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1 Introduction

Non-local games are a framework used to study the correlations that result from measuring

two parts of an entangled quantum state using two spatially separated devices, each capable

of performing one of several possible measurements.

In a non-local game two players, traditionally called Alice and Bob, play cooperatively

but are separated in space and unable to communicate with each other. A third party, called

a Referee or sometimes a Verifier, runs the game and decides whether Alice and Bob win or

lose. The referee exchanges messages with Alice and Bob and decides whether they win or

lose based on the transcript of the interaction.

To win, Alice and Bob must find a way to coordinate their actions without communicating.

They may do so using classical or quantum resources. In a randomized classical strategy, Alice

and Bob use a shared random string. In a quantum strategy, Alice and Bob use measurements

of two parts of a shared entangled state.

For certain non-local games, a quantum strategy can achieve a higher probability of win-

ning than any randomized classical strategy [1, 2]. This is interesting both from the point of

view of foundations of physics, and from the point of view of applications. From the point

of view of foundations of physics, the advantage of quantum strategies over classical ones has

been central in the discussion about local realism [3]. From the point of view of applications,

there have been many proposals for using quantum entanglement as a resource in information

processing tasks, such as performing distributed computation with a lower communication
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cost [4], teleportation of quantum states [5], a full scale computation by teleportation scheme

[6], and quantum cryptography [7].

A recent application of quantum entanglement is in device-independent protocols. In

these protocols, one or more parties attempt to perform an information processing task by

interacting via classical inputs and outputs with quantum devices that cannot be trusted

to perform according to specification. The devices may not be trusted for fear of malicious

intent, as in quantum cryptography, or the manufacturing process used to make the devices

may be unreliable and prone to errors.

Several examples of device independent protocols are already known. There are protocols

for quantum key distribution [8, 9], [10], [2, pp. 34-35]. There are protocols for randomness

generation with untrusted devices [2, p.33]. There is also a protocol in which a classical verifier

commands two untrusted quantum provers to perform a full-scale quantum computation [11].

All of these protocols rely on mathematical results called self-testing. References [11,

12, 13] are three examples of self-testing results. These results show that nearly-optimal

quantum strategies for certain non-local games must be close (in an appropriate sense) to the

ideal quantum strategy for the game.

In this paper, we present a new self-testing result. We study the infinite family of non-

local XOR games CHSH(n), n ∈ N, n ≥ 2 introduced in [14]. We show that nearly-optimal

quantum strategies for the CHSH(n) games must approximately contain the same algebraic

structure as the optimal quantum strategies. We introduce tools and concepts that allow us to

understand and perform the comparison of algebraic structure; these tools are the approximate

homomorphism of strategies, the concept of core space of a strategy, and a modified version

of the group averaging technique. All of these we obtain by adapting tools and concepts from

algebra and representation theory to the context of non-local games.

The rest of this paper is organized as follows: in Section 2, we present notation, concepts

and known facts that are used later on. In Section 3, we give the precise statement of the

result proved in this paper, as well as the intuition and motivation for the result. Section 4

contains the proof of the main result. In Section 5 we discuss open problems and possible

future work.

2 Preliminaries

2.1 Non-local XOR games and their quantum strategies

Formally, a non-local XOR game consists of two finite sets S and T , a probability distribution

π on S × T , and a function V : S × T → {−1, 1}. The game proceeds as follows: first, the

referee selects a pair (s, t) ∈ S × T according to the probability distribution π. Then, the

referee sends s as a question to Alice and t as a question to Bob. Then, Alice replies to the

referee with a ∈ {−1, 1} and Bob replies to the referee with b ∈ {−1, 1}. Finally, the referee

looks at V (s, t)ab. If V (s, t)ab = 1, then Alice and Bob win, and if V (s, t)ab = −1 then Alice

and Bob lose. Notice that V (s, t) = 1 means that Alice and Bob must give matching answers

to win and V (s, t) = −1 means Alice and Bob must give opposite answers to win.b

It is convenient to summarize all the information for an XOR game into a |S|× |T | matrix

bThe name ”XOR game” is related to the following: if we write a = (−1)a
′
, b = (−1)b

′
for a′, b′ ∈ {0, 1}, then

V (s, t)ab = V (s, t)(−1)a
′
⊕b

′
so that whether Alice and Bob win or lose depends only on the XOR of the bits

a′ and b′. XOR games are a sub-class of non-local games.
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G such that Gst = π(s, t)V (s, t). This gives a bijective correspondence between XOR games

and matrices G normalized so that
∑

st |Gst| = 1. From now on, we will identify non-local

XOR games with their associated matrices.

A quantum strategy S for an XOR game consists of a state space C
dA ⊗ C

dB , a state

|ψ〉 ∈ C
dA ⊗ C

dB , and ±1 observables {As : s ∈ S} on C
dA and {Bt : t ∈ T} on C

dB .

The interpretation of this strategy is the following: Alice and Bob share a bipartite quantum

system with state space C
dA ⊗C

dB . Prior to the beginning of the game, the system has been

prepared in state |ψ〉 ∈ C
dA ⊗ C

dB . On receiving question s, Alice measures observable As
and uses the outcome, 1 or −1, as her answer to the referee. Similarly, on receiving question

t, Bob measures observable Bt and uses the outcome, 1 or −1, as his answer to the referee.

