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The coherence power of a quantum channel, that is, its maximum ability to increase
the coherence of input states, is a fundamental concept within the framework of the
resource theory of coherence. In this note we discuss various possible definitions of

coherence power and coherence rate and their basic properties. Then we prove that
the coherence power of a unitary operator acting on a qubit, computed with respect
to the l1-coherence measure, can be calculated by maximizing its coherence gain over
pure incoherent states. We proceed to show that this result fails in the general case,

that is, the maximal coherence gain is found when acting on a state with non-vanishing
coherence in the case of the l1-coherence and dimension N > 2, the relative entropy of
coherence and the geometric measure of coherence.
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1 Introduction

The development of quantum information science has led to a reassessment of quantum phys-

ical properties such as non-locality or entanglement, elevating them to resources that may be

exploited to achieve tasks that are impossible when these properties are not available. The

quantitative theory of entanglement [1] was perhaps the first example of a theory that was

formulated by taking seriously the idea that quantum properties are physical resources. The

starting point was to take the view that constraints, here the restriction to local operations

and classical communication, prevent certain non-local physical operations from being real-

izable unless resources, here entangled states, are available which may be consumed to allow

us to overcome the imposed constraints. The resource theory approach therefore allows to

analyse physical tasks which are hard in a specific setting (such as non-local tasks for distant

parties) by naturally qualifying and quantifying the resources needed (e.g. entanglement).

Recently, this perspective has uncovered interrelations between thermodynamics and entan-

glement theory [2, 3] and made it possible to generalize the second law in the microscopic

regime [4, 5, 6, 7, 8]. Furthermore, in the resource theory of thermodynamics [6, 9, 10], results
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from the theory of reference frames [11, 12]—yet another successful application of the resource

theory approach—proved useful [13, 14].

Recently, [15] formulated a resource theory for quantum coherence, which is a fundamental

trait of quantum mechanics. In this work the authors defined a number of coherence measures

and outlined, following the example of the theory of entanglement, various extensions that

would have to be completed to explore all the aspects of the resource theory of coherence.

This includes the study of the interconversion of coherent states by means of incoherent

operations both, in the single copy [16, 17] and the asymptotic regime [18, 19] as well as

the characterisation of incoherent operations [20, 21, 22, 23] and the analysis of coherence

measures [24]. Although not addressed from the perspective of resource theories, [25, 26]

have also dealt with the quantification of quantum coherence and the formal characterization

of coherence-decreasing processes. The relationship between coherence and entanglement has

been studied from various angles [28, 29, 23, 30, 22, 31, 32, 33, 34, 35].

Aside of these developments it was pointed out in [15] that following the example of

entanglement theory [36, 37] it would be natural to develop a quantitative theory of the

coherence of operations which may have applications in the study of coherence in dynamical

processes including biological systems where the presence and role of coherence remains a

matter of current debate [38, 39]. Indeed, first steps in this direction were taken in [40, 41]

which mostly considered the coherence power of operations when acting on incoherent states.

In our work we will demonstrate that while being consistent, this is too restrictive as it can

be shown that the achievable coherence gain can be higher when accepting states as inputs

which already possess some coherence [46]. This mirrors similar observations in the realm of

entanglement theory [42, 43].

After this introduction, in section 2 of our manuscript we repeat some basic definitions

concerning coherence measures which will be followed by a discussion of possible definitions

of coherence properties of operations. This will be followed in section 3 by a discussion of

the l1-coherence power of unitaries on qubits where we prove that the maximum increase

of coherence is achieved for incoherent states. Techniques used in this proof will then be

useful in Section 4, which proceeds by demonstrating by means of three simple examples that

for higher dimensional systems one needs to consider states with coherence to calculate the

largest gain in coherence for an evolution. We conclude with a summary and outlook.

2 Basic Definitions

In this section we provide the basic definitions of the quantities that we will be exploring in

this work.

Incoherent states and operations – In many situations the noisy evolution of the state will

average out superpositions between eigenstates of an observable (e.g. the free Hamiltonian)

and it can be hard to produce and control the off-diagonal elements with respect to a given

set of projectors. To model this behaviour by a resource theory, [15] calls states incoherent

that are diagonal in a fixed basis. Similarly, operations are called incoherent if they cannot

produce non-incoherent states from incoherent ones.

