upper bound on the

conditional entropy [57]. Known lower bounds on the conditional entropy are expressed in

terms of the error of standard decision. Let variables X and Y respectively correspond to the

input and the output of a communication system. We should decide on the input symbols

when the output symbols are known. In the standard decision, we decide in favor of value

(20) for all output values of Y . Then the error probability p̂e and the probability of successful

estimation p̂s are written as

p̂e = 1− p̂s , p̂s =
∑

y
p(y) p(x̂|y) . (23)

Due to the Bayesian version of the fundamental Neyman–Pearson lemma [54], no decision

can have a smaller error probability than the standard decision. When there exists a decision

rule with zero error probability, we inevitably have p̂e = 0.

As was shown in [54, 58], the standard conditional entropy (11) is bounded from below as

− ln(1− p̂e) ≤ H1(X|Y ) . (24)

This result was extended to some forms of generalized entropies [47]. For all α ∈ (0, 2], the

conditional entropy (15) satisfies

lnα

(
1

1− p̂e

)
≤ H̃α(X|Y ) . (25)

As was recently proved in [49], for α ∈ (0, 2] we also have

2 lnα(2) p̂e ≤ H̃α(X|Y ) . (26)

For α > 2, the lower bound on (15) depends also on the dimensionality d = |ΩX |. Namely,

we have
d lnα(d)

d− 1
p̂e ≤ H̃α(X|Y ) . (27)

For all α ∈ (0,∞), the conditional Rényi entropy (18) satisfies

− ln(1− p̂e) ≤ Rα(X|Y ) . (28)

In the binary case, some of the above bounds can be improved [47]. For d = 2, the inequality

(26) remains valid for all α ∈ (0,∞). For d = 2 and α ∈ [1,∞), the conditional Rényi entropy

(18) satisfies

2 lnα(2) p̂e ≤ Rα(X|Y ) . (29)
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For d = 2 and α ∈ (0, 1], we also have (2 ln 2) p̂e ≤ Rα(X|Y ) [47].

Thus, we can claim the following property. If any of the entropies (15) and (18) tends to

zero, then p̂e tends to zero as well. That is, vanishing of conditional entropies implies that

there is a decision function with vanishing error. In general, this claim is restricted to finite

dimensions. For instance, the bound (27) is applicable only when d is finite. We will now

recall upper bounds related to the finite-dimensional case.

For an arbitrary decision rule x′ = g(y), the corresponding error probability pe is defined

similarly to (23). The well-known Fano inequality states that [59]

H1(X|Y ) ≤ h1(pe) + pe ln(d− 1) , (30)

where d = |ΩX | and the binary entropy h1(q) = − q ln q − (1− q) ln(1− q) for q ∈ [0, 1]. Let

us put the binary Tsallis entropy

hα(q) := − qα lnα(q)− (1− q)α lnα(1− q) . (31)

As was proved in [49], the conditional entropy (15) satisfies

H̃α(X|Y ) ≤ hα(pe) + pαe lnα(d− 1) (0 < α < 1) . (32)

H̃α(X|Y ) ≤ hα(pe) + pe lnα(d− 1) (1 < α < ∞) . (33)

When α → 1, both the formulas (32) and (33) give the standard Fano inequality (30).

The authors of [53] derived several results concerning the conditional Rényi entropy (18).

For α ≥ 1, the conditional entropy Rα(X|Y ) is bounded from above by the right-hand side

of (30). Indeed, the function (19) cannot increase with growing α. For α ∈ (1,∞), therefore,

we have Rα(X|Y ) ≤ H1(X|Y ). Combining this with (30) immediately gives the claim. The

upper bound (30) holds for arbitrary decision rule.

