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We study a quantum algorithm that consists of a simple quaMankov process, and we analyze its

behavior on restricted versions of Quantum 2-SAT. We prbet the algorithm solves these decision
problems with high probability for. qubits, L clauses, and promise gapn time O(n?L?c=2). If

the Hamiltonian is additionally polynomially gapped, ouraithm efficiently produces a state that

has high overlap with the satisfying subspace. The Markoegss we study is a quantum analogue
of Schbning’s probabilistic algorithm fok-SAT.
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1 Introduction

For then-bit classical constraint satisfaction problénSAT, several algorithms beat the exhaustive
search runtime bound @f*. They provide a runtime with a mildly exponential scaliidg(™) with
r < 2. One such algorithm is Séhing’s probabilistic algorithm that finds a solution of 3dSin
time O(1.334™) [1]. The algorithm works by exploring the solution space usingimple Markov
process. Although variants of the algorithm had been knawisdéme time 2, 3], Schbning was the
first to prove the runtime bound fér > 3. For 2-SAT, Papadimitriou earlier introduced a variant of
this algorithm that finds a satisfying assignment (if therene) in expected tim@(n?) [3]. While
linear-time 2-SAT algorithms exist[ 5], Papadimitriou’s algorithm is admired for its simplicity
Quantumk-SAT is the quantum generalization of the classieé®AT problem. Analogously
to classicak-SAT, Quantum 3-SAT is QMA-complete 6], while Quantum 2-SAT can be solved in
polynomial time [/]. Interestingly, existing algorithms for Quantum 2-SATaaaralleled algorithms
for classical 2-SAT: Bravyi’s original algorithm for Quamh 2-SAT is similar to Krom’s algorithm
for classical 2-SAT §] and uses inference rules; and two recent linear-time #hgos for Quantum
2-SAT [9, 10] use ideas from linear-time classical 2-SAT algorith#sg].
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In this work, we describe an algorithm that is a quantum anaoof Papadimitriou’s classical
algorithm and analyze its behavior on restricted versidr@uantum 2-SAT. Like the classical algo-
rithm, our quantum version consists of repeated applinataf a simple (quantum) Markov process.
As with the recent linear-time Quantum 2-SAT algorithms,apely tools and intuition from the clas-
sical algorithm to analyze the quantum version. Howevaratgorithm is a quantum algorithm; past
algorithms for Quantum 2-SAT have been classical. Sincé&oly showed that the classical version
of this algorithm performs well for classicRdSAT with k& > 2, there is hope that the quantum version
will have success on QuantumaSAT with k > 2. Therefore, we think understanding this quantum
Markov process in the case bf= 2 is of value.

Papadimitriou’s classical algorithm for 2-SAT takes agiimjhe number of bits, a set of clauses
Z, and a real parametér> 0, whereb is chosen depending on the desired probability of success.
Then the algorithm is as follows:

Classical Algorithn(n, Z, b)
e Pick a strings uniformly at random fron{0, 1}".
o Repeabn? times:

— Ifthere exist clauses ifi that are not satisfied on randomly choose one of the unsatisfied
clauses, and then randomly choose one of the bits in thageldtlip the value of that bit
and rename to be the new string with the flipped bit.

— If s satisfies all clauses, retusrand terminate.
e If s does not satisfy all clauses, return “No satisfying striowgrfd.”

If there is no satisfying assignment, the algorithm will ajs return “No satisfying string found.” If
a satisfying string exists, this algorithm will return aisbfting assignment with probability, where
(1 —p) bl

The quantum algorithm that we consider is the natural géimatimn of this procedure to the
guantum domain for the problem Quantw¥BAT, which is the natural generalization of Classical
k-SAT to the quantum domain. We now give the definition of Quamk-SAT onn qubits as it was
introduced by Bravyi (altered to include only rank-1 prages) [7]:

Definition [Quantum k-SAT] Letc = Q(n9) with g a positive constant. Given a setbfrank one

projectors (called “clauses”Yd, = |¢.){¢d«|, €ach of which acts non-trivially on at mastqubits,
define

L
H=) 2, 1)
a=1

One must decide between the following two cases:
1. The YES instance: There existsragubit statep that satisfies {tH p] = 0.