We would like to have a way to evaluate how well a given strategy S does for a given XOR

game G. We do so using the success bias β(G,S) defined by:

β(G,S) =
∑

s∈S

∑

t∈T
Gst〈ψ|As ⊗Bt|ψ〉

The success bias is linearly related to the probability ω(G,S) of winning G using strategy S:

β(G,S) = 2ω(G,S)− 1

We define the quantum success bias β(G) for an XOR game G to be the supremum of the

success bias over all quantum strategies:

β(G) = sup
S
β(G,S) (1)

We define an optimal strategy for the XOR game G to be a strategy S such that

β(G,S) = β(G)

and we define an ǫ-optimal strategy to be a strategy S such that

(1− ǫ)β(G) ≤ β(G,S) ≤ β(G)

2.2 Non-local XOR games and semi-definite programs

Let G be a n × m XOR game matrix. To the maximization problem (1), we associate a

semi-definite program:c

sup
Z�0, Tr(EiiZ)=1, i=1,...(n+m)

Tr(GsymZ) (2)

Here, Eii is the (n+m)× (n+m) matrix with 1 in the i-th diagonal entry and 0 everywhere

else, and Gsym is the (n+m)× (n+m) matrix with block form

Gsym =
1

2

[
0 G
GT 0

]

The two maximization problems (1) and (2) are related as follows: for each feasible solution

of one of them, there is a feasible solution of the other that achieves the same objective value.

This follows from the results in [17] and [18].

cFor an introduction to semi-definite programming, see reference [15], or the lecture notes [16].



1194 The structure of nearly-optimal quantum strategies for the CHSH(n) XOR games

Having established the relation between the optimization problem (1) and the semi-definite

program (2), we now turn attention to the dual semidefinite program. The dual to (2) is:

inf∑m+n
i=1

yiEii�Gsym

m+n∑

i=1

yi (3)

Both the primal and the dual semi-definite programs have strictly feasible solutions; there-

fore, the primal supremum is attained, the dual infimum is attained, and the two are equal.

Combining all our observations, we get that the three optimization problems (1), (2),

and (3) have equal optimal objective values, and that all three optimal objective values are

attained.

2.3 The CHSH(n) XOR games

In this paper, we study the infinite family of XOR games CHSH(n) , n ∈ N, n ≥ 2 introduced

in [14]. This is a natural case to study due to the regular structure of the game and its optimal

strategies.

For the CHSH(n) game, the set S of possible questions for Alice is {1, . . . , n} and the set

T of possible questions for Bob is the set of ordered pairs {ij : i, j ∈ {1, . . . , n}, i 6= j}. The
referee selects a pair i, j uniformly at random among all

(
n
2

)
pairs such that 1 ≤ i < j ≤ n. The

referee then selects either i or j as question for Alice, and either ij or ji as question for Bob;

the four possibilities are equally likely. In order to win, Alice and Bob must give matching

answers on questions (i, ij), (i, ji) and (j, ij), and give opposite answers on questions (j, ji).

Note that the first element of the family, CHSH(2), is the usual CHSH game, based on

reference [19]. Thus, the family CHSH(n) is a generalization of the CHSH game.

It is known [14] that the quantum success bias for all the CHSH(n) games is 1/
√
2 and

that the optimal quantum strategies for CHSH(n) are related to representations of the Clifford

algebra with n anti-commuting generators.

2.4 The canonical optimal quantum strategy for CHSH(n)

Here we introduce the canonical optimal strategy for CHSH(n). The canonical strategy

is defined so that Alice’s observables generate an algebra that is isomorphic to the Clifford

algebra with n anti-commuting generators. We will state some known facts about the Clifford

algebra and then return to constructing the canonical optimal strategies for CHSH(n).

By a Clifford algebra with n anti-commuting generators we mean the algebra of linear

combinations of products of generators x1, . . . , xn satisfying the relations xixj+xjxi = 2δij1.

We will denote this algebra by Cln.

It is known [20, Lemmas 20.9, 20.16] that Cl2k is isomorphic to the algebra of 2k × 2k

matrices, and Cl2k+1 is isomorphic to the direct sum of two copies of the algebra of 2k × 2k

matrices. Consequently [21, Thm 2.6], Cl2k has a unique (up to equivalence) irreducible

representation on C
2k , Cl2k+1 has two irreducible representations on C

2k , and in both the

even and the odd case, any finite dimensional representation is equivalent to a direct sum of

irreducible representations.

The irreducible representations ofCl2k andCl2k+1 can be constructed explicitly. Consider
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the following 2k + 1 operators on C
2k ∼= C

2 ⊗ C
2 ⊗ · · · ⊗ C

2

︸ ︷︷ ︸

k terms

:

σk,2l−1 = σy ⊗ · · · ⊗ σy
︸ ︷︷ ︸

l−1

⊗σx ⊗ I ⊗ I ⊗ I ⊗ · · · ⊗ I ⊗ I
︸ ︷︷ ︸

k−l

for l = 1, . . . k

σk,2l = σy ⊗ · · · ⊗ σy
︸ ︷︷ ︸

l−1

⊗σz ⊗ I ⊗ I ⊗ I ⊗ · · · ⊗ I ⊗ I
︸ ︷︷ ︸

k−l

for l = 1, . . . k

σk,2k+1 = σy ⊗ σy ⊗ σy ⊗ σy ⊗ · · · ⊗ σy ⊗ σy

(4)

These operators are self-adjoint, unitary, and anti-commute. Mapping the generators of Cl2k

to σk,1, . . . σk,2k gives the irreducible representation of Cl2k. Mapping the generators of

Cl2k+1 to either σk,1, . . . σk,2k, σk,2k+1 or σk,1, . . . σk,2k,−σk,2k+1
d gives the two irreducible

representations of Cl2k+1.