Upper bounds on the conditional Rényi entropy of order α ∈ (0, 1) can be written in terms

of the error probability p̂e of the standard decision [49]. They are based on one of the results

of [41]. The conditional Rényi entropy of order α ∈ (0, 1) obeys [49]

Rα(X|Y ) ≤ 1

1− α
ln
(
(1− p̂e)

α + (d− 1)1−αp̂α
e

)
. (34)

Recall that vanishing of conditional entropies implies that there is a decision function with zero

error probability. On the other hand, the above bounds of Fano’s type imply that conditional

entropies should vanish for p̂e → 0. These results are essential in motivating measures of

information-theoretic noise. Note that bounds of the Fano type involve dimensionality d. We

refrain from discussing relations between conditional entropies and error probability in the

countably-infinite case (see [60] and references therein).

2.4. General entropic uncertainty relations for finite-level systems

Formulating noise-disturbance relations, we will use uncertainty relations derived in [61, 62].

For any A ∈ L(H), we define |A| ∈ L+(H) to be the positive square root of A†
A. The singular

values σj(A) are then introduced as eigenvalues of |A| [63]. In terms of the singular values, one

defines the Schatten norms widely used in quantum information theory [63]. We will further

use the spectral norm ‖A‖∞ = max
{
σj(A) : 1 ≤ j ≤ d

}
.
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Let us consider d-dimensional observables X,Z ∈ Ls.a.(H) with the spectral decompositions

X =
∑

x∈spec(X)

xΛ(x) , (35)

Z =
∑

z∈spec(Z)

z Γ(z) . (36)

Here, the sets {Λ(x)} and {Γ(z)} are corresponding orthogonal resolutions of the identity.

For non-degenerate observables, we have Λ(x) = |x〉〈x| and Γ(z) = |z〉〈z|. In this case,

the well-known Maassen–Uffink uncertainty relation [9] is expressed in terms of the quantity

c := max
∣∣〈x|z〉

∣∣. Inspired by the results of [10], formulations in terms of quantum conditional

entropies were studied. Such uncertainty relations follow from a few simple properties [11]

including monotonicity of relative entropies under the action of TPCP maps. For a wide

range of parameter values, this important fact has been proved for the so-called “sandwiched”

Rényi entropy. This collection of new relative entropies of Rényi’s type was introduced and

motivated in [12]. An application of such entropies to studying noise-disturbance trade-off

relations may be a theme of separate investigation.

When the range of summation is clear from the context, we will omit symbols like spec(X)

and spec(Z). The authors of [62] have addressed a problem of finding c-optimal bounds on

the sum of corresponding entropies. As a measure of uncertainty in quantum measurements,

one uses generalized entropies of the (h, φ)-form examined in the papers [64, 65]. We will

consider a particular case of this entropic family. Namely, for any α > 0 we define

Ef
α(X) :=

1

1− α
f
(∑

x
p(x)α

)
. (37)

Here, the function ξ 7→ f(ξ) should be continuous and strictly increasing with f(1) = 0.

This choice obeys the conditions required in [62] and is completely sufficient for our purposes.

Indeed, the Rényi entropy (8) and the Tsallis entropy (9) are respectively obtained from (37)

with particular choices

f (R)(ξ) := ln ξ , f (T )(ξ) := ξ − 1 . (38)

We avoid considering entropies of more general kind, since our constructions will involve

conditional entropies.

Measuring the observable X in the pre-measurement state ρ, the outcome x occurs with

the probability Tr(Λ(x)ρ). Substituting this distribution into (37), we obtain the quantity

Ef
α(X;ρ) =

1

1− α
f
(∑

x

[
Tr
(
Λ(x)ρ

)]α)
. (39)

This quantity characterizes an amount of uncertainty in performed quantum measurement.

In the case of POVM N = {N(y)}, the entropy Ef
α(N ;ρ) is given similarly to (39), but with

the probabilities Tr
(
N(y)ρ

)
.

To two observables X,Z ∈ Ls.a.(H), we assign the characteristic

c := max
{
‖Λ(x) Γ(z)‖∞ : x ∈ spec(X), z ∈ spec(Z)

}
, (40)
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and related parameter η := arccos c. Concerning (40), the following fact should be noticed.