2. The NO instance: For any-qubit statep, we have that {tH p] > c.
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We now give a quantum algorithm for QuantdnSAT onn qubits, but in this paper we focus on
k = 2. The quantum algorithm takes as input the number of qubitsset ofL clausesZ = {®,},
and two positive integerd’ and7’, whereN < T. N andT are chosen based on the desired prob-
ability of success. The clauses can be given either via sicksdescription, or operationally, as
measurement projectors. Then the algorithm is as follows:

Quantum Algorithrtn, Z, N, T')

e Initialize the system in the maximally mixed staterofjubits.
e Initialize a counterV, to equal O.

e Repeafl times:

— Choosex uniformly at random from{1, ..., L}, and measur®,,. If outcome 1 is mea-
sured, choose one of the qubits in the suppo® gfat random and apply a Haar random
unitary to that qubit. If outcome 0 is measured, 8gt= N + 1.

e If Ny > N decide you are in a YES instance. Otherwise, decide NO.

One might expect that an algorithm for QuantdnaSAT first prepares a low energy state, and
then estimates the energy of the state using, for exampésepbstimation. In our work we use the
repeated measurements of clauses to fulfill both roles. \&egpe the low energy state by repeatedly
measuring clauses and applying random unitaries if theselare unsatisfied. We test whether the
state has low energy by tracking the number of satisfied outso We will show that if, over repeated
measurements, most of the outcomes are satisfied, then wehew energy state.

Variants of this algorithm have been analyzed previoustiiffierent contexts. A similar algorithm
was proposed to prepare graph states and Matrix ProduetsStassipatively 1], and a variant was
used as a tool for the constructive proof of a quantum locabkma lemma for commuting projectors
[12, 13].

Given a YES instance of Quantu2aSAT, since Quantum 2-SAT is iR, one might expect that the
Quantum Algorithnwill converge to a satisfying state in polynomial time. Wewstthat this is indeed
the case, at least for a restricted set of clauses. Chen gt4hlshowed that for every YES instance
of Quantum 2-SAT, there is always a satisfying assignmaattitha product of single- and two-qubit
states. In fact, with the restricted clause set that we densthere will be a satisfying single-qubit
product state of the form:

1), ® - @ [Pn),, )

where the ket:), denotes the state of ti# qubit. For ease of notation, for YES instances, we use the
following basis:

10); = [¥i); - 3)

Hence, for the rest of this paped)®" does not refer to the standard basis state, but to an unknown
product state that satisfies all clauses of a Quantum 2-Sg@rige. In the basis whef@)®" is a
satisfying state, all of the clauses are of the form
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General Clauses:

(I)Oé = |¢a><¢a| 9 Wlth |¢0¢> = Qq ‘01>17J + ba |1O>17J + Co ‘11>Z,j ) (4)

wherei, j label the two qubits in the clausk,. For reasons that we will discuss later, we can only
prove that the&Quantum Algorithnsucceeds in polynomial time if in the YES instance the claase
restricted to have, = 0. In the NO case, the clauses have no restrictions. We callpfublem
Restricted Quantum 2-SAT, and we show that th@uantum Algorithntan succeed in this setting
whenT = O(L*n?/c?). This restriction can be somewhat relaxed, andppendix 1 we show that
the algorithm succeeds in polynomial time if in the YES ins®every clause satisfies eithgr= 0
ora, = b, = 0. In Classical 2-SAT instances, for evaty only one ofa,, b,, andc, is non-zero,
and thereforé\ppendix 1shows that our algorithm solves Classical 2-SAT efficiently

For ease of explication, for now we work with

Restricted Clauses:
Qo = [¢a)(Pal, With ) = aq |01), ; +ba[10), ;. ®)

Note that|0)®" and|1)®" are both satisfying states with the restricted clause set.

In addition to solving Restricted Quantum 2-SAT, in the YESe& theQuantum Algorithnpro-
duces a state that has high overlap with a satisfying assighrin this setting, the smallest eigenvalue
of H is 0, and we calt the size of the smallest non-zero eigenvalué/ofWe show that after running
the Quantum Algorithnfor T = O(n%L/¢) steps, the resultant state will have large overlap with a
statep that has H p] = 0.

