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We show that the length of the effective remote state creation via the homogeneous spin-
1/2 chain can be increased more than three times using the local unitary transformation
of the so-called extended receiver (i.e., receiver joined with the nearest node(s)). This

transformation is most effective in the models with all-node interactions. We consider
an example of communication lines with the two-qubit sender, one-qubit receiver and
two-qubit extended receiver.
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1 Introduction

The problem of remote state creation [1, 2, 3, 4, 5] is an alternative to the state teleportation

[6, 10, 11, 7, 8, 9] and the state transfer problem [12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. All of them are aimed at the

proper way of the information transfer [37, 38, 39] from the sender to the receiver. In most

experiments the information carriers are photons [2, 3, 4, 9, 10, 11]. However, the spin chain

as a transmission line between the sender and receiver is popular in numerical simulations,

see [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27].

In the recent paper [36] we propose the detailed description of the remote state creation in

long homogeneous spin-1/2 chains as the map (control parameters) → (creatable parameters).

Here, we call the arbitrary parameters of the sender’s initial state the control parameters, while

the creatable parameters are the parameters of the receiver’s state (which are eigenvalue-

eigenvector parameters in that paper). As a characteristic of the state creation effectivity,

the creatable interval of the largest eigenvalue was proposed. The critical length Nc = 34 was

found such that any eigenvalue can be created, i.e., the largest eigenvalue can take any value

from the interval 1
2 ≤ λmax ≤ 1.

It was shown [36] that the creatable region of the receiver’s state space (i.e., the subregion

of the receiver’s state space which can be remotely created by varying the control parameters)

shrinks to λmax = 1 with an increase in the length of the homogeneous spin chain. This fact

restricts the applicability of homogeneous spin-1/2 chains in communication lines. A formal

straightforward way to avoid the above shrinking is using the chains with specially valued
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1350 Extension of remotely creatable region via local unitary transformation on receiver side

Fig. 1. The communication line with the extended receiver. Using the optimized local unitary

transformation of the extended receiver we increase the critical length Nc and thus extend the
creatable region in comparison with the model without the above local transformation of the
extended receiver.

coupling constants providing the either perfect state transfer (PST) [13, 15] or high probability

state transfer (HPST) [16, 17, 22, 23, 24]. However, these chains require additional efforts

for their practical realization, unlike the homogeneous chain with all equal nearest-neighbor

coupling constants. Therefore, the problem of improving the characteristics of communication

lines based on homogeneous spin chains is of principal meaning. This conclusion motivates

our further study of the remote state creation via a homogeneous spin chain.

In this regard, we have found an additional simple way to compensate the above mentioned

shrinking of the creatable region in long communication lines based on a homogeneous spin

chain via a local unitary transformation of the receiver side. However, we shall remark that

a unitary transformation applied to the receiver itself can not change the eigenvalues (which

are part of the creatable parameters) of the receiver state. Nevertheless, it is remarkable

that the receiver’s eigenvalue can be changed by a local unitary transformation applied to the

so-called extended receiver involving the receiver as a subsystem, Fig. 1. Further numerical

simulations with the one-node receiver (justified by the theoretical arguments) show that this

procedure is most effective in chains governed by the Hamiltonian with all-node interactions

rather than with nearest-neighbor ones. As a result, we manage to significantly extend the

creatable region and increase the mentioned above critical length from Nc = 34 to Nc = 109 in

homogeneous chains (i.e., more than three times). We emphasize that the above mentioned

optimizing unitary transformation is uniquely (up to non-significant phase transformation)

defined for a given communication line and does not depend on the particular state we need to

create. Therefore, the particular created state is completely defined by the values of control

parameters and there is a one-to-one map (control parameters) → (creatable parameters).

Thus, the only requirement for the tool at the receiver side is the implementation of that

unique optimizing unitary transformation.

All in all, we consider the communication line based on the homogeneous spin chain with

all-node interactions consisting of the following parts, Fig. 1.

1. The two node sender with an arbitrary pure state whose parameters are referred to as

the control parameters (the first and the second nodes of the spin chain).
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2. The one-qubit receiver whose state-parameters are referred to as the creatable parame-

ters (the last node of the chain).