Now, we can return to constructing the canonical optimal quantum strategy for the

CHSH(n) game. The state space is C
2⌈n/2⌉ ⊗ C

2⌈n/2⌉

. The state is the maximally entan-

gled state

|ψ̃〉 = 1√
2⌈n/2⌉

2⌈n/2⌉
∑

i=1

|i〉 ⊗ |i〉

When n = 2k, Alice’s observables are defined by

Ãi = σk,i, i = 1, . . . 2k

When n = 2k + 1, Alice’s observables are defined by

Ãi =

[
σk,i 0
0 σk,i

]

, i = 1, . . . 2k, Ã2k+1 =

[
σk,2k+1 0

0 −σk,2k+1

]

In all cases, Bob’s observables are defined by

B̃jl =
1√
2
(ÃTj + ÃTl ), B̃lj =

1√
2
(ÃTj − ÃTl ), 1 ≤ j < l ≤ n

In the rest of the paper, we will always use tildes to denote the observables and state of the

canonical strategy.

3 The main result

We start with a CHSH(n) strategy Ai, Bjk, |ψ〉 on C
dA ⊗ C

dB that is ǫ-optimal. We wish to

say that this ǫ-optimal strategy must approximately have certain structure. To do that, we

compare it to the canonical optimal strategy Ãi, B̃jk, |ψ̃〉 on C
2⌈n/2⌉ ⊗ C

2⌈n/2⌉

. Formally, we

prove the following:

Theorem 1 Let Ai, Bjk, |ψ〉 be an ǫ-optimal CHSH(n) strategy on C
dA ⊗ C

dB . Let

Ãi, B̃jk, |ψ̃〉 be the canonical optimal strategy on C
2⌈n/2⌉⊗C

2⌈n/2⌉

. Consider the linear operator

T : C2⌈n/2⌉ ⊗ C
2⌈n/2⌉ −→ C

dA ⊗ C
dB

dThe two options are not equivalent because the product of the observables in the first collection is (−i)kI
and the product in the second collection is −(−i)kI.
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given by

T =
1√
2n

∑

(j1...jn)∈{0,1}n

Aj11 . . . Ajnn ⊗ I|ψ〉〈ψ̃|
(

Ãj11 . . . Ãjnn ⊗ I
)†

Then, T is non-zero and has the properties

∀i ‖(Ai ⊗ I)T − T (Ãi ⊗ I)‖ < 12n2
√
ǫ‖T‖

∀j 6= k ‖(I ⊗Bjk)T − T (I ⊗ B̃jk)‖ < 17n2
√
ǫ‖T‖

(5)

A remark about notation: when we apply ‖ · ‖ to a matrix we mean the Frobenius norm

‖M‖ =
√

Tr(MM†) unless explicitly stated otherwise.

Next, we discuss the motivation and intuition behind Theorem 1. We look at it from three

different points of view: the point of view of the concept of homomorphism in algebra, the

point of view of extending the concept of core space of an optimal strategy (the core space

will be defined below), and the point of view of proving approximate anti-commutation for

the observables Ai.

3.1 Approximate homomorphism

When we talk of a homomorphism, we have two sets with certain operations on each, and

the homomorphism is a map from one set to the other that preserves all the operations. In

the context of Theorem 1, the two sets are C
2⌈n/2⌉ ⊗C

2⌈n/2⌉

and C
dA ⊗C

dB . The operations

on C
2⌈n/2⌉ ⊗ C

2⌈n/2⌉

are the action of the operators Ãi ⊗ I, I ⊗ B̃jk. The operations on

C
dA ⊗C

dB are the action of the operators Ai⊗ I, I ⊗Bjk. The operator T that we construct

in Theorem 1 satisfies properties (5), so it approximately maps the action of the canonical

strategy operators Ãi ⊗ I, I ⊗ B̃jk to the action of the ǫ-optimal strategy operators Ai ⊗ I,

I ⊗Bjk.

3.2 The core space of a strategy

For the canonical optimal CHSH(n) strategy Ãi, B̃jk, |ψ̃〉 , we define the core space to be

span
{

Ãj11 . . . Ãjnn ⊗ I|ψ̃〉 : (j1 . . . jn) ∈ {0, 1}n
}

and denote it by CS(Ãi, B̃jk, |ψ̃〉). This is the smallest vector space that contains |ψ̃〉 and is

invariant under the canonical strategy operators Ãi ⊗ I, I ⊗ B̃jk.
e

To get a feel for the core space, consider two small examples: the core space of the

canonical optimal CHSH(2) strategy is C
2 ⊗ C

2; the core space of the canonical optimal

CHSH(3) strategy is an eight dimensional subspace of C4 ⊗ C
4. It is interesting to note that

the core space of the canonical optimal CHSH(3) strategy is not a tensor product space. If

this core space were of the form V ⊗W , then V andW would have to have the same dimension

by symmetry. This is a contradiction, because 8 is not a perfect square.

Theorem 1 allows us to extend the concept of core space to nearly-optimal CHSH(n)

strategies. First, we observe that besides the standard definition of invariant space, there is

the following equivalent definition: a vector space V is invariant under a linear operator C

if there exist linear operators S and D such that Im(S) = V and CS = SD. Next, we see

eA vector space V is invariant under an operator C if |v〉 ∈ V ⇒ (C|v〉) ∈ V .
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that properties (5) are approximate versions of the relation CS − SD = 0. This allows us to

regard

Im(T ) = span
{

Aj11 . . . Ajnn ⊗ I|ψ〉 : (j1 . . . jn) ∈ {0, 1}n
}

as approximately invariant under the operators Ai⊗I, I⊗Bjk. By analogy with the canonical

optimal strategies, we call this space the core space of the strategy Ai, Bjk, |ψ〉 and denote it

by CS(Ai, Bjk, |ψ〉).