The Quantum Algorithmmay solve arbitrary Quantum 2-SAT instances in polynomiaét but
our analysis can only show that it succeeds in polynomiaéton Restricted Quantum 2-SAT. On
the other hand, Bravyi's algorithm and recent linear-timamfum algorithms10, 9] give procedures
for deciding all Quantum 2-SAT instances in polynomial tinbeit are classical algorithms. Our
algorithm is a quantum algorithm, so our analysis techréquay be of broader interest. In particular,
our approach may have applications to Quantu®AT for k& > 2.

2 Analysis of the Quantum Algorithm for Restricted Quantum 2-SAT

On a YES instance, thQuantum Algorithntan be viewed as a quantum Markov process that con-
verges to a quantum state that is annihilated by all the elaus quantum Markov process is described
by a completely positive trace preserving (CPTP) mig). [Call p, the state of the system at time
The CPTP mafy” describes the update pf at each step of the chain, po, , = 7 (p,).

Call 7, the map that checks whether claubg is satisfied, and if it is not satisfied, applies a
random unitary to one of the qubits in the supporigf Let: and; be the two qubits associated with
claused,. Then

Ta(p) = (1-00) p (104 + S Ai(Bapa) + 5 A (@ep0) (6)

whereA,; is the unitary twirl map acting on qubit

Milp) = [ dwiuipU! = 5 s o] )
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andd[U;] is the Haar measure. At each time step, we cheosem {1, ..., L} uniformly at random
and apply the maff,. This corresponds to the CPTP update map
1 L
T(p) :Z;Ta(p)- (8)

During the measurement step, whetis chosen uniformly at random and one measdrgsthe
probability of obtaining outcome at timet is

%Z”[%M = %tr[Hpt]- )

2.1 FEzxpectation of Total Spin

In analyzing the classical algorithm, Papadimitriou anbdd®ing kept track of the Hamming distance
between the current string and the satisfying assignmaspired by this idea, we find it useful to
analyze the expectation value $fand 52, whereS is twice the total spin:

S = iaf and $2 = Z oio%. (10)
1=1

ij=1

Note thatS is closely related to the quantum Hamming weight operatdr , %(1 —0?).
We show that with the restricted clause set, the expectatibue ofS is constant under the action
of 7, whereas the expectation value$¥ can not decrease under the actioryof

Lemma 1 Given a set of restricted claus€®,,...,®} (i.e. all of the form ofEq. (5), with T
defined as irEq. (8) then

tr[ST(p)] — tr[Sp] =0 (11)
wlSPT(p)] — xf%p] = 7 3" trlap] > 0 12)

PROOF. Let 7 be the dual off, so that

WIST(p)] = t(TH($)p) and  tiS2T(p)] = tr[T"($)p). (13)
First consider

TH(S) = (1-2a)S(1-04) + L @ai($) @0 + S Bal; (50, (14)

wherei, j are the two qubits wher@,, acts. Note that — 07 — 07 is invariant under the action of
7.1, so

TIH(S) =8 — 07 — 05 + (1-2,) (07 + 05) (1-®,)
1 > o 1 z z
+§<I>0Ai(ai +0%) @4 + §‘IJQAj(O'i +075) 4. (15)
Due to the special properties of the restricted clausesiq.f(5) we have

(07 +0%) = (07 +07)Pa =0, (16)
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for all o, which together with\;(07) = 0 andA;(0%) = o7 for i # j gives

TH(S) = 8.
This implies

TH(8) =8,
so we see that the expectation valuesdé unchanged by the action @fon a state:

W[ST (p)] = w[Sp).

17)

(18)

(19)

The expectation value ¢f?> does change under the actionfof ®,, acts only on qubits and;, so

accordingly we break up? as
52 = {52 —2070; -2 ) 0j (0} + 0’;)}
k#i,j
+ [2a§a§ +2 Y 0j(o} +a§)}
ki,

7.1 leaves the first term unchanged. Now

z z z z 1 z z 1 z z
T (070%) = (1-9,)070% (1-®,) + §<I>QA1-(01- 05) 00 + §<I>aAj(ai 0%)®q.

Because of the special properties of the clauseskq.f(5) we have
@aafoj = ofajéa =-&,.
UsingEq. (16)and thatA;(c?) = 0, we have
Ti(070%) = 0707 + P,
Now notice
TH(05(0F +05)) =(1-04)07 (07 + 075)(1-2a)
+ 5P i(05(07 +07) 2
+ 5 ®Bal(0F(0F + 07)) e
=0i(0; + Uj).
where we have again uséd. (16) Putting the pieces together gives
TI(S9?) = 5% + 29,.