3. The two-node extended receiver consisting of the two last nodes of the chain (involving

the receiver itself).

4. The transmission line connecting the sender with the extended receiver.

Thus, the modification of the remote state creation algorithm of ref.[36] by including the

extended receiver together with the local unitary transformation allows us to perform the sig-

nificant improvement of the characteristics of the communication line based on a homogeneous

spin-1/2 chain without involving the special engineering of coupling constants.

The paper is organized as follows. In Sec.2, we specify the interaction Hamiltonian to-

gether with the initial condition used for the remote state creation. Sec.3 is devoted to the

optimization of the local unitary transformation of the extended receiver with the purpose

to obtain the largest creatable region. Numerical simulations confirming the theoretical pre-

dictions are presented in Sec.4. General conclusions and discussion of results are given in

Sec.4.

2 XY Hamiltonian and initial state of communication line

Our model of communication line is based on the homogeneous spin chain with the one-spin

excitation whose dynamics is governed by the XY-Hamiltonian

H =

N
∑

i,j=1

j>i

Dij(Ii,xIj,x + Ii,yIj,y), Dij =
γ2~

r3ij
, (1)

where γ is the gyromagnetic ratio, rij is the distance between the ith and the jth spins, Ii,α
(α = x, y, z) is the projection operator of the ith spin on the α axis, Dij is the dipole-dipole

coupling constant between the ith and the jth nodes. Below we use the dimensionless time

(formally setting D12 = 1). Obviously, this Hamiltonian commutes with the z-projection

of the total angular momentum Iz, so that the evolution of the one-spin excitation can be

described in the N + 1-dimensional basis (instead of the general 2N dimensional one)

|i〉, i = 0, . . . , N, (2)

where |i〉, i > 0, denotes the state with the ith excited spin, |0〉 corresponds to the ground

state of the spin chain with zero (by convention) eigenvalue.

The general form of the initial state of the N -node chain with the one-excitation initial

state of the two-qubit sender reads

|ψ0〉 = a0|0〉+ a1|1〉+ a2|2〉,
2
∑

i=0

|ai|
2 = 1, (3)

where the real parameter a0 and the complex parameters a1, a2 are given as:

a0 = sin
α1π

2
, a1 = cos

α1π

2
cos

α2π

2
e2iπϕ1 , a2 = cos

α1π

2
sin

α2π

2
e2iπϕ2 , (4)

0 ≤ αi ≤ 1, 0 ≤ ϕi ≤ 1, i = 1, 2. (5)
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Note that formula (3) means that both extended receiver and transmission line are in the

ground state initially.

3 Optimal local transformation of the extended receiver

In this section we derive the optimal local unitary transformation of the extended receiver

which maximizes the creatable region. For this purpose we first find the general formula

for the state of the extended receiver, Sec.3.1. Then we diagonalize this state using the

appropriate unitary transformation V and show that both non-zero eigenvalues depend on

the probability of the excitation transfer to the extended receiver, Sec.3.2. After that we

maximize this excitation transfer probability optimizing the control parameters, Sec.3.3. The

unitary transformation V corresponding to the optimized control parameters is the needed

unitary transformation of the extended receiver, Sec.3.4. This is the transformation which

provides the transfer of both nonzero eigenvalues of the extended receiver to the one-node

receiver. After optimization of V over the time t (Sec.3.5.1), we obtain the algorithm of remote

state creation in Sec.3.6. It is remarkable that the optimization of the transformation V can

be done using the singular value decomposition of some special matrix P whose elements are

defined in terms of transition amplitudes (23) which simplifies numerical simulations, Sec.3.5.