It is easy to see that ‖A†‖∞ = ‖A‖∞ for any A. Since both the projectors Λ(x) and Γ(z) are

Hermitian, we then get

‖Λ(x) Γ(z)‖∞ = ‖Γ(z)Λ(x)‖∞ . (41)

For non-degenerate observables, the characteristic (40) is reduced to the maximal overlap

between eigenstates of X and Z, i.e., to max
∣∣〈x|z〉

∣∣. As follows from the unitarity, the latter

ranges between d−1/2 and 1. Introducing the parametric sum

Sα(θ) :=

⌊
1

cos2 θ

⌋
(cos2 θ)α +

(
1−

⌊
1

cos2 θ

⌋
cos2 θ

)α
, (42)

for all α, β ≥ 0 we define the quantity

Bα,β;f (c) := min
θ∈[0,η]

(
f
(
Sα(θ)

)

1− α
+

f
(
Sβ(η − θ)

)

1− β

)
. (43)

For all α, β ≥ 0 and two finite-dimensional observables, the corresponding generalized en-

tropies satisfy the state-independent lower bound [62]

Ef
α(X;ρ) + Ef

β(Z;ρ) ≥ Bα,β;f (c) (44)

This generalized-entropy uncertainty relation for two observables has been proved recently

in [62]. Note that our notation slightly differs from the notation of [62] in minor respects.

Substituting the functions (38), we obtain the lower bounds for both the Tsallis and Rényi

formulations

B (T )

α,β (c) := min
θ∈[0,η]

(Sα(θ)− 1

1− α
+

Sβ(η − θ)− 1

1− β

)
, (45)

B (R)

α,β (c) := min
θ∈[0,η]

(
lnSα(θ)

1− α
+

lnSβ(η − θ)

1− β

)
, (46)

where η = arccos c. In the next, we will use these bounds in obtaining both the Rényi and

Tsallis formulations of noise-disturbance relations. It should be noted that the authors of [62]

derived their uncertainty relations also for the case of two POVMs. However, a treatment

becomes much more complicated. In particular, it depends on the maximal spectral norm

among elements of a single POVM. On the other hand, the results (45) and (46) for projective

measurements are sufficient for our aims.

We will also use entropic uncertainty relations of the Maassen–Uffink type. This approach

was developed in deriving uncertainty relations in terms of Rényi [66] and Tsallis entropies

[67]. Using Riesz’s theorem leads to a specific condition imposed on entropic parameters.

Developing this approach in some physical cases of specific interest is considered in [68, 69, 70].

The corresponding Tsallis entropies satisfy [67]

Hα(X;ρ) + Hβ(Z;ρ) ≥ lnµ
(
c−2
)
, (47)

where 1/α + 1/β = 2 and µ = max{α, β}. Under the same condition on α and β, the

corresponding Rényi entropies satisfy [67]

Rα(X;ρ) + Rβ(Z;ρ) ≥ −2 ln c . (48)
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As was motivated in [62], the bounds (45) and (46) are not always c-optimal. In some cases,

bounds of the Maassen–Uffink type are stronger. Thus, we will also derive noise-disturbance

relations with the use of (47) and (48). The considered bounds are formulated in terms of

only one quantity (40). Another approach to obtaining entropic bounds is dealing with more

matrix elements of the form 〈x|z〉. This important topic has been studied in recent works

[71, 72, 73]. Bounds of such a kind are not used in the following.

3. Main results

In this section, we formulate noise-disturbance relations with the use of generalized entropies.

First, we use the conditional entropies (15) and (18) to quantify information-theoretic noise

and disturbance in quantum measurements. The introduced measures are a natural extension

of the quantities proposed in [24]. Second, we derive nontrivial lower bounds on the sum of

introduced measures of information-theoretic noise and disturbance.

3.1. Information-theoretic noise and disturbance

Let X and Z be observables of a studied quantum system A with d-dimensional state space.