The change in the expectation value®fafter the action of” is thus

[>T (p)] — t[52p] = % S ] > 0.

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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2.2 Runtime of the Quantum Algorithmto Decide Restricted Quantum 2-SAT

The Quantum Algorithndecides between YES and NO cases based on the numberahied out-
comes, i.e. satisfied projectors, obtained during the glgor The probability of getting 8-outcome
at stept is

1 SulHp) (27)
and so depends on the expectation valug/oEg. (26)allows us to relate the expectation value/bf
to the expectation value 2. While the expectation value @f is not necessarily monotonic over the
course of the algorithm, the expectation valugéfis monotonic (byLemma 3 and is also bounded,
since the maximum eigenvalue 8% onn qubits isn?. We use these properties 6t to track the
expectation value off over the course of the algorithm, and hence to track the ¢ggewmber of
0-valued outcomes.

We analyze the YES and NO cases separately.
Result 1 Suppose we have¥ES case of Restricted Quantum 2-SAT, and we rur@hantum Algo-
rithm for time

T "fQI;TLQ“ 7 (28)
where
fmax{i,l}, (29)

then we have at least2y/3 probability of observing at leastV measurement outcomes with value
over the course of the algorithm, where

e (fL-1)°
N =" <fL ) — fLn. (30)

The choice off = max {%, 1} is only important in this proof to the extent thAt> 1. This specific
choice off is important for the soundness analysis. We include it heredncreteness.

PROOF. We start by usind.emma 1to bound the expectation value &f over the course of the
algorithm.0 < tr[S?p] < n? for any statep onn qubits and so for any’

tr[Hp,]. (31)
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LetII; be the projector onto the eigenstategbivith eigenvalue less thaty f. We define
Dy = trIlsp,]. (32)

Inserting the projectal — II; into the last line oEq. (31) we have

o T-1
nt = 23w 1)),
-0
2tT—1
> f7L (I =Dy y) (33)

=0

where we used that, has probabilityl — p, , of being in the subspade— II;, and states in this
subspace have expectation valugbht leastl / f. Rearranging terms gives

T-1
L 2
Spy -2 (34)
t=0
and usingeq. (28)gives
L — 1
Z pyz i (35)

By the pigeon hole principle, there is a set of tifiesuch that the following are true:

Dig> % fort € T, and (36)
> Er 37)

To see this, consider that we are dividing at 18§t L — 1)/(fL) probability units among” boxes,

each of which can have at madstinit of probability. If we try to spread the probability outenly, we

will have (fL — 1)/(fL) probability units per box. However, if we concentrate owlbility in as

few boxes as possible, we will hag f L. — 1) /(f L) boxes with the maximum probability of 1.
At any timet, the probability of obtaining outcome 0 is

1-— Z tr[®ap,] = ftr[ (I —=TI;) +T0p)py). (38)

SinceH is a sum ofL projectors, its eigenvalues are at masso we have
trlH ([ —Tp)p,] < L(1 =Py ¢)- (39)

I1; projects onto states with eigenvalue less thafi, so

1
tr[Hprt] < ?pt,f' (40)
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Plugging these in gives

L
1 fL—1
1- 7 CY§:1tr[<1>a,0t] > prmc. (41)

Now assumé < T, so Eqg. (36)holds. Then we have for these times that the probability of
obtaining outcome 0 is

1 & FL—1\?
1-— I CZ:ltr[rbapt] > (fL> (42)

Since we want a large number @foutcomes over the course of the algorithm, we will assume a
worst case scenario such that the probability of outcome @lféimest € T is

2
pworst = (fl:;cL 1) : (43)

In this case, the distribution @Foutcomes for timeg € T is given by a binomial distribution. We
can use bounds on the binomial cumulative distribution fionco bound the number @Foutcomes
in this worst case scenario. Létbe the probability that less tha¥ outcomes are 0 oveT| times,
wherep,, ... IS the probability of obtaining outconteat any time. Using Hoeffding’s bound, we have
that

_ _ 2
G S exp |: 2(T|p\iv%rst N) j| ; (44)

as long asT|p,.,.« > N. UsingEq. (37)andEq. (43) we have

fL 1 3
|T|pworst Z < fL > T. (45)

UsingEq. (30) we see that
IT|Pyorss — N > fLn, (46)
so the numerator of the exponenttn. (44)satisfies
2(|T|Pyores — N)? > 2f2L%n2. (47)

Finally, the denominator of the exponentkn. (44)satisfies

272,,2
mngfLQ" ) (48)
Thus
2f2L2n?

where we have used that L2n? > 1.