3.1 General state of extended receiver

As mentioned above, the state of the extended receiver is described by the density matrix

reduced over all the nodes except the two last ones. Written in the basis

|0〉, |N − 1〉, |N〉, |(N − 1)N〉, (6)

this state reads

ρRext
≡ Tr1,2,...,N−2ρ =









1− |fN−1|
2 − |fN |2 f0f

∗
N−1 f0f

∗
N 0

f∗0 fN−1 |fN−1|
2 fN−1f

∗
N 0

f∗0 fN f∗N−1fN |fN |2 0
0 0 0 0









. (7)

In (6), |(N − 1)N〉 means the state with two last excited nodes of the chain, the trace is

taken over the nodes 1, . . . , N − 2, the star means the complex conjugate value and fi, i =

0, N, N − 1, is the projections of the state on the basis vector |i〉, i.e.,

fi = 〈i|e−iHt|Ψ0〉 = Rie
2πiΦi , i = 0, . . . , N, (8)

0 ≤ Φi ≤ 1, Ri ≥ 0.

Remember the natural constraint

|f0|
2 + |fN |2 + |fN−1|

2 ≤ 1 ⇒ R2
0 +R2

N +R2
N−1 ≤ 1, (9)

where the equality corresponds to the pure state transfer to the nodes of the extended receiver

because in this case fi ≡ 0 (0 < i < N − 1).

Since the initial state is a linear function of the control parameters ai, the projections fi
are also linear functions of these parameters:

fN (t) = 〈N |e−iHt|Ψ0〉 =

2
∑

j=1

aj〈N |e−iHt|j〉 =

2
∑

j=1

ajpNj(t), (10)

f0(t) = 〈0|e−iHt|Ψ0〉 = a0 ≡ R0, (11)
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where pkj are transition amplitudes:

pkj(t) = 〈k|e−iHt|j〉 = rkj(t)e
2πiχkj(t), k, j > 0, (12)

rkj ≥ 0, 0 ≤ χkj ≤ 1.

In eq. (11), we use the fact that the ground state has zero energy. We emphasize that the

transition amplitudes represent the inherent characteristics of the communication line and do

not depend on the control parameters ai of the sender’s initial state.

3.2 Eigenvalues of extended receiver

The construction of optimal local transformation of the extended receiver is based on max-

imization of the creatable interval of the largest eigenvalue of the density matrix ρRext
(7)

corresponding to the extended receiver. The eigenvalues of ρRext
read as follows:

λ̃± =
1

2

(

1±
√

(1− 2R2)2 + 4R2R2
0

)

, (13)

where we introduce the probability of the excitation transfer to the nodes of the extended

receiver

R2 ≡ |fN−1|
2 + |fN |2 = R2

N +R2
N−1. (14)

The largest eigenvalue λ̃+ as a function of R and R0 varies inside of some interval

λ̃0 ≤ λ̃+ ≤ 1. (15)

Thus, to obtain the largest variation interval we need to minimize λ̃0 as a function of R and

R0. It is simple to show that the minimum λ̃min
0 corresponds to R0 =0. For this purpose we

use the following substitution prompted by constraint (9):

RN = R̃N

√

1−R2
0, RN−1 = R̃N−1

√

1−R2
0, R̃2 = R̃2

N + R̃2
N−1. (16)

In terms of the new notations, the largest eigenvalue reads

λ̃+ =
1

2

(

1 +

√

1− 4(1−R2
0)

2R̃2(1− R̃2)

)

(17)

Calculating the derivative of λ̃+ with respect to R̃ we find the extremum at R̃2 = 1
2 :

λ̃min
+ =

1

2

(

1 +R0

√

2−R2
0

)

(18)

which is minimal at R0 = a0 = 0:

λ̃min
+ |R0=0 =

1

2
. (19)

Note that R is a continuous function of the control parameters ai, i = 1, 2, and R = 0 at

a1 = a2 = 0. Consequently, if R reaches some value Ropt, then with varying ai, we can obtain

any value of R inside of the interval

0 ≤ R ≤ Ropt. (20)
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The largest variation interval 0 ≤ R ≤ 1 corresponds to the communication line allowing the

perfect state transfer of the excitation to the extended receiver. In this case the variation

interval of λ̃+ is also maximal, 1
2 ≤ λ̃+ ≤ 1. However, in general, this variation interval is

following:

1− (Ropt)2 ≤ λ̃+ ≤ 1, 0 ≤ (Ropt)2 ≤
1

2
, (21)

1

2
≤ λ̃+ ≤ 1, (Ropt)2 ≥

1

2
.