Measures of coherence of states – One result of the resource theory of coherence are well-

defined quantifiers of coherence, coherence measures, which are quantities that cannot increase

under the action of incoherent operations. Several such coherence measures could be identified
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and include the relative entropy of coherence as well as the l1-coherence [15]. While most

definitions concerning the coherence power of operations can be formulated for any choice

of coherence measure, for explicit calculations it is of advantage to consider the l1-coherence

measure

Cl1(ρ) =
∑

i6=j
|ρij |. (1)

On the other hand, one might want to ask how much more coherence can be distilled after

the application of a map than before. To answer this, notice that it has been shown that

the distillable coherence in the asymptotic limit [18] is quantified by the relative entropy of

coherence [15], which therefore takes a similarly central role in coherence theory as the relative

entropy of entanglement [44] in the theory of entanglement [2, 3]. It follows that the greatest

increase of distillable coherence is given by the coherence power calculated with respect to

the relative entropy of coherence. The latter can be expressed by

Crel.ent.(ρ) = S(ρdiag)− S(ρ), (2)

where ρdiag denotes the diagonal part of the density matrix ρ [15].

As a third example, in [27] they consider the fidelity between quantum states

F (ρ, δ) =
(

Tr
[

√

ρ1/2δρ1/2
])2

(3)

and prove that one can use it to define a coherence monotone, dubbed geometric measure of

coherence and given by

Cg(ρ) = 1−max
δ∈I

F (ρ, δ) (4)

which for qubits can be easily computed as

Cg(ρ) =
1

2
(1−

√

1− 4|ρ01|2) (5)

where |ρ01| is the off-diagonal element of ρ with respect to the reference basis [27].

Coherence properties of operations –Many physical questions relate to quantum operations

and time evolution rather than directly to quantum states. Hence it is of considerable interest

to examine the coherence properties of quantum operations or of their generators. We want

to quantify how much a map is not incoherent. We thus define the coherence power of a map

by the maximal amount of coherence it can produce, i.e. the maximal coherence gain:

Definition 1 The coherence power P (Φ) of a completely positive operation Φ is defined rel-

ative to the coherence measure C(.) via

P (Φ) = max
ρ

[C(Φ(ρ))− C(ρ)]. (6)

For a unitary operation the coherence power is therefore

P (U) = max
ρ

[C(UρU †)− C(ρ)]. (7)

We have deliberately left unrestricted the range over which the ρ in the maximization are

taken, since we want the coherence power to bound the amount of coherence the operation
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can produce. This is useful, as it implies for instance that the coherence power of applying

two operations consequently should not exceed the sum of the single coherence powers, that

is, P (Φ1) + P (Φ2) ≥ P (Φ1 ◦ Φ2)
d. In [40] the maximization range was restricted to the set of

incoherent states, i.e. the states for which C(ρ) = 0. While this may appear to be a natural

choice, it is not immediately clear that C(Φ(ρ)) − C(ρ) may actually be larger for some ρ

with C(ρ) > 0. Indeed, motivated by similar observations in the theory of entanglement, we

consider this question and answer it in the affirmative [46] in section 4.

We now note some properties that follow immediately from the definition.

Corollary 1 The coherence power of an operation cannot increase by composing it with an

incoherent operation.

Proof:

P (Φinc ◦ Φ) = max
ρ

[C(Φinc ◦ Φ(ρ))− C(ρ)] = C(Φinc ◦ Φ(ρ̃))− C(ρ̃)

≤ C(Φ(ρ̃))− C(ρ̃)

≤ max
ρ

[C(Φ(ρ))− C(ρ)] = P (Φ)

where Φinc is an incoherent operation, Φ is an operation and ρ̃ is the state on which P (Φinc◦Φ)
is achieved .

Corollary 2 The coherence power of a quantum operation is convex.

Proof:

P (
∑

i

λiΦi) = max
ρ

[C(
∑

i

λiΦi(ρ))− C(ρ)]

≤ max
ρ

[
∑

i

λiC(Φi(ρ))−
∑

i

λiC(ρ)]

≤
∑

i

λiP (Φi)

where
∑

i λi = 1 and λi ≥ 0 .