E. Farhi, S. Kimmel, and K. Temmel221

Thus with probability at least 2/3, we expect to see at Idastutcomes with valué for times
t € T. Considering timeswith 1 < ¢t < T rather than only times e T only gives more opportunities
for 0-outcomes, so we have probability of at leags of seeingV outcomes with valu@ when the
algorithm is run for timer". O

Now we prove an analogous result in the NO case:
Result 2 Recall that in the NO case, the size of the smallest eigeeva# is promised to be. If
we run the algorithm for time

T ’7]02[;%2—‘ 7 (50)
and choose
fmax{i,l}, (51)

then we have at mostig/3 probability of observing more thaiV measurement outcomes with value
0 over the course of the algorithm, where, aslasult 1

e (fL-1\°
N =" < I ) — fLn. (52)

PrROOF. We show that if we have a NO case, we are unlikely to have niname¥' measurements with
outcome 0 over the course of tlieapplications of7. In the NO case, the probability of obtaining
outcome 0 at time is

L
1 c
1-— 7 E trl®qp,] <1-— I (53)

a=1
The worst case is when for all timeésthe probability of obtaining outcome 0 is

- (54)

qworst - L
This worst case scenario corresponds to a binomial disimibu We use bounds on the binomial
distribution to bound the probability of at least outcomes with valu@. Let G be the probability of
getting at leastV outcomes with valu® overT" steps, where .. is the probability of obtaining
outcome0 at any step. Applying Hoeffding’s bound to the binomial dizition, we have

_ _ 2
g S exp |: 2(N ZCZ:QWorSt) :| (55)

aslongasvV > Tq,,. We now show thag is small.
We first analyze the tertv — T'q__ . from Eq. (55) We have, usingeq. (52)andEq. (50)

f2L2n? (fL—1\° f2L2n? c
N_TQWOYSt Z 2 ( fL ) _an_ ( 2 +1> (1_ Z) . (56)
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SincefL > 1, we have

f2L*n? 3 f2L%*n? c
N-Tq..> e e G (1—5)

2 fL
> %cszn2 - %anQ — fLn—1
cf 7
> fLn? <2 - 2) (57)

where in the second to last line we udeagl (50) and in the last line we used thatL, n > 1. Setting
f =max{9/¢, 1}, we have

N —Tq, i > L0 (58)
Then the numerator ikq. (55)satisfies
2N = Tq, ) > 2f2L%n". (59)
FromEg. (50) we havel’ < f2L?n?/2 + 1, so plugging intdEq. (55)we have

2f2L2n*

< __ &=
< el mrra

| <1/3, (60)

where again we have used thyat N > 1. Therefore, the probability of getting at leastoutcomes
with value 0 is less thaii/3. O

CombiningResult 1landResult 2 to solve Restricted QuantuPaSAT, we set

f:max{i,l} (61)
and run the algorithm for time
272,,2
T = V L2 n W . (62)

We count the number of 0-outcomes over the course of theitligorand check whether this is greater
than

O PLn? (fL-1Y)°
N = 5 ( 7L ) — fLn. (63)

We have shown that for a YES instance, there is at least a Bkapility of observing at leasV
outcomes with valué, but for a NO instance, there is at most a 1/3 probability ahgso.