Eq.(21) shows that the interval of creatable λ̃+ is completely defined by the probability of the

excitation transfer to the extended receiver. Therefore, the maximization of this quantity

deserves special consideration.

3.3 Control parameters maximizing R

The probability of the excitation transfer R2 (14) is equal to the squared norm of the two-

component vector f = (fN−1 fN )T (the superscript T means transposition),

f = Pa, a =

(

a1
a2

)

, (22)

P =

(

p(N−1)1 p(N−1)2

pN1 pN2

)

(23)

Thus, the maximum (Ropt)2 of the probability R2 as a function of the control parameters can

be found as

(Ropt)2 = max
|a1|2+|a2|2=1

(|fN |2 + |fN−1|
2). (24)

To proceed further, we write R2 in the following form

R2 ≡ f+f = a+P+Pa. (25)

and diagonalize the matrix P+P :

P+P = U+Λ2
0U, Λ2

0 = diag(λ2−, λ
2
+), 0 ≤ λ− ≤ λ+, (26)

where

λ2± =
1

2

(

r2(N−1)1 + r2(N−1)2 + r2N1 + r2N2 ±
√

Q
)

, (27)

Q = (r2(N−1)1 + r2(N−1)2 + r2N1 + r2N2)
2 −

4
(

r2(N−1)2r
2
N1 + r2(N−1)1r

2
N2 −

2 cos(2(χ(N−1)1 − χ(N−1)2 − χN1 + χN2))r(N−1)1r(N−1)2rN1rN2

)

.

So, by virtue of (26), eq.(25) reads

f+f = b+Λ2
0b, b = Ua. (28)
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The mutual position of the eigenvalues in the matrix Λ2
0 is taken for convenience and will be

used in Sec.3.5. Now, by virtue of eq.(28), we rewrite eq.(24) as follows:

(Ropt)2 = max
|b1|2+|b2|2=1

(λ2−|b1|
2 + λ2+|b2|

2), b = (b1, b2)
T . (29)

Obviously, the maximal value is achieved when b2 = 1 and b1 = 0:

(Ropt)2 = λ2+. (30)

The appropriate expression for the vector of control parameters aopt follows from the relation

between a and b given in the second of eqs.(28):

Uaopt =

(

0
1

)

⇒ aopt = U+

(

0
1

)

. (31)

Formula (31) gives us the sender’s initial state leading to the maximal value (Ropt)2 of the

probability R2 at a given time instant.

Note that |fN−1| = 0 at the extremum point of |fN | in the case of nearest neighbor

approximation [36]. As a result, Rmax ≡ max
|a1|2+|a2|2=1

|fN | and there is no contribution from

the (N − 1)th node of the chain. That is why the local transformation of the two-node

extended receiver is not effective in the case of nearest neighbor approximation.

3.3.1 Explicit form of U

We can also write the explicit form of U (and, consequently, the explicit form of aopt) in terms

of the probability amplitudes pij . This can be done using the definition (26) written as

UP+P = Λ2
0U. (32)

Let us represent the matrix U in terms of the parameters αopt
i and ϕopt

i :

U =

(

cos αoptπ
2 − sin αoptπ

2 e−2iϕopt

sin αoptπ
2 e2iϕ

opt

cos αoptπ
2

)

. (33)

Substituting matrix (33) into eq.(32) we can solve it for the parameters ϕopt and αopt:

tan(
αoptπ

2
) = (34)

r2N1 + r2(N−1)1 − λ−

cos(2π(φ12 − χ(N−1)1 + χ(N−1)2))r(N−1)1r(N−1)2 + cos(2π(φ12 − χN1 + χN2))rN1rN2
,

tan(2ϕoptπ) =
sin(2π(χ(N−1)1 − χ(N−1)2))r(N−1)1r(N−1)2 + sin(2π(χN1 − χN2))rN1rN2

cos(2π(χ(N−1)1 − χ(N−1)2))r(N−1)1r(N−1)2 + cos(2π(χN1 − χN2))rN1rN2
.