It is assumed to be subjected to a measuring apparatus M. We consider the following two

variants of correlation experiments performed with M [24]. In the first experiment, some

source produces eigenstates of X at random. For non-degenerate X, it should produce each

eigenstate |x〉 with the probability 1/d. According to (35), the integer dx := Tr
(
Λ(x)

)
gives

degeneracy of the eigenvalue x. Therefore, it should be taken at random with the probability

dx/d [24]. The corresponding eigenstate is written as Λ(x)/dx. We feed each of the eigenstates

of X into the apparatus M and ask for correlations of the observed outcomes m with the

eigenvalues of X. The first experiment focuses on the average performance of the apparatus in

discriminating between possible values of X. Only the classical outcomes are used for guessing

in the first experiment [24].

In the second experiment, another source produces eigenstates of Z at random. Due to

(36), each eigenvalue z is associated with the density matrix Γ(z)/dz, where dz := Tr
(
Γ(z)

)
.

The corresponding probability is given by dz/d including 1/d for non-degenerate Z. The

eigenstates of Z are fed through the apparatus M. Then the task is to guess the input

eigenvalue z. Contrary to the first test, we allow an arbitrary operation Ψ acting on both

the classical outcome m and the actual quantum output of the apparatus. This operation is

aimed to reverse a disturbance generated by M during the act of measurement. Thus, the

notion of disturbance is related to the irreversible character of quantum measurements [24].

The disturbance is zero, whenever the input of the apparatus can be recast perfectly after the

correction stage. A significance of unavoidable disturbance was emphasized in [24].

The pre-measurement state ρ will lead to statistics with probabilitis p(x) = Tr
(
Λ(x)ρ

)
.

Measuring by some instrument M results in outcomes m with corresponding probabilities

(5). We wish to estimate quantitatively, whether the apparatus M measures X accurately.

As the actual measurement outcome is kept, we try to guess which eigenstate has been input.

The guessed value x′ is represented as a function g(m) of the measurement outcome. The

“maximum a posteriori estimator” always gives x̂ defined similarly to (20). Of course, an

optimization over guessing functions can be taken into account.

When the pre-measurement state is taken to be completely mixed state ρ∗ = 11A/d, we
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deal with the probability distribution p(x) = dx/d. For non-degenerate observables, the input

random variable X will be uniformly distributed. In effect, there are no general reasons

to prefer one value of x to another. Then different outcomes x will equally contribute to

an information-theoretic measure of noise. In the case of degeneracy, equal weights of the

outcomes are rescaled appropriately. Due to Bayes’ rule, the joint probability distribution of

random variables is written as

p(m,x) = p(x) p(m|x) = Tr
(
Λ(x)ρ∗

)
p(m|x) . (49)

The conditional probability p(m|x) is obtained by substituting the density matrix Λ(x)/dx
into the right-hand side of (5). The joint distribution (49) describes a common statistics of the

input variable X and the output variable M . Hence, we can obtain conditional probabilities

p(x|m) = p(m,x)/p(m). The idea is that a contribution of the given m into a measure of noise

should depend on corresponding conditional probabilities p(x|m). The following property is

physically natural for each fixed m⋆. The closer distribution p(x|m⋆) to uniform, the larger

its contribution to a measure of noise.

Using generalized conditional entropies, we will develop the ideas of [24]. For α ∈ (0, 1],

we define Rényi’s information-theoretic noise of the instrument M as

N (R)
α (M,X) := Rα(X|M) . (50)

Here, Rα(X|M) is the conditional Rényi α-entropy calculated from the joint probability

distribution p(m,x). In the case d = 2, we allow to use (50) for α ∈ (0, 2]. For all α > 0, we

define Tsallis’ information-theoretic noise as

N (T )
α (M,X) := H̃α(X|M) . (51)

The quantities (50) and (51) are respectively Rényi’s and Tsallis’ versions of the information-

theoretic measure introduced in [24]. The latter is obtained from (50) and (51) in the case

α = 1. Note that the definitions (50) and (51) do not assume an optimization over guessing

functions. This question is closely related to the restriction α ∈ (0, 1] used in the Rényi case.