3.3 Approximate anti-commutation for the observables Ai of an ǫ-optimal strat-

egy

We know that Alice’s observables in the canonical optimal strategy anti-commute. Our in-

tuition tells us that Alice’s observables in an ǫ-optimal strategy must approximately anti-

commute. Theorem 1 allows us to make this intuition rigorous.

When we first start thinking about approximate anti-commutation for the observables

Ai, we encounter a conceptual problem: we would like a way to measure the size of the

anti-commutators AiAj + AjAi and claim that they are small, but none of the usual matrix

norms is suitable. One can construct examples of ǫ-optimal CHSH(n) strategies such that

‖AiAj + AjAi‖ remains bounded away from zero as ǫ goes to zero. This is because the

restriction that the strategy is ǫ-optimal does not constrain the action of Ai outside the

support of the strategy state |ψ〉.
One solution to this conceptual problem is to measure AiAj + AjAi in an appropriately

chosen seminorm instead of in one of the usual matrix norms. We introduce the concept of a

seminorm with respect to a linear operator as follows:

Definition 1 Let V , U , W be (finite dimensional) Hilbert spaces. Let L : V → U and

M : U →W be linear operators. We define the seminorm of M with respect to L by

‖M‖L =
‖ML‖
‖L‖

It can be checked that ‖ · ‖L satisfies all the defining properties of a seminorm.

A special case of a seminorm with respect to a linear operator has already been used

implicitly in the self-testing literature (for example in [11, 12]). The state |ψ〉 ∈ C
dA ⊗ C

dB

can be thought of as a linear operator from C to C
dA ⊗ C

dB . The seminorm with respect to

|ψ〉 is
‖M‖ψ =

‖M |ψ〉‖
‖|ψ〉‖ = ‖M |ψ〉‖

In this paper we prove approximate anti-commutation for the observables Ai of an ǫ-

optimal strategy using both the seminorm with respect to |ψ〉 and the seminorm with respect

to T . The statement using the seminorm with respect to |ψ〉 is one step of the proof of

Theorem 1. In Lemma 5 below we will show that
∑

1≤i<j≤n
‖(AiAj +AjAi)⊗ I‖2ψ ≤ 4(1 +

√
2)2n(n− 1)ǫ

The statement using the seminorm with respect to T is a corollary of Theorem 1. The triangle

inequality and four applications of inequalites (5) give

∀i 6= j ‖(AiAj +AjAi)⊗ I‖T < 48n2
√
ǫ
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4 Approximate homomorphism construction for CHSH(n) nearly-optimal strate-

gies

Having given the motivation and intuition for Theorem 1, we now proceed with the proof.

The argument has eight steps contained in the following propositions:

Proposition 1 The following three statements are equivalent:

• Ai, Bjk, |ψ〉 is an ǫ-optimal CHSH(n) strategy.

• The observables and state satisfy

∑

1≤i<j≤n

(∥
∥
∥
∥

Ai +Aj√
2

⊗ I|ψ〉 − I ⊗Bij |ψ〉
∥
∥
∥
∥

2

+

∥
∥
∥
∥

Ai −Aj√
2

⊗ I|ψ〉 − I ⊗Bji|ψ〉
∥
∥
∥
∥

2
)

≤ 2n(n− 1)ǫ (6)

• The observables and state satisfy

∑

1≤i<j≤n

(∥
∥
∥
∥
Ai ⊗ I|ψ〉 − I ⊗ Bij +Bji√

2
|ψ〉
∥
∥
∥
∥

2

+

∥
∥
∥
∥
Aj ⊗ I|ψ〉 − I ⊗ Bij −Bji√

2
|ψ〉
∥
∥
∥
∥

2
)

≤ 2n(n− 1)ǫ (7)

Proposition 2 The vectors
{

Ãj11 . . . Ãjnn ⊗ I|ψ̃〉 : (j1 . . . jn) ∈ {0, 1}n
}

coming from the canonical strategy are orthonormal.

Proposition 3 ‖T‖ = 1, and so also T 6= 0.

Proposition 4 The following identity holds:

(Ai ⊗ I)T − T (Ãi ⊗ I) =
1√
2n

∑

(j1...jn)∈{0,1}n

(

AiA
j1
1 . . . Ajnn ⊗ I|ψ〉

− sign(i, j1, . . . jn)A
j1
1 . . . Aji⊕1

i . . . Ajnn ⊗ I|ψ〉
)

〈ψ̃|
(

Ãj11 . . . Ãjnn ⊗ I
)†

(8)

Here sign(i, j1, . . . jn) denotes the sign resulting from changing the order in a product of anti-

commuting observables and will be defined in detail later. The ji ⊕ 1 in the exponent of Ai
denotes addition mod 2.

Proposition 5 The following identity holds:

(I ⊗Bkl)T − T (I ⊗ B̃kl) =
1√
2n

∑

(j1...jn)∈{0,1}n

(

Aj11 . . . Ajnn ⊗Bkl|ψ〉

− 1√
2

(

± sign(j1, . . . jn, k)A
j1
1 . . . Ajk⊕1

k . . . Ajnn ⊗ I|ψ〉

+ sign(j1, . . . jn, l)A
j1
1 . . . Ajl⊕1

l . . . Ajnn ⊗ I|ψ〉
)
)

〈ψ̃|
(

Ãj11 . . . Ãjnn ⊗ I
)†

(9)
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In the place where there is ±, we take + if k < l and we take − if k > l.