Then formula (31) with U given by (33,34) gives us the expressions for the control parameters

maximizing the probability R2 of the excitation transfer to the nodes of the extended receiver.
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3.4 Optimized local transformation of extended receiver

In Sec.3.3, we find the values of the control parameters for construction of Ropt. Namely,

a0 = 0 (or α1 = 0), ϕ1 is arbitrary, while α2 and ϕ2 are determined by expressions (34). Now

we write the explicit form of the local transformation diagonalizing the state of the extended

receiver obtained for the above control parameters. Before the diagonalization, density matrix

(7) reads (we mark the appropriate quantities with the superscript opt):

ρ
opt
Rext

≡ Tr1,2,...,N−2ρ =









1− (Ropt)2 0 0 0

0 |foptN−1|
2 f

opt
N−1(f

opt
N )∗ 0

0 (foptN−1)
∗f

opt
N |foptN |2 0

0 0 0 0









. (35)

It is remarkable that the central nonzero 2 × 2 block of the density matrix ρ
opt
Rext

can be

factorized as
(

|foptN−1|
2 f

opt
N−1(f

opt
N )∗

(foptN−1)
∗f

opt
N |foptN |2

)

= ff+. (36)

It is clear that this block can be diagonalized by the matrix V0 of the following form:

V0 =
1

Ropt

(

f
opt
N −foptN−1

(foptN−1)
∗ (foptN )∗

)

(37)

with the eigenvalue matrix

Λb = diag(0, (Ropt)2), (38)

so that we can write

ρ
opt
Rext

= V +ΛV, (39)

where

V = diag(1, V0, 1), (40)

Λ = diag(1− (Ropt)2,Λb, 0). (41)

Consequently, applying the unitary transformation V (40) to ρoptRext
, we obtain the diagonal

density matrix

ρ̃
opt
Rext

= V ρ
opt
Rext

V + = Λ. (42)

The transformation (40) with V0 from (37) is the needed local unitary transformation of the

extended receiver.

3.4.1 The optimized state of one-qubit receiver

To obtain the optimized state of the receiver, we reduce the density matrix (42) to the state

of the last node using the basis (6). Owing to the mutual positions of the eigenvalues in the

diagonal matrix (41), this state reads:

ρ
opt
R = diag(1− (Ropt)2, (Ropt)2). (43)

Thus both non-zero eigenvalues are transferred from the extended receiver to the receiver

itself.
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3.5 Singular value decomposition of P in terms of matrices V +
0 , U and Λ0

It is remarkable that the matrices V0, U and Λ0 can be given another meaning. In fact, the

central 2× 2 block of eq.(42) by virtue of eqs.(37,38,40,41) yields

V0ff
+V +

0 = (Ropt)2
(

0 0
0 1

)

. (44)

On the other hand, eq.(25) by virtue of eq.(26) can be written in the form

f+f = a+U+Λ0Ṽ Ṽ
+Λ0Ua, (45)

where Ṽ is some unitary matrix. Now we can formally split eq. (45) into equation for f

f = Ṽ +Λ0Ua ⇒ (46)

Ṽ f = Λ0Ua
(31)
=

(

0
λ+

)

(47)

and its Hermitian conjugate. Multiplying eq.(47) by its Hermitian conjugation from the right

we obtain

Ṽ ff+Ṽ + = λ2+

(

0 0
0 1

)

. (48)

Comparison of eqs. (44) and (48) prompts us to identify

Ṽ = V0, R2
opt = λ2+. (49)

Comparing eq.(47) with eq.(22) for f by virtue of eqs.(49) we conclude that

P = V +
0 Λ0U, (50)

i.e., the matrices V +
0 , U and Λ constructed in Secs. 3.3 and 3.4 represent the singular

value decomposition of the matrix P . This fact allows us to simplify the algorithm of the

numerical construction and time-optimization of the probability (Ropt)2 together with the

unitary transformations V and U . This algorithm reads as follows.

1. Calculate the matrix P as a function of the time t for the given Hamiltonian governing

the spin dynamics and calculate the largest singular value λ+ of P as a function of the

time t.