Let M 7→ g(M) be a function of random variable M . The standard conditional entropy obeys

H1

(
X
∣∣g(M)

)
≥ H1(X|M) . (52)

Like (16), the inequality (52) is connected with the concavity property. In a similar manner,

for all α > 0 the conditional entropy (15) satisfies

H̃α

(
X
∣∣g(M)

)
≥ H̃α(X|M) . (53)

This result can be proved similarly to (52). The case of Rényi’s entropies is more complicated.

Together with (22), for α ∈ (0, 1] we can obtain

Rα

(
X
∣∣g(M)

)
≥ Rα(X|M) . (54)

For orders α > 1, we cannot assume concavity of the conditional Rényi α-entropy. As men-

tioned in section 2.3 of [37], the Rényi α-entropy is not concave for α > α⋆ > 1, where α⋆

depends on dimensionality of probabilistic vectors. Unfortunately, sufficiently precise lower
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bounds on α⋆ are not known. In principle, for α > α⋆ we could rewrite (50) with an opti-

mization over guessing functions. At the same time, the property (22) is crucial in proving

information-theoretic relations for noise and disturbance. Within the Rényi formulation, we

therefore focus on the range α ∈ (0, 1] in a finite-dimensional case and on the range α ∈ (0, 2]

in the two-dimensional case. Finally, we point out a conclusion based on the formulas of

Subsection 2.3. Each of the information-theoretic noise (50) and (51) vanishes, if and only if

the minimal error probability tends to zero.

The above scheme seems to be more natural for non-degenerate observables, when each

outcome x is taken with the probability 1/d. The non-degenerate case is not very restrictive.

Of course, physical systems often have degenerate observables. As a rule, the degeneracy is

connected with symmetries of the system. However, real systems are typically subjected to

some amount, even if small, of disorder. Such small imperfections will inevitably break the

degeneracy. In this sense, the results for non-degenerate observables are sufficiently general.

The second question concerns an information-theoretic approach to quantifying the un-

avoidable disturbance. To do so, we consider the second observable Z. As mentioned above,

the main difference between the first and the second correlation experiments is that, in the

second one, we permit to use both the classical outcome and the output quantum system. To

fit the unavoidable disturbance, we assume any possible action after the measurement process

[24]. A general correction procedure is represented by a trace-preserving completely positive

map Ψ. It is used for reconstruction of the initial system A from the output system B and

the measurement record. The final estimation is then obtained by a standard measurement

of Z performed on the result of correction stage. The information-theoretic disturbance will

depend on the joint probability distribution [24]

p(z′, z) = p(z) p(z′|z) = Tr
(
Γ(z)ρ∗

)
p(z′|z) . (55)

This distribution characterizes correlations between the input eigenvalue z and the final esti-

mation z′. The related conditional probability is expressed as

p(z′|z) = 1

dz
Tr
[
Γ(z′) Ψ ◦ ΦM

(
Γ(z)

)]
. (56)

Following [24], we use the two definitions. For α ∈ (0, 1], we define Rényi’s information-

theoretic disturbance of the instrument M as

D(R)
α (M,Z) := min

Ψ
Rα(Z|Z ′) . (57)

Here, the minimization is taken over all possible TPCP maps Ψ. In the case d = 2, the

measure (57) will be used for α ∈ (0, 2]. The conditional entropy Rα(Z|Z ′) is calculated

from the joint probability distribution (55). Further, we define Tsallis’ information-theoretic

disturbance

D(T )
α (M,Z) := min

Ψ
H̃α(Z|Z ′) , (58)

Let us discuss briefly some reasons for the above definitions. We write (57) with the restriction

α ∈ (0, 1], since the property (22) will be essential in the proofs. Further, the error probability

of the final estimation is written as

qe =
∑

z
p(e, z) , p(e, z) =

∑
z′ 6=z

p(z′, z) . (59)
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As was shown in [24] for the non-degenerate case, the error probability qe is immediately

connected with the average fidelity of correction. For non-degenerate Z, one has

1− qe =
1

d

∑
z
F
(
Ψ ◦ ΦM(|z〉〈z|), |z〉〈z|

)
. (60)

Recall that the Schatten 1-norm ‖A‖1 is defined as the sum of all singular values σj(A) [63].