Proposition 6 For all i ∈ {1, . . . n}, for all (j1 . . . jn) ∈ {0, 1}n,
∥
∥
∥AiA

j1
1 . . . Ajnn ⊗ I|ψ〉 − sign(i, j1, . . . jn)A

j1
1 . . . Aji⊕1

i . . . Ajnn ⊗ I|ψ〉
∥
∥
∥ < 12n2

√
ǫ (10)

Proposition 7 For all k 6= l ∈ {1, . . . n}, for all (j1 . . . jn) ∈ {0, 1}n,
∥
∥
∥
∥
∥
Aj11 . . . Ajnn ⊗Bkl|ψ〉 −

1√
2

(

± sign(j1, . . . jn, k)A
j1
1 . . . Ajk⊕1

k . . . Ajnn ⊗ I|ψ〉

+ sign(j1, . . . jn, l)A
j1
1 . . . Ajl⊕1

l . . . Ajnn ⊗ I|ψ〉
)
∥
∥
∥
∥
∥
< 17n2

√
ǫ (11)

Proposition 8 The seven propositions above taken together imply Theorem 1.

The eight subsections below contain the proofs of the eight propositions above.

4.1 Relations for CHSH(n) nearly-optimal strategies

In this section we prove Proposition 1.

We take the n × n(n − 1) matrix G that summarizes the information for the CHSH(n)

game. Let |1〉, . . . |n〉 be an orthonormal basis of Rn, and let |ij〉, i 6= j ∈ {1, . . . n} be an

orthonormal basis of Rn(n−1). Then, we can write:

G =
1

4
(
n
2

)

∑

1≤i<j≤n
(|i〉〈ij|+ |j〉〈ij|+ |i〉〈ji| − |j〉〈ji|)

Next, we form the n2 × n2 matrix Gsym which has block form:

Gsym =
1

2

[
0 G
GT 0

]

In this context, it is convenient to think of Rn
2

as having an orthonormal basis formed by

concatenating the basis |1〉, . . . |n〉 of Rn and the basis |ij〉, i 6= j ∈ {1, . . . n} of Rn(n−1). So,

we can write

Gsym =
1

8
(
n
2

)

∑

1≤i<j≤n

(

|i〉〈ij|+ |j〉〈ij|+ |i〉〈ji|− |j〉〈ji|+ |ij〉〈i|+ |ij〉〈j|+ |ji〉〈i|− |ji〉〈j|
)

Next, we form the dual semi-definite program (3) corresponding to the CHSH(n) game.

We know that the optimal value is 1/
√
2; this follows from the result in reference [14] about

the quantum success bias of the CHSH(n) game, and the discussion in Section 2.2.

Next, we claim that y1 = · · · = yn = 1
2
√
2n

, yn+1 = · · · = yn2 = 1
2
√
2n(n−1)

is a dual

optimal solution. We can see that
∑n2

i=1 yi =
1√
2
, the dual optimum, so all that is left to

prove is that y1, . . . yn2 is dual feasible.

We define the following vectors for 1 ≤ i < j ≤ n

uij = |i〉 vij =
|ij〉+ |ji〉√

2

uji = |j〉 vji =
|ij〉 − |ji〉√

2
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and observe that the following decomposition holds:

n2

∑

i=1

yiEii −Gsym =
1

2
√
2n(n− 1)

∑

i6=j
(uij − vij) (uij − vij)

T
(12)

It follows that the matrix
∑n2

i=1 yiEii −Gsym is positive semi-definite, and therefore, the

given y1, . . . yn2 are a dual optimal solution as claimed.

Next, we need a lemma:

Lemma 1 Let A1 . . . An, B1, . . . Bm, |ψ〉 be a quantum strategy for an XOR game given by

a n×m matrix Γ. Let α1, . . . αr ∈ R
n, β1, . . . βr ∈ R

m be vectors with the properties:

r∑

i=1

αiα
T
i =

n∑

i=1

wiEii (13)

r∑

i=1

βiβ
T
i =

m∑

i=1

wn+iEii (14)

r∑

i=1

αiβ
T
i =

1

2
Γ (15)

Then, the following identity holds:

r∑

k=1

∥
∥
∥αk · ~A⊗ I|ψ〉 − I ⊗ βk · ~B|ψ〉

∥
∥
∥

2

=

m+n∑

i=1

wi −
n∑

i=1

m∑

j=1

Γij〈ψ|Ai ⊗Bj |ψ〉 (16)

Here, αk · ~A denotes a linear combination of the observables A1, . . . An with coefficients taken

from the vector αk.

Proof. We open the squares on the left-hand side:

r∑

k=1

∥
∥
∥αk · ~A⊗ I|ψ〉 − I ⊗ βk · ~B|ψ〉

∥
∥
∥

2

=
r∑

i=1

〈ψ|
(

αi · ~A
)2

⊗ I|ψ〉+
r∑

i=1

〈ψ|I ⊗
(

βi · ~B
)2

|ψ〉 − 2
r∑

i=1

〈ψ|
(

αi · ~A
)

⊗
(

βi · ~B
)

|ψ〉

Now, from property (13) we obtain

r∑

i=1

(

αi · ~A
)2

=

n∑

i=1

wiA
2
i +

∑

i6=j
0AiAj =

(
n∑

i=1

wi

)

I

Similarly, from property (14) we obtain

r∑

i=1

(

βi · ~B
)2

=

m∑

i=1

wn+iB
2
i +

∑

i6=j
0BiBj =

(
m∑

i=1

wn+i

)

I

Finally, from property (15) we obtain

2

r∑

i=1

(

αi · ~A
)

⊗
(

βi · ~B
)

=

n∑

i=1

m∑

j=1

ΓijAi ⊗Bj
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The identity (16) follows. �.