Of interest in the context of dynamical systems are the time dependent generalizations

of the above concepts. Let us consider for example a Markovian time evolution Φt(ρ) with

generator G, that is Φt = eGt or for the special case of a unitary operator Ut = e−iHt. Then

one may either apply directly definition 1 at a time t resulting in the coherence power for that

time-step, or one may consider the amount of coherence that can maximally be generated in

an infinitesimal time-step per time-step, the coherence rate by

dSince P (Φ1 ◦ Φ2) = maxρ[C(Φ1 ◦ Φ2(ρ)) − C(ρ)] = maxρ[C(Φ1 ◦ Φ2(ρ)) − C(Φ2(ρ)) + C(Φ2(ρ)) − C(ρ)] ≤
P (U1) + P (U2).
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Definition 2 For a time evolution Φt = eGt we determine the coherence rate

Γ(G) = lim
∆t→0

1

∆t
max
ρ

[C(eG∆tρ)− C(ρ)] (8)

and in case of unitary evolutions U(t) = e−iHt we write

Γ(H) = lim
∆t→0

1

∆t
max
ρ

[C(e−iH∆tρeiH∆t)− C(ρ)]. (9)

The coherence rate thus captures the idea of how fast coherence may be produced in the course

of a Markovian evolution. To get an intuition as to why this might be useful, suppose there

is some environment acting on a system, forcing it to decohere. In this scenario an evolution

which has a high coherence rate might still produce some coherence, while one with a small

coherence rate compared with the coherence time of the system will keep the system almost

incoherent throughout the whole evolution. In this case therefore, the evolution with a high

coherence rate may still be quantum, notwithstanding the decohering environment. This line

of thoughts suggests that the coherence rate might prove useful for quantifying quantumness

in scenarios with a high temperature, such as biological systems. Furthermore, in the course

of a quantum mechanical evolution the generation of coherence is inextricably linked with

population transfer (as coherence between states requires population in both) and therefore

a large coherence rate will imply a large population transfer rate. Linking such concepts

quantitatively will first require a proper understanding of the concept of coherence rate.

We illustrate Definition 2 by calculating the l1-coherence rate of the channel Φ(∆t) = eG∆t

that for small ∆t acts as

ρ −→ S(RρR†),

where

R(α∆t) =

(

cos(α∆t) − sin(α∆t)
sin(α∆t) cos(α∆t)

)

is a 2-dimensional rotation and

S(ρ) =

(

ρ00 e−γ∆tρ01
e−γ∆tρ10 ρ11

)

is a dephasing operator. Let us first consider

Cl1(e
G∆tρ)− Cl1(ρ) = Cl1(S(RρR

†))− Cl1(ρ)

= 2e−γ∆t|(RρR†)01| − 2|ρ01|.
Let us now calculate the coherence rate of this map by maximizing the previous expression

over pure incoherent states:

Γl1(G) = lim
∆t→0

1

∆t
max
ρ∈I

[Cl1(S(RρR
†))]

= lim
∆t→0

1

∆t
2|e−γ∆t cos(α∆t) sin(α∆t)|

= lim
∆t→0

1

∆t
2|(1− γ∆t)(1− α2∆t2

2
)(α∆t)|

= lim
∆t→0

1

∆t
2|α∆t| = 2|α|.
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The coherence rate of the considered channel Φ(∆t), is therefore found to be at least 2|α|,
which is the same coherence rate as that of the rotation R(α∆t) (taking into account that the

coherence power of a 2-dimensional unitary operator is achieved on pure incoherent states,

see Section 3). Since Cl1 is a proper coherence monotone satisfying Cl1(Λincρ) ≤ Cl1(ρ) we

also have that

Cl1(e
G∆tρ)− Cl1(ρ) ≤ Cl1(RρR

†)− Cl1(ρ).

We conclude that the coherence rate of the considered channel can be calculated on pure

incoherent states.

Note that one may also pursue questions concerning the coherence cost of an operation, that

is, the amount of coherence in the form of maximally coherent states that is required to

achieve an operation purely from incoherent operations. Questions regarding coherence cost

and distillable coherence have been addressed in [18]. We will not pursue such quantities

further here.