Then the fidelity between density matrices ρ and ω is expressed as [74, 75]

F(ρ,ω) =
∥∥√ρ

√
ω

∥∥2
1
. (61)

When the right-hand side of (60) reaches 1, the error probability qe is zero and each of the

quantities (57) and (58) vanishes. The latter follows from the inequalities (32)–(34).

3.2. Tsallis and Rényi formulations

In this subsection, we will derive Tsallis and Rényi formulations of noise-disturbance trade-off

relations. We begin with relations that are based on the lower bounds (45) and (46). The

first result is formulated as follows.

Proposition 1 Let M be a measuring apparatus, and let X and Z be two observables. For

all α > 0 and β > 0, the Tsallis information-theoretic noise and disturbance satisfy

N (T )
α (M,X) +D

(T )
β (M,Z) ≥ B (T )

α,β (c) , (62)

where the bound (45) is calculated for the characteristic (40).

Proof. By HA, we mean the Hilbert space of the principal quantum system. We also

introduce its reference copy C with the isomorphic space HC . Fixing some orthonormal bases

{|nA〉} for HA and {|nC〉} for HC , one defines a maximally entangled state

|Φ+
AC〉 =

1√
d

d∑

n=1

|nA〉 ⊗ |nC〉 . (63)

For any observable XA ∈ Ls.a.(HA), we then express the partial trace

TrC

(
(11A ⊗ XC)|Φ+

AC〉〈Φ+
AC |
)
=

1

d
X
T

A . (64)

Here, the operator X
T

A is transpose to XA with respect to the prescribed basis. Hence, the

so-called “ricochet” property holds [24]:

1

d
|xA〉〈xA| = TrC

((
11A ⊗ |xC〉〈xC |T

)
|Φ+

AC〉〈Φ+
AC |
)
. (65)

Following [24], we use the fact that the two correlation experiments defining noise and distur-

bance can be treated as a single estimation producing a pair of random variables U = (V, V ′).

In particular, we may choose V to be a copy of M , while V ′ is the best possible estimate Z ′

for Z [24]. If some POVM
{
ΠA(u)

}
with u ∈ ΩU corresponds to the estimation of U , then

the conditional probabilities are expressed as

p(u|x) = 1

dx
Tr
(
ΠA(u)ΛA(x)

)
, (66)

p(u|z) = 1

dz
Tr
(
ΠA(u) ΓA(z)

)
. (67)
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The joint probabilities are obtained after multiplying (66) by p(x) = dx/d and (67) by p(z) =

dz/d, respectively. So, we write

p(u, x) =
1

d
Tr
(
ΠA(u)ΛA(x)

)
, (68)

p(u, z) =
1

d
Tr
(
ΠA(u) ΓA(z)

)
. (69)

Due to the “ricochet” property (65) and linearity of the transpose operation, the probabilities

can be rewritten as

p(u, x) = Tr
((

ΠA(u)⊗ ΛC(x)
T
)
|Φ+

AC〉〈Φ+
AC |
)
, (70)

p(u, z) = Tr
((

ΠA(u)⊗ ΓC(z)
T
)
|Φ+

AC〉〈Φ+
AC |
)
. (71)

We now consider an ensemble of mixed states ρC(u) with corresponding probabilities p(u).