Now, using decomposition (12) and Lemma 1 we conclude that the following two state-

ments are equivalent:

• Ai, Bjk, |ψ〉 is an ǫ-optimal CHSH(n) strategy.

• The observables and state satisfy inequality (7)

Next, we define the following vectors for 1 ≤ i < j ≤ N

u′ij =
|i〉+ |j〉√

2
v′ij = |ij〉

u′ji =
|i〉 − |j〉√

2
v′ji = |ji〉

and observe that the following decomposition holds:

n2

∑

i=1

yiEii −Gsym =
1

2
√
2n(n− 1)

∑

i6=j

(
u′ij − v′ij

) (
u′ij − v′ij

)T

From this, using Lemma 1 again, we conclude that the following two statements are

equivalent:

• Ai, Bjk, |ψ〉 is an ǫ-optimal CHSH(n) strategy.

• The observables and state satisfy inequality (6)

This completes the proof of Proposition 1.

4.2 Orthonormal vectors

In this section we prove Proposition 2.

Given (k1, . . . kn), (l1, . . . ln) ∈ {0, 1}n, take (j1, . . . jn) = (k1 ⊕ l1, . . . kn⊕ ln) and use the

anti-commutation relations for the Ãi, i = 1, . . . n to get

〈ψ̃|
(

Ãk11 . . . Ãknn ⊗ I
)†
Ãl11 . . . Ã

ln
n ⊗ I|ψ̃〉 = 〈ψ̃|

(

±Ãj11 . . . Ãjnn ⊗ I|ψ̃〉
)

Therefore, it suffices to prove that |ψ̃〉 is orthogonal to Ãj11 . . . Ãjnn ⊗ I|ψ̃〉 for each nonzero

(j1 . . . jn) ∈ {0, 1}n. We need two lemmas.

Lemma 2 If |φ〉 is a maximally entangled state in C
d ⊗ C

d and M is a d × d matrix, then

〈φ|M ⊗ I|φ〉 = Tr(M)/d.

Proof. d〈φ|M ⊗ I|φ〉 =
(
∑

i〈ii|
)(
∑

jkMjk|j〉〈k| ⊗ I
)(
∑

l |ll〉
)

=
∑

iMii = Tr(M) �.

Lemma 3 Tr(Ãj11 . . . Ãjnn ) = 0 for each nonzero (j1 . . . jn) ∈ {0, 1}n.
Proof. There are two cases: one case is if n is odd and (j1, . . . jn) = (1, . . . 1) and the

second case is all other situations.

Consider the first case. For n odd, we have

n∏

i=1

Ãi = (−i)⌊n/2⌋
[
I 0
0 −I

]
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and this has zero trace.

Next, consider the second case. We want to show that

∃i such that ÃiÃ
j1
1 . . . Ãjnn Ãi = −Ãj11 . . . Ãjnn (17)

If there are an even number of terms in the product Ãj11 . . . Ãjnn , choose Ãi to be one of the

observables that appears in the product. If there are an odd number of terms, choose Ãi to

be one of the observables that does not appear in the product. This proves relation (17).

From relation (17) we get that Tr(Ãj11 . . . Ãjnn ) = 0 in the second case as well. This

completes the proof of Lemma 3. �.

Now, combine Lemma 2 and Lemma 3 to get 〈ψ̃|
(

Ãj11 . . . Ãjnn ⊗ I|ψ̃〉
)

= 0. This completes

the proof of Proposition 2.

4.3 The Frobenius norm of T

In this section we prove Proposition 3. We use the following lemma:

Lemma 4 Let

S =
1√
r

r∑

i=1

|ui〉〈vi|

where the vectors |vi〉, i = 1, . . . , r are orthnormal. Then,

‖S‖ =

√∑r
i=1 ‖ui‖2
r

Proof. ‖S‖ =
√

Tr(SS†) =
√

1
r

∑r
i=1 Tr |ui〉〈ui| =

√
1
r

∑r
i=1 ‖ui‖2 �.

Apply Lemma 4 to the operator T to get ‖T‖ = 1. This concludes the proof of Proposition

3.

4.4 The expression for (Ai ⊗ I)T − T (Ãi ⊗ I)

In this section we prove Proposition 4.

Consider T (Ãi ⊗ I):

T (Ãi ⊗ I) =
1√
2n

∑

(j1...jn)∈{0,1}n

Aj11 . . . Ajnn ⊗ I|ψ〉〈ψ̃|
(

Ãj11 . . . Ãjnn ⊗ I
)†

(Ãi ⊗ I)

=
1√
2n

∑

(j1...jn)∈{0,1}n

Aj11 . . . Ajnn ⊗ I|ψ〉
(

(Ãi ⊗ I)(Ãj11 . . . Ãjnn ⊗ I|ψ̃〉)
)†

Now we use the anti-commutation relations to insert Ãi into the product Ãj11 . . . Ãjnn . This

possibly incurs a minus sign, depending on the particular i and the particular (j1 . . . jn) ∈
{0, 1}n. We define sign(i, j1, . . . jn) to be such that

(Ãi)(Ã
j1
1 . . . Ãjnn ) = sign(i, j1, . . . jn)Ã

j1
1 . . . Ãji⊕1

i . . . Ãjnn

Using this, we get

T (Ãi ⊗ I)

=
1√
2n

∑

(j1...jn)∈{0,1}n

Aj11 . . . Ajnn ⊗ I|ψ〉
(

sign(i, j1, . . . jn)Ã
j1
1 . . . Ãji⊕1

i . . . Ãjnn ⊗ I|ψ̃〉
)†
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Now we change the index of summation, and use sign(i, j1, . . . ji . . . jn)

= sign(i, j1, . . . ji ⊕ 1 . . . jn) to get

T (Ãi ⊗ I)

=
1√
2n

∑

(j1...jn)∈{0,1}n

sign(i, j1, . . . jn)A
j1
1 . . . Aji⊕1

i . . . Ajnn ⊗ I|ψ〉〈ψ̃|
(

Ãj11 . . . Ãjnn ⊗ I
)†

From here, identity (8) follows. This completes the proof of Proposition 4.