Of interest would be also to consider the N-dimensional unitary operations that have max-

imal coherence power. An example of this kind of unitaries is the discrete Fourier transform:

Corollary 3 The coherence power of the discrete N-dimensional Fourier transform, calcu-

lated with respect to l1-coherence, is maximal and is given by:

Pl1(F) = N − 1. (10)

Proof:

Pl1(F) = max
ρ

[
1

N

∑

a 6=b
|
∑

j,j′

e
2πi

N
(ja−j′b)ρjj′ | −

∑

a 6=b
|ρab|]

≥ max
ρ=|k〉〈k|

[
1

N

∑

a 6=b
|
∑

j,j′

e
2πi

N
(ja−j′b)ρjj′ | −

∑

a 6=b
|ρab|]

= N − 1.

Since Pl1(U) ≤ N − 1, we conclude that a discrete N-dimensional Fourier transform is an

example of unitary having maximal coherence power .

3 Coherence power of a 2-dimensional unitary operator

As we have already mentioned, it is a non-trivial question whether it suffices in Definition 1

to restrict ρ to incoherent states or whether the full range of possible states, including states

with coherence, need to be considered. First we formulate and prove

Theorem 1 The coherence power of a 2-dimensional unitary operation U acting on qubits

and calculated with respect to the l1-coherence is maximal for pure incoherent states

Pl1(U) = max
i=1,2

[Cl1(U |i〉〈i|U †)].
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Proof: First we note that the coherence power of Rz(α)URz(β), where Rz denotes a diagonal

(and hence incoherent) unitary, is the same as that for U .

P (Rz(α)URz(β)) = max
ρ

[C(Rz(α)URz(β)ρR
†
z(β)U

†R†
z(α))− C(ρ)]

= max
ρ

[C(URz(β)ρR
†
z(β)U

†)− C(ρ)]

= max
ρ

[C(UρU †)− C(R†
z(β)ρRz(β)]

= max
ρ

[C(UρU †)− C(ρ)]

= P (U).

Where the first and fifth equalities are the definition of the coherence power, the second and

the fourth follow from Rz(α) (respectively Rz(β)) being incoherent and the third from the set

of states being invariant under a change of basis. Now consider the unitaryM = Rz(ψ)URz(φ)

M =

(

ei(ψ+α) 0
0 e−i(ψ−α)

)(

ugg uge
ueg uee

)(

ei(φ+β) 0
0 e−i(φ−β)

)

(11)

where α and β are global phases without physical effect. We choose α and ψ such that

ugge
i(ψ+α) ∈ R+ and uege

i(−ψ+α) ∈ R. We find

M =

(

ugg uge
ueg uee

)(

eiφ 0
0 e−iφ

)(

eiβ 0
0 eiβ

)

(12)

with ugg ∈ R+ and ueg ∈ R. Now choose φ = −β and make use of the orthonormality of the

columns in a unitary

ugg(ugee
−2iφ) + ueg(ueee

−2iφ) = 0 (13)

to conclude from ugg, ueg ∈ R that the phase of ugee
−2iφ and ueee

−2iφ is equal and can be

eliminated by appropriate choice of φ. Therefore we can assume

M =

(

ugg uge
ueg uee

)

(14)

with ugg, ueg, uge and uee ∈ R. Hence we can start by considering real U and using ρgg =

1− ρee and ρeg = ρgee
iγ we find

P (U) = 2max
ρ

[|ueeuge + ρgg(uegugg − ueeuge)

+ρge(ueeugg + eiγueguge)| − |ρge|].

As the first two terms are real and the third term can be chosen to have any phase by virtue

of the freedom of phase of ρge we notice that the absolute value takes on its maximum value

when ρge(ueeugg + eiγueguge) is real and has the same sign as the sum of the first two terms.

Now let us choose ρge(ueeugg+e
iγueguge) ∈ R and with the same sign as ueeuge+ρgg(uegugg−
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ueeuge) (the case for opposite sign is treated analogously). Then there are two cases:

1) ueeuge + ρgg(uegugg − ueeuge) > 0 which leads to

P (U) = 2max
ρ

[(ueeuge + ρgg(uegugg − ueeuge)

+|ρge|(|ueeugg + eiγueguge| − 1)].

As U ∈ R we have

|ueeugg + eiγueguge| =
∣

∣

∣

∣

∣

(

ugg
ugee

iγ

)(

uee
ueg

)†
∣

∣

∣

∣

∣

.