2.3 Runtime to Produce a Ground State

Suppose we have a Hamiltonian with restricted clauses sredditionally polynomially gapped. In
other words, the smallest non-zero eigenvalue of the Hanidh has siz€(1/poly(n)). Then we
show that repeatedly applying the m@pproduces a state that has large overlap with the ground
subspace.
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Result 3 Given clauseg ®,,} where®, = |4, ){¢,| are restricted as irEq. (5) ande is the size of

the smallest non-zero eigenvalueff= Y  ®,, then forT" > 2(’{22 , pr =TT (p,) has a fidelity

tr[IIo o] with the ground state subspace that is greater than

PROOFBY CONTRADICTION:
Let IT, be the projector onto the satisfying subspace:

tr[HTIy] = 0. (64)

We first show thafl is a fixed point of the mafi”, so once part of the state is in this subspace, it
stays there. That is,

tr[Mopy 4] — trillop,] = Ztr[ﬂo (1=24) p, (1-94)
+ $TI0Au(Pap,a) + 3T, (0, @0) | — tlITop]
ZtrHO i(PapPa) + Aj(Pap,Pa))]

>0, (65)

since tfIIp] > 0 for any projectodl and any stat@.
Suppose f{ilyp,;] < p. FromEqg. (65) tr[Ilyp,] can not decrease with increasingSo for all
t<T,

trllop,] < p (66)
or equivalently,
tr[(I—1Ip)p,] >1—p. (67)

Given that the spectral gap &f is ¢, we have

tr{Hp,) > etr](I — To)p,). (68)
Combining Eqgs. §7-68) gives
tr[Hp,) > (1 -p) (69)
forallt <T.
CopyingEg. (31) we have
n? > 5 3 tr[Hp,). (70)
t=0 L

UsingEq. (69) we have

1 —p)2eT
n2>7( p)2e¢ )

17 (71)

SettingT" >
O

2(1 p)e gives a contradiction. Therefore, for > W we must have {fIop] >
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2.4 Difficulties with General Clauses

We have only been able to prove tQeiantum Algorithnsolves Quanturg-SAT in polynomial time
when we restrict the form of the clauses. In this section, escdbe what breaks down when more
general clauses are included in the instance. In this sgatie assume that for YES instances, the
solution is a product of single-qubit states. (The instatarebe easily pre-processed to deal with any
two-qubit product states in the solution, as @) In the YES case, we consider a basis in which the
satisfying assignment takes the fom)@”, so in this basis clauses are of the form:

General Clauses:

Oo = [da)(Pal, With [¢a) = aq |01), ; + by [10), ; + ca |11) (72)

57
The restricted clauses never cause the expectatiéf tif decrease. However, when we include Gen-
eral Clauses the expectation $f can either increase or decrease under the actidi oflepending
on the state of the system.

Consider a clause of the ford, = |da)(da| With |¢,) = |+1), , acting on the statp =
011){011], , 5. (Here[+) is the eigenvector of the® operator with eigenvalue 1.) One can easily
check that

tr[$2p] = 5, tr[S27,(p)] = 4.5, (73)

so the expectation value 6% decreases.

When there are sufficiently many General Clauses, but stili iplanted product state solution,
|O>®” is the only satisfying state, so one might guess that a gamkitrg measure would be the
expectation value of, which if it always increases, would bring the system clomed closer to
10Y¥™. However, for General ClauseS,can also increase or decrease, and in facpfand ®,, as
above,

tr[Sp] = 2, tr[S7.(p)] = 1.75. (74)

While in principle the expectation valu#and.S? under the action of” can increase or decrease,
in numerical experiments, we find that they always increase.

The analysis irfSection 2was simple because the changes in expectation val$eanfd 52 did
not depend on the details of the state of the system, butrratigon the overlap of the state with the
satisfying subspace. With general clauses, the changeétetion value of and $2 depend on
the specifics of the state of the system, making these opsiass useful as tracking devices.

3 Conclusions

We study a quantum generalization of ong’s algorithm. We show this quantum algorithm can be
used to solve Quantum SAT problems. In particular, we shawittcan solve, in polynomial time,
Quantum2-SAT with certain restrictions on the clauses. It is possiilat this quantum algorithm
succeeds in polynomial time for Quant@¥BAT without any restriction on the clauses, but we were
not able to show it. Inspired by the classical analysis, wekiquantities like the total spin rather than
energy. Furthermore, if the Hamiltonian is also polynoigighpped, the algorithm will produce, in
polynomial time, a state that has high overlap with a satigfassignment.