4.5 The expression for (I ⊗Bkl)T − T (I ⊗ B̃kl)

In this section we prove Proposition 5. The argument is similar to the previous section.

Consider T (I ⊗ B̃kl):

T (I ⊗ B̃kl) =
1√
2n

∑

(j1...jn)∈{0,1}n

Aj11 . . . Ajnn ⊗ I|ψ〉
(

(Ãj11 . . . Ãjnn ⊗ I)(I ⊗ B̃kl)|ψ̃〉
)†

=
1√
2n

∑

(j1...jn)∈{0,1}n

Aj11 . . . Ajnn ⊗ I|ψ〉
(

(Ãj11 . . . Ãjnn ⊗ I)(
±Ãk + Ãl√

2
⊗ I)|ψ̃〉

)†

where +Ãk is taken if k < l and −Ãk is taken if k > l.

Next, we use the anti-commutation relations to insert Ãk and Ãl into the product Ã
j1
1 . . . Ãjnn .

We get

T (I ⊗ B̃kl) =
1√
2n

∑

(j1...jn)∈{0,1}n

Aj11 . . . Ajnn ⊗ I|ψ〉

1√
2

(

±
(

sign(j1, . . . jn, k)Ã
j1
1 . . . Ãjk⊕1

k . . . Ãjnn ⊗ I|ψ̃〉
)†

+
(

sign(j1, . . . jn, l)Ã
j1
1 . . . Ãjl⊕1

l . . . Ãjnn ⊗ I|ψ̃〉
)†
)

We separate into two sums and change the index of summation in each and we get

T (I ⊗ B̃kl) =
1√
2n

∑

(j1...jn)∈{0,1}n

1√
2

(

± sign(j1, . . . jn, k)A
j1
1 . . . Ajk⊕1

k . . . Ajnn ⊗ I|ψ〉

+ sign(j1, . . . jn, l)A
j1
1 . . . Ajl⊕1

l . . . Ajnn ⊗ I|ψ〉
)

〈ψ̃|
(

Ãj11 . . . Ãjnn ⊗ I
)†

From here, identity (9) follows. This completes the proof of Proposition 5.

4.6 The first error bound

In this section we prove Proposition 6.

We would like to insert Ai into the product Aj11 . . . Ajnn as if the Ai, i = 1, . . . n were

anti-commuting. However, we don’t know that Ai, i = 1, . . . n are anti-commuting; all we

know about the Ai, i = 1, . . . n is that they are part of an ǫ-optimal CHSH(n) strategy.
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Even though Ai, i = 1, . . . n may not be anti-commuting as operators, they nearly anti-

commute in their action on the strategy state |ψ〉. We prove the following:

Lemma 5 Let Ai, Bjk, |ψ〉 be an ǫ-optimal CHSH(n) strategy. Then,

∑

1≤i<j≤n

∥
∥
∥
∥

AiAj +AjAi
2

⊗ I|ψ〉
∥
∥
∥
∥

2

≤ (1 +
√
2)2n(n− 1)ǫ

Proof. The operators
Ai +Aj√

2
⊗ I + I ⊗Bij

and
Ai −Aj√

2
⊗ I + I ⊗Bji

each have operator norm at most (1 +
√
2), by the triangle inequality.

Next, we see that

∥
∥
∥
∥

AiAj +AjAi
2

⊗ I|ψ〉
∥
∥
∥
∥
=

∥
∥
∥
∥

(
Ai +Aj√

2
⊗ I + I ⊗Bij

)(
Ai +Aj√

2
⊗ I − I ⊗Bij

)

|ψ〉
∥
∥
∥
∥

≤ (1 +
√
2)

∥
∥
∥
∥

(
Ai +Aj√

2
⊗ I − I ⊗Bij

)

|ψ〉
∥
∥
∥
∥

and similarly,

∥
∥
∥
∥

AiAj +AjAi
2

⊗ I|ψ〉
∥
∥
∥
∥
=

∥
∥
∥
∥

(
Ai −Aj√

2
⊗ I + I ⊗Bji

)(
Ai −Aj√

2
⊗ I − I ⊗Bji

)

|ψ〉
∥
∥
∥
∥

≤ (1 +
√
2)

∥
∥
∥
∥

(
Ai −Aj√

2
⊗ I − I ⊗Bji

)

|ψ〉
∥
∥
∥
∥

Now use inequality (6) from Proposition 1 to get

∑

1≤i<j≤n
2

∥
∥
∥
∥

AiAj +AjAi
2

⊗ I|ψ〉
∥
∥
∥
∥

2

≤ (1+
√
2)2

∑

1≤i<j≤n

(∥
∥
∥
∥

Ai +Aj√
2

⊗ I|ψ〉 − I ⊗Bij |ψ〉
∥
∥
∥
∥

2

+

∥
∥
∥
∥

Ai −Aj√
2

⊗ I|ψ〉 − I ⊗Bji|ψ〉
∥
∥
∥
∥

2
)

≤ (1 +
√
2)22n(n− 1)ǫ

Lemma 5 is proved. �.