2. Find the time instant t0 maximizing the largest singular value of the matrix P . This

maximal singular value gives the maximized probability:

(R(max))2 ≡ (R(opt))2|t=t0 = (λ+)
2|t=t0 . (51)

3. Construct the singular decomposition of P at the time instant t = t0 obtaining the

matrices Umax ( composed of the optimal control parameters) and V max (the optimized

unitary transformation of the extended receiver):

V max = V |t=t0 , Umax = U |t=t0 . (52)

Especially important in the above algorithm is the time-optimization of the probability

(Ropt)2 in no.2 which is given the special consideration in the next subsection.
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Fig. 2. The maximal excitation transfer probability (Rmax)2 (Fig.(a)) and the corresponding
time instant t0 (Fig.(b)) as functions of the chain length N in different models based on the
homogeneous spin-1/2 chain with XY-Hamiltonian: nearest neighbor approximation (the dash-

line), all-node interactions without the local transformation of the extended receiver (the lower solid
line in Fig.(a)), all-node interactions involving the optimal local transformation of the extended
receiver (the upper solid line in Fig.(a)). Both solid lines almost coincide in Fig.(b), although

the first one is a little below the second one. In all cases, t0 is essentially a linear function of N .
The upper and lower horizontal dot-lines in Fig. (a) indicate, respectively, the lower limit of the
high-probability state transfer ((Rmax)2 = 0.9) and the minimal value of (Rmax)2 = 1

2
providing

the creation of any eigenvalue ( 1
2
≤ λmax ≤ 1) in the receiver’s state. The values (Rmax)2 and

associated values t0 corresponding to the critical length Nc = 109 are shown for all three models.

3.5.1 Time-maximization of probability (Ropt)2

In this subsection we give some remarks regarding the maximization of the probability (Ropt)2

as a function of time. The probability (Ropt)2 is an oscillating function of the time t with

the well defined first maximum [36]. The value of this maximum (Rmax)2 together with the

corresponding time instant t0 as functions of the chain length N are shown in Fig.2. For

comparison, (Rmax)2 as function of N for the state creation without the local transformation

of the extended receiver is shown for both nearest-neighbor approximation (the dash-line,

(Rmax)2 = |fN |2 in this case) and all-node interaction (the lower solid line). We see that the

high probability state transfer ((Rmax)2 ≥ 0.9) is possible if N ≤ 6, N ≤ 4 and N ≤ 17 in the

models, respectively, with nearest-neighbor interactions, with all-node interactions without

the optimized unitary transformation V and involving this transformation.

Note that the transfer probability (Rmax)2 is a smooth function of the time in the neighbor-

hood of the maximum t0 and small deviation of the time instant from t0 does not significantly

reduce the value of (Rmax)2. Thus, for the chain of N = 109 with all node interactions we

have t0 = 111.288 and the probability (Rmax)2 takes more then 99% of its maximal value

over the time interval 110.856 < t < 111.712. Similarly, for the chain of N = 34 with nearest

neighbor interactions we have t0 = 37.279 and (Rmax)2 takes more then 99% of its maximal

value over the time interval 36.7992 < t < 37.7769. In other words, we have a high accuracy

over the time interval ∼ 1 (dimensionless units) in both cases.

Another parameter indicated in Fig.2 is the critical length Nc (corresponding to R2
c = 1

2 )

such that any eigenvalue can be created in the receiver ifN ≤ Nc. We see thatNc = 34, 37 and

109 in the models, respectively, with nearest-neighbor interactions, with all-node interactions

without the optimized unitary transformation V and involving this transformation.
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3.6 The algorithm of remote state creation. Analysis of creatable region

As the main result of this section we formulate the complete algorithm of the remote state

creation.

1. Construct the optimized unitary transformations Umax and V max and find the optimal

time instant t0 using the algorithm in Sec.3.5.

2. Create the initial state (3) of the whole chain (i.e., the one-excitation pure state of the

sender and the ground state of the rest of the chain).

3. Apply the unitary transformation Umax (52) to the sender.

4. Switch on the evolution of the spin chain.

5. Apply the local unitary transformation V max to the extended receiver at the time instant

t0.