As the vectors on the right are normalized the modulus of their scalar product is bounded by

1. Therefore 2|ρge|(|ueeugg + eiγueguge| − 1) ≤ 0 and takes its maximum for ρeg = 0.

2) ueeuge + ρgg(uegugg − ueeuge) < 0 proceeds along the same lines.

The coherence power of a 2-dimensional unitary is therefore achieved for states ρ that are

incoherent. To complete the proof of the theorem we now note that by the convexity

C(
∑

n pnρn) ≤
∑

n pnC(ρn) for any set of states {ρn} and probability distribution {pn}
we find

Cl1(UρincU
†) = Cl1(U

∑

i

pi|i〉〈i|U †)

= Cl1(
∑

i

piU |i〉〈i|U †)

≤
∑

i

piCl1(U |i〉〈i|U †)

≤ Cl1(U |i∗〉〈i∗|U †)

where |i∗〉〈i∗| is the pure incoherent state which has the largest contribution in the sum [45].

This concludes the proof .

From theorem 1 we easily find

Corollary 4 The coherence power of a 2-dimensional unitary operation U, calculated with

respect to the l1-coherence, is given by

Pl1(U) = max
j

{(
2

∑

i=1

|Uij |)2 : j = 1, 2} − 1. (15)

Proof: Since in order to compute the coherence power of a 2-dimensional unitary we need

to maximize the gain over pure incoherent states only, we find

Pl1(U) = max
|k〉〈k|

[Cl1(U |k〉〈k|U †)] : k = 1, 2

= max
j

{(
2

∑

i=1

|Uij |)2 : j = 1, 2} − 1

.
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4 Coherence power of an N-dimensional unitary operator (N > 2)

The question then arises whether theorem 1 is valid for any coherence measure, thus implying

an intrinsic property of coherence power in 2-dimensional spaces, or whether it only holds for

the considered l1-coherence. Indeed, the coherence power has been defined in this way in [40].

However, it is not self-evident that the largest coherence gain is obtained from incoherent

states. Indeed, in the theory of entanglement the analogous question, i.e. whether the entan-

glement gain is maximized by starting on separable states, has been answered in the negative

[42, 43]. In the following we show that the same observation holds for the case of coherence

power for the cases of the l1-coherence, the relative entropy of coherence (both cases have

been independently addressed in [41]) and the geometric measure of coherence. Through our

proof of the latter, we make explicit how symmetries can be used in general to simplify the

problem using the techniques shown in theorem 1.

Corollary 5 The coherence power of a 2-dimensional unitary operator calculated with re-

spect to the geometric measure of coherence may be larger than the maximal coherence gain

computed on incoherent states only.

Proof:

As we have shown in the proof of theorem 1, we can assume our unitary to be real:

Uφ =

(

cosφ − sinφ
sinφ cosφ

)

. (16)

Let us parametrize the state over which we are maximizing as ρ = Uα|0〉〈0|U †
α, where

w.l.o.g. Uα is a real unitary as well (as in the proof of theorem 1). Then the expression we

are interested in maximizing is given by

Gα(Uφ) = Cg(UφUα|0〉〈0|U †
αU

†
φ)− Cg(Uα|0〉〈0|U †

α). (17)

Its first derivative with respect to α is plotted in figure 1 for a fixed φ = 0.0001. From

there it can be concluded, since no critical point is found at α = 0, that there may exist

non-incoherent states ρ̃ = Uα̃|0〉〈0|U †
α̃, where α 6= 0, which give rise to a larger increase in

coherence than incoherent states when undergoing the action of a unitary operator. In fact,

we have that the maximum coherence gain is achieved for α = 0.7852:

G0.7852(U0.0001) = 9.99 · 10−5 > G0(U0.0001) = 1 · 10−8.

Proposition 1 For N > 2, the coherence power of an N-dimensional unitary operator can

be larger than the maximal coherence gain computed on incoherent states only, for both the

l1-coherence and the relative entropy of coherence.

Proof: We consider the coherence power as quantified relative to the l1-coherence and the

relative entropy of coherence [15].

l1-coherence power – Let us consider a 3-dimensional rotation by θ = π
4 around the x axis:

Rx

(π

4

)

=





1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2



 . (18)
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0 0.05 0.1 0.15 0.2 0.25
0

1

x 10
−4

α/π

Fig. 1. First derivative of the coherence gain of the unitary U0.0001 calculated with respect to the
geometric measure of coherence.