These states and probabilities are written as

ρC(u) = p(u)−1 TrA

((
ΠA(u)⊗ 11C

)
|Φ+

AC〉〈Φ+
AC |
)
, (72)

p(u) = Tr
((

ΠA(u)⊗ 11C
)
|Φ+

AC〉〈Φ+
AC |
)
. (73)

We easily check that the probabilities (70) and (71) can be represented as

p(u, x) = p(u) Tr
(
ΛC(x)

T
ρC(u)

)
, (74)

p(u, z) = p(u) Tr
(
ΓC(z)

T
ρC(u)

)
. (75)

Hence, we have Tr
(
ΛC(x)

T
ρC(u)

)
= p(x|u) and Tr

(
ΓC(z)

T
ρC(u)

)
= p(z|u). Let us apply the

entropic uncertainty relation for the Tsallis entropies. For each value of u, one gives

Hα

(
X
T

C ;ρC(u)
)
+Hβ

(
Z
T

C ;ρC(u)
)
≥ B (T )

α,β (c̃) , (76)

where the parameter c̃ is defined as

c̃ := max
{
‖Λ(x)T Γ(z)T‖∞ : x ∈ spec(X), z ∈ spec(Z)

}
, (77)

It follows from the singular value theorem and (41) that the parameter c̃ coincides with (40).

Multiplying (76) by p(u) and summing over all u ∈ ΩU , we obtain

H̃α(X|U) + H̃β(Z|U) ≥ B (T )

α,β (c) , (78)

due to Hα(X|u) = Hα

(
X
T

C ;ρC(u)
)
and Hα(Z|u) = Hα

(
Z
T

C ;ρC(u)
)
. Since the property (17)

holds for all α > 0, we have

N (T )
α (M,X) = H̃α(X|M) ≥ H̃α(X|M,Z ′) = H̃α(X|U) , (79)

D
(T )
β (M,Z) = H̃β(Z|Z ′) ≥ H̃β(Z|M,Z ′) = H̃β(Z|U) . (80)

Combining (78) with (79) and (80) completes the proof. �

In a similar manner, we will obtain a formulation in the Rényi case. The following state-

ment takes place.
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Proposition 2 Let M be a measuring apparatus, and let X and Z be two observables. When

the orders α and β are both in the interval (0, 1], the Rényi information-theoretic noise and

disturbance satisfy

N (R)
α (M,X) +D

(R)
β (M,Z) ≥ B (R)

α,β (c) , (81)

where the bound (46) is calculated for the characteristic (40). In the case dim(HA) = 2, the

trade-off relation (81) holds for α, β ∈ (0, 2].

Proof. Repeating the argumentation between (63)–(77), we merely replace (76) with the

relation

Rα

(
X
T

C ;ρC(u)
)
+Rβ

(
Z
T

C ;ρC(u)
)
≥ B (R)

α,β (c̃) , (82)

which holds for all α > 0 and β > 0. Note that we have Rα

(
X
T

C ;ρC(u)
)
= Rα(X|u) and

Rβ

(
Z
T

C ;ρC(u)
)
= Rβ(Z|u). Multiplying (82) by p(u) and summing over all u ∈ ΩU , we obtain

Rα(X|U) +Rβ(Z|U) ≥ B (R)

α,β (c) . (83)

Similarly to (79) and (80), we write the following relations. When both the orders α and β

lie in the range (0, 1], the property (22) leads to

N (R)
α (M,X) = Rα(X|M) ≥ Rα(X|M,Z ′) = Rα(X|U) , (84)

D
(R)
β (M,Z) = Rβ(Z|Z ′) ≥ Rβ(Z|M,Z ′) = Rβ(Z|U) . (85)

If d = 2, these relations holds for α, β ∈ (0, 2]. Combining (83) with (84) and (85) completes

the proof. �

Propositions 1 and 2 are respectively the Tsallis and Rényi formulations of relations for

noise and disturbance. In a certain sense, they are an extension of the noise-disturbance

relation given in [24]. In our notation, the information-theoretic relation of the paper [24] is

written as

N1(M,X) +D1(M,Z) ≥ −2 ln c . (86)

The authors of [24] defined the information-theoretic noise and disturbance in terms of the

standard conditional entropy. So, we left out superscripts in the formula (86). Each of the

definitions (50) and (51) leads to the standard information-theoretic noise in the limit α → 1.