There are many open questions related to this work. Is thavayato extend our analysis to
unrestricted Quantum 2-SAT? How does the algorithm perfonnQuantumk-SAT for £ > 2? Can
the runtime bounds of our algorithm can be improved?
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Appendix A

Analysis with an Extended Clause Set
In Section 2 we showed that th®uantum Algorithntan decide Quantum 2-SAT if (in the YES
case) the clauses are of a certain form, which we now call T¢pauses:

Type | Clauses:
Do = [pa)(Pal, With [¢a) = aq |01), ; + ba [10), ;. (A1)
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In this appendix, we will show that th@uantum Algorithmalmost matches the performance demon-
strated in the main body of this paper, when the restrictadsd set is enlarged to include both Type
| and Type Il clauses:

Type Il Clauses:
o = |pa)(ba] . With |pa) = [11), ;. (A2)

When all clauses are Type | or Type |I(I),>®" is a satisfying state.
In Section 2we showed that fo®,, a Type | clause,

tr[STa(p)] — tr[Sp] =0, (A3)
tr[S* T (p)] — tr[S?p] = 2tr(®0 ). (A4)

We observe that Type Il clauses exhibit the following projesr
Q, (07 +0%) = (07 +07)P = =2, ©,0705 =0;05®, = ®,. (A.5)
Applying Eg. (A.5)to Eq. (15)and to the analysis in EQ2@-24), we have that for Type Il clauses

TH(S) = 8+ @, (A.6)
TH(S?) =8 - 20, +2 Y 0}®, (A7)

k#i,j

Combining the effects of Type | and Type Il clauses, we have

THS) =S Z Dy, (A.8)
aGTypeII

TH(S?) = 52+— > <I>a+i > <—®a+ Zlazéa). (A.9)
aeType | acTypell k#i,j

When only Type | clauses were present, the expectatici? afould only increase, but now Type
Il clauses can caus$® to decrease. However, wheneygris not annihilated by all of the clauses,
either the expectation value 6fincreases (if a Type Il clause is measured), or the expentatilue
of 52 increases (if a Type | clause is measured). We show that ifbiration, these effects allow us
to prove the following result.

Result 4 Given clauseg§®,,}, whered,, are Type | or Type Il,

2 T—
> 7 Z [Hp,). (A.10)
t=0

We first discuss the consequencesRafsult 4 and then give the proof. Note thgg. (A.10)is
almost identical tdeq. (31)andEq. (70) The only difference is the factor 6fthat appears on the left
side ofEqQ. (A.10) Thus to determine what happens when, in the YES case, wetéstType | and
Type Il clauses, we need only repla€gg. (31)andEg. (70)by Eq. (A.10)
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In Result 3the number of time steps needed increases by a factotoodbtain the same outcome.

In Result 1we use the following transformation, which preserves thtestent of the result:

272,,2

T [5f L*n —‘ ’
2

5f2L?n? (fL—1
2 fL
Using this transformation iResult 2 the outcome is identical when we chogse- max{10/¢, 1}.

We now proofResult 4
PROOF. Sincen? > tr[S?p] > 0, for any statep,

N —

3
> —2fLn. (A.11)

T-1

n? 2 tr(S%p,] — wS2p,] = Y (0152, — 11520, )
t=0
—~ 2
:zL( > wieup)+ S tr{<—1+2<fi>w)7 (a2
=0 acType | acTypell k#i,j

where we have usdfg. (A.9)in the last line.
In the Type Il sum, the terr—1 + 3, , - 0%) has eigenvalues that are larger thafn — 1), so
using thatb,, and(—1 + Zk#,j o7) commute (they act on different qubits), we obtain

T—1
2
n? - (Z tr[®,p,] — (n—1) Z tr[@apt]) (A.13)
t=0 \ acTypel acTypell
We have
tr(Hp]= Y t[@up]+ > t[dap,], (A.14)
acTypelll acType |

which we can plug int&q. (A.13)to obtain

T-1
n? > % (tr[Hpt] —n Y tr[@apt]> . (A.15)
t=0

acTypell

We now bound the term involving the Type Il clauses. Fiemqm (A.8)we have

T-1

Z Z [@ap,] = Z (tr[éle] - tr[gpt])

t=0 aeTypeII t=0
= tr[Spy] — tr[Sp,]
< on, (A.16)

where in the last line we have used that for gnywe have—n < tr[S‘p] < n. PluggingEq. (A.16)
into Eq. (A.15) we have

5n? > % tr[Hp,]. (A.17)

|
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