6. Determine the state of the receiver at the time instant t = t0 as the trace of the whole

density matrix over the all nodes except the receiver’s node. The resulting density

matrix reads as follows (we use the basis |0〉, |N〉):

ρR = TrN−1

[

V maxρRext
(V max)+

]

=

(

1− |z|2 f0z

f0z
∗ |z|2

)

, (53)

z =
1

Rmax
(f∗Nf

max
N + f∗N−1f

max
N−1) = Rze

2iΦzπ. (54)

This matrix coincides with ρoptR (43) if we use optimized initial state (31) with f0 = 0 at the

step no.2. The function z in eq.(53) is nothing but the transition amplitude to the last node

(compare with ref. [36]) after the evolution followed by the local optimal transformation V max

(don’t mix z with fN !). We see that the probability of the excitation transfer to the last

node |z|2 reaches its maximal value |zmax|
2 = (Rmax)2 = |fmax

N−1|
2 + |fmax

N |2 for the optimal

initial state (31). The latter statement is the consequence of the optimizing transformation

V max. Without this transformation, we would have just |zmax|
2 = |fmax

N |2. Thus, again,

the probability of the excitation transfer to the receiver of the communication line is the

parameter responsible for the area of the creatable region in the state-space of the receiver

[36]. We emphasize that our model allows us to increase the length of the high probability

(≥ 90%) state transfer through the homogeneous spin chain with all node interactions from

N = 4 to N = 17, see Fig.2.

Analyzing the creatable region we follow ref.[36] and use the eigenvalue-eigenvector

parametrization of the receiver state:

ρB = UBΛB(UB)+, (55)

where ΛB is the diagonal matrix of eigenvalues and UB is the matrix of eigenvectors:

ΛB = diag(λ, 1− λ), (56)

UB =

(

cos β1π
2 −e−2iβ2π sin β1π

2

e2iβ2π sin β1π
2 cos β1π

2

)

. (57)
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In the ideal case, varying λ and βi (i = 1, 2) inside of the intervals

1

2
≤ λ ≤ 1, (58)

0 ≤ βi ≤ 1, i = 1, 2, (59)

we can create the whole state-space of the receiver. However, the parameters λ and βi are

not arbitrary because they depend on the control parameters via the functions R0, Rz and

Φz in accordance with the formulas [36]:

λ =
1

2

(

1 +
√

(1− 2R2
z)

2 + 4R2
zR

2
0

)

, (60)

cosβ1π =
1− 2R2

z
√

(1− 2R2
z)

2 + 4R2
zR

2
0

, ⇒ (61)

β1π = arccos
1− 2R2

z
√

(1− 2R2
z)

2 + 4R2
zR

2
0

, (62)

β2 = Φz. (63)

As a result, the variation intervals of the creatable parameters λ and β1 become restricted,

so that the creatable region does not cover the whole state space of the receiver. On the

contrary, any value of β2 can be constructed by the proper choice of the phases ϕi, i = 1, 2

in the initial state (3) [36]. This conclusion follows from the explicit expression for z in (54).

Therefore, below we consider the simplified map

(α1, α2) → (λ, β1). (64)

4 Numerical simulations

Now we apply the algorithm proposed in Sec.3.6 to the numerical study of map (64) in the

case of spin chain having the critical length Nc = 109. In Fig.3, we collect the results of

such simulations for the different models shown in Fig.2: the model with all-node interactions

involving the optimized local unitary transformation of the extended receiver (V = V max),

Fig.3a; the model with all-node interactions without the optimized local transformation of the

extended receiver (V equals the identity matrix I), Fig.3b; the model with nearest neighbor

interactions, Fig.3c. We see that using the all-node interaction without optimized local trans-

formation we can only slightly extend the creatable region (compare Figs. 3b and 3c), while

the optimized transformation V max allows us to significantly extend it, see Fig.3a. Results of

our numerical simulations confirm the theoretical predictions of Sec.3 regarding the extension

of the creatable region.