According to corollary 4, its maximum coherence gain calculated over pure incoherent states

is found to be:

max
j

{(
3

∑

i=1

|Rx
(π

4

)

ij
|)2 : j = 1, 2, 3} − 1 = 1. (19)

It is easy to find examples of coherent states that provide a larger coherence gain for this

particular rotation. The state |ψ〉 = c1|1〉 + c3|3〉 where c1 = 0.3 and c3 =
√
1− 0.32, for

instance, provides a coherence gain of 1.1471:

G|ψ〉〈ψ|
(

Rx

(π

4

))

= Cl1







c1
2 − c1 c3√

2
c1 c3√

2

− c1 c3√
2

c3
2

2 − c3
2

2
c1 c3√

2
− c3

2

2
c3

2

2






− Cl1





c1
2 0 c1 c3
0 0 0

c1 c3 0 c3
2





= (2
√
2− 2)c1c3 + c23

= 1.1471 > 1.

Relative entropy of coherence power – Assuming that the coherence power could be cal-

culated by maximization of the gain over incoherent states, and the observation that by

convexity of the relative entropy of coherence we can then restrict maximization to pure in-

coherent states, we find for the coherence power of an N-dimensional unitary with respect to

the relative entropy of coherence, that it can be calculated by

Prel.ent.(U) = max
i

{−
N
∑

j=1

|Uij |2 log(|Uij |2) : i = 1, ..., N}, (20)

since

Prel.ent.(U) = max
|i〉〈i|

[Crel.ent(U |i〉〈i|U †)− Crel.ent.(|i〉〈i|) : i = 1, ..., N ]

= max
|i〉〈i|

[S((U |i〉〈i|U †)diag)− S(U |i〉〈i|U †) : i = 1, ..., N ]

= max
|i〉〈i|

[S((U |i〉〈i|U †)diag) : i = 1, ..., N ]

= max
i

[−
N
∑

j=1

|Uij |2 log(|Uij |2) : i = 1, ..., N ].
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Let us now consider a 3-dimensional rotation of θ = π
8 around the x axis:

Rx

(π

8

)

=





1 0 0
0 cos

(

π
8

)

− sin
(

π
8

)

0 sin
(

π
8

)

cos
(

π
8

)



 . (21)

Maximization of the coherence gain of this rotation over incoherent states results in

max
i

{−
3

∑

j=1

|Rx
(π

8

)

ij
|2 log(|Rx

(π

8

)

ij
|2) : i = 1, 2, 3} = 0.41650.

However we have found a number of coherent states that provide an even larger gain, such as

the state |φ〉 = q2|2〉+ q3|3〉 where q2 =
√
1− 0.125332 and q3 = 0.12533:

G|φ〉〈φ|
(

Rx

(π

8

))

= 0.47648 > 0.41650. (22)

The maximum gain of these two rotations, with respect to their corresponding coherence

measure, is not achieved on pure incoherent states. Adapting the unitaries by direct addition

of the identity one gets counterexamples in higher dimensions by the exact same arguments.

Therefore the most natural definition of the coherence power is by maximization over all

states .

5 Conclusion

In this note we have discussed several possible definitions of coherence power and shown some

basic properties of it. We have also proved that the coherence power of a 2-dimensional

unitary operator with respect to the l1-norm can be calculated by maximizing its coherence

gain over pure incoherent states only. Giving an explicit counterexample, we could show that

this result cannot be generalized for dimensions higher than N = 2 [46]. We also show that

the result does not hold in the case of the geometric measure of coherence.

Hence, analogously to the result of entanglement theory, where it was observed that en-

tangled states typically admit the largest gain in entanglement, we found that some initial

coherence in the input state can be required for an optimal coherence gain to be attained.

This result shows that it is not sufficient to maximize the coherence gain over incoherent

states. It seems therefore an interesting question if one can restrict the optimization in higher

dimension to a smaller subset or one needs to run it over the whole state space even for uni-

tary evolutions. For non-unitary evolutions, while it seems challenging to try to find a generic

simplification, one still might use the symmetries present in coherence theory to simplify the

optimization for a given evolution, similarly as we used them here in the case of qubits and

unitary evolution for proving theorem 1 or in the explicit examples in sections 2 and 4.
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