In the same limit, both the definitions (57) and (58) gives the standard information-theoretic

disturbance of [24]. The bounds (45) and (46) are not always c-optimal in general. Moreover,

for α = β = 1 these bounds do not coincide with the Maassen–Uffink bound. Thus, the

relations (62) and (81) do not lead to (86) in the case α = β = 1. We shall now derive such

a direct extension. It is based on the entropic bound (47).

Proposition 3 Let M be a measuring apparatus, and let X and Z be two observables. If

α > 0 and β > 0 obey 1/α+ 1/β = 2, then

N (T )
α (M,X) +D

(T )
β (M,Z) ≥ lnµ

(
c−2
)
, (87)

where µ = max{α, β} and the characteristic c is defined by (40).

Proof. The argumentation can be followed like the proof of Proposition 1. For each u,

combining (74) and (75) with (47) finally gives

Hα

(
X
T

C ;ρC(u)
)
+Hβ

(
Z
T

C ;ρC(u)
)
≥ lnµ

(
c−2
)
, (88)
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where µ = max{α, β} and 1/α+ 1/β = 2. Then we complete the argumentation similarly to

the proof of Proposition 1. �

As a particular case of (87), we have the noise-disturbance relation (86) derived in [24].

Thus, our result (87) is an immediate extension of (86). A final comment concerns possible

Rényi’s formulation based on (48). Here, the concavity and related properties are crucial. If

the dimensionality is not prescribed, the property (22) can be accepted only for α ∈ (0, 1].

Combining the latter with 1/α + 1/β = 2 gives α = β = 1. With (48), therefore, we could

reach no more than (86). In the two-dimensional case, we can get a little extension. Here,

non-trivial observables are certainly non-degenerate. For d = 2, we have

N (R)
α (M,X) +D

(R)
β (M,Z) ≥ −2 ln c , (89)

where 1/α+1/β = 2 and α, β ∈ (0, 2]. A search for tightest bounds remains open in general.

Novel uncertainty relations would lead to new trade-off relations for noise and disturbance.

4. Conclusions

We have obtained trade-off relations for noise and disturbance in terms of the Rényi and

Tsallis information-theoretic measures. Our work is a further development of the approach

originally proposed in [24]. As was shown in several cases, the use of generalized entropies

may give new possibilities in analyzing statistical data. The presented information-theoretic

measures of noise and disturbance are based on the conditional Rényi and Tsallis entropies.

Introduced measures were motivated with the use of important properties of the conditional

entropies. In particular, relations between the conditional entropies and the error probability

were essential. We utilized several formulations of entropic uncertainty relations for a pair

of observables. These formulations lead to trade-off relations for introduced measures of

noise and disturbance. The scope of obtained results also depends on concavity properties

of the considered entropies. In this regard, the Rényi formulation turns out to be somewhat

restricted. In the noise-disturbance relations (62) and (81), the entropic parameters do not

satisfy any constraint. We only specify an interval, in which the parameters should range.

When the entropic parameters obey a certain constraint, we can use entropic bounds of the

Maassen–Uffink type. Hence, we have obtained the noise-disturbance relations (87) and (89).
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54. A. Rényi (1967), Statistics and information theory, Stud. Sci. Math. Hung. 2, 249–256.
55. R. Renner and S. Wolf (2005), Simple and tight bounds for information reconciliation and

privacy amplification, In B. Roy, ed., Advances in Cryptology — ASIACRYPT 2005, Lecture
Notes in Computer Science, vol. 3788, 199–216, Springer (Berlin).

56. L. Golshani, E. Pasha, and G. Yari (2009), Some properties of Rényi entropy and Rényi
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