5 Conclusions and discussion

Among the spin-1/2 chains, the homogeneous ones are most simply reproducible because they

do not require the special engineering of the coupling constants among the nodes. This is

an important advantage of these chains in comparison with the chains engineered for the

either PST [13, 15] or HPST [16, 17, 22, 23, 24], which require special efforts for the proper

adjustment of the either all coupling constants (PST) or boundary coupling constants (HPST).
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Fig. 3. The creatable regions in the state-space of the one-qubit receiver for the different models
based on the homogeneous spin-1/2 chain and XY-Hamiltonian. (a) The model with all-node
interactions and the optimal local transformation V max of the extended receiver; (b) The model
with all-node interactions without the local transformation V max of the extended receiver; (c)

The model with nearest neighbor interactions. Solid- and dash-lines correspond to α1 = const

and α2 = const respectively; the interval between the neighboring lines is 0.1 in both families of
curves.
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However, unlike the above non-homogeneous chains, the long homogeneous chains (been used

in communication lines) yield poor characteristics of both state transfer [12] and remote state

creation [36] yielding, respectively, a significant decrease of the state-transfer fidelity and an

area of creatable region with an increase in chain length. Therefore, the method improving

these characteristics of homogeneous spin chains without changing the coupling constants is

a problem of a special interest.

In this paper we show that an effective method of increasing both distance of the high

probability state transfer and creatable region is the specially constructed local unitary trans-

formation applied at the receiver side of the chain. This local transformation must involve

not only the nodes of the receiver itself, but also some nodes from the close neighborhood. In

our case of the one-node receiver we involve only the one additional node. This node and the

one-node receiver form the so-called two-node extended receiver. As a result, we increase the

distance of the high probability (≥ 90%) state transfer from N = 4 to N = 17 (for the model

with all node interactions). The length of the chain allowing us to create any eigenvalue of the

receiver is increased from Nc = 37 (Nc = 34 for the case of nearest neighbor interactions, see

[36]) to Nc = 109, as shown in Fig.2. As a consequence, the creatable region is also extended.

We emphasize that the local unitary transformations of the two-qubit extended receiver

do not essentially increase the creatable region in the case of nearest-neighbor approximation.

These transformations become useful if the spin dynamics is governed by the Hamiltonian

taking into account interactions among all nodes, which, obviously, is more natural in the

case of dipole-dipole interactions. Thus, we have an example demonstrating the advantage

of all-node interaction in comparison with nearest-neighbor approximation. Remember that

all-node interaction makes obstacle for the PST.

The algorithm constructing the optimized unitary transformation of the extended receiver

V max is described in Sec.3 in detail. Doing this we also obtain the initial sender’s state

(aopt in eq.(31) with U = Umax) maximizing the excitation transfer probability. It is this

probability that is responsible for the area of creatable region. It is remarkable that the

optimized unitary transformation (i.e., transformation maximizing the creatable region) of

the extended receiver V max can be constructed in terms of the transition amplitudes pij
(i = 1, 2, j = N − 1, N) between the nodes of the sender and extended receiver (amplitudes

pij are inherent characteristics of the communication line). More exactly, this transformation

can be obtained from the singular value decomposition of the matrix P (23) whose elements

are the above probabilities. This observation is very useful for numerical simulation of the

remote state creation. Results of such simulations are shown in Fig.3.

Summarizing our results we conclude that, in spite of the poor state-transfer and state-

creation characteristics of the homogeneous spin chain itself, there are methods significantly

improving them yielding the optimized homogeneous chain. The further development of such

methods is a problem of practical importance because homogeneous chains are much simpler

for implementation than non-homogeneous ones. Although the photons remain privileged

information carriers in long-distance communication lines, the optimized homogeneous spin

chains can be widely applied in compact quantum devises where they can serve as transmission

lines transferring the information among different modules.

There is a natural question whether the larger extended receiver improves the results.

Our study shows that this question is not trivial. For instance, the three-node extended
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receiver yields the minor improvement: Nc = 110, i.e., the critical length increases by one in

comparison with the two-node extended receiver. But the four-node extended receiver yields

Nc = 191, this is a valuable increase. We shall also remark that the spin chain governed

by the XY Hamiltonian with the nearest neighbor interactions yields significantly different

result: Nc = 34 for the communication line without the extended receiver, the extended

receiver of two nodes doesn’t change it, but the extended receiver of three nodes increases it

up to Nc = 77, and the extended receiver of four nodes yields the same value. The effect of

the extended receiver’s dimension on the length of both HPST and effective state creation

will be considered in a different paper.
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