Now we know that Ai, i = 1, . . . n almost anti-commute in their action on the strategy

state |ψ〉. This is a step forward, but still not enough to prove inequality (10). To see why,

consider a product like AiA1A2 ⊗ I|ψ〉. We want to switch the order of Ai and A1. We know

that Ai and A1 nearly anti-commute in their action on |ψ〉, but we don’t yet know that they

nearly anti-commute in their action on A2 ⊗ I|ψ〉.
Fortunately, this difficulty can be avoided: we know from Proposition 1 that

A2 ⊗ I|ψ〉 ≈ I ⊗ 1√
2
(B12 −B21)|ψ〉
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This helps, because

(AiA1 ⊗ I)(A2 ⊗ I)|ψ〉 ≈ (AiA1 ⊗ I)(I ⊗ 1√
2
(B12 −B21))|ψ〉

= (I ⊗ 1√
2
(B12 −B21))(AiA1 ⊗ I)|ψ〉

and now we can switch the order of Ai and A1 in their action on |ψ〉.
Now we see that as long as we can ”get some of the Ai’s out of the way”, we can use the

anti-commutation on |ψ〉 to switch the order of a product of the Ai’s acting on |ψ〉. To keep

the errors of approximation under control, we want the operators on the B side that we use

to have operator norm 1. The operators 1√
2
(Bij±Bji) do not necessarily have operator norm

1, but fortunately this difficulty can also be avoided.

The discussion in the previous paragraphs motivates us to prove the following lemma:

Lemma 6 Fix k. Then, there exists an l such that
∥
∥
∥
∥
Ak ⊗ I|ψ〉 − I ⊗ ±Bkl +Blk

| ±Bkl +Blk|
|ψ〉
∥
∥
∥
∥
≤ (2

√
2 + 2)

√
n
√
ǫ (18)

where +Bkl is taken if l > k and −Bkl is taken if l < k. The notation

±Bkl +Blk
| ±Bkl +Blk|

means that we take all eigenvalues of the operator ±Bkl+Blk and normalize the positive ones

to 1, the negative ones to −1, and, by convention, the eigenvalue 0 gets normalized to 1.

Proof. There are two steps:
∥
∥
∥
∥
Ak ⊗ I|ψ〉 − I ⊗ ±Bkl +Blk√

2
|ψ〉
∥
∥
∥
∥
≤

√
2
√
n
√
ǫ (19)

and ∥
∥
∥
∥
I ⊗ ±Bkl +Blk√

2
|ψ〉 − I ⊗ ±Bkl +Blk

| ±Bkl +Blk|
|ψ〉
∥
∥
∥
∥
≤ (2 +

√
2)
√
n
√
ǫ (20)

We prove the first step. We take relation (7) from Proposition 1. We focus only on those

terms of the sum that contain Ak and we get

n∑

j=k+1

∥
∥
∥
∥
Ak ⊗ I|ψ〉 − I ⊗ Bkj +Bjk√

2
|ψ〉
∥
∥
∥
∥

2

+
k−1∑

j=1

∥
∥
∥
∥
Ak ⊗ I|ψ〉 − I ⊗ −Bkj +Bjk√

2
|ψ〉
∥
∥
∥
∥

2

≤ 4

(
n

2

)

ǫ

Pick the smallest of these (n− 1) terms. It satisfies

∥
∥
∥
∥
Ak ⊗ I|ψ〉 − I ⊗ ±Bkl +Blk√

2
|ψ〉
∥
∥
∥
∥

2

≤ 2nǫ

This proves inequality (19).

Now we focus on the second step. By Lemma 7 which we will prove below,
∥
∥
∥
∥
I ⊗ ±Bkj +Bjk√

2
|ψ〉 − I ⊗ ±Bkl +Blk

| ±Bkl +Blk|
|ψ〉
∥
∥
∥
∥
≤
∥
∥
∥
∥
I ⊗ BklBlk +BlkBkl

2
|ψ〉
∥
∥
∥
∥

(21)
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Next, observe that the operator

Ak ⊗ I + I ⊗ ±Bkl +Blk√
2

has operator norm at most (1 +
√
2), and so

∥
∥
∥
∥
I ⊗ BklBlk +BlkBkl

2
|ψ〉
∥
∥
∥
∥
=

∥
∥
∥
∥

(

Ak ⊗ I + I ⊗ ±Bkl +Blk√
2

)(

Ak ⊗ I − I ⊗ ±Bkl +Blk√
2

)

|ψ〉
∥
∥
∥
∥

≤ (1 +
√
2)

∥
∥
∥
∥
Ak ⊗ I|ψ〉 − I ⊗ ±Bkl +Blk√

2
|ψ〉
∥
∥
∥
∥
≤ (1 +

√
2)
√
2nǫ

This proves inequality (20).

Now, we combine inequalities (19) and (20), and get inequality (18). This completes the

proof of Lemma 6. �.

Next, we prove a Lemma that implies inequality (21) which we used in the proof of Lemma

6. This has to do with operators of the form R+S√
2

and R+S
|R+S| when R, S are ±1 observables.

Lemma 7 Let R,S be two ±1 observables on C
d. Then,

1. The following operator identity holds:

(
R+ S√

2
− R+ S

|R+ S|

)2

=

(
RS + SR

2

)(

2I +
RS + SR

2
+ 2

√

I +
RS + SR

2

)−1(
RS + SR

2

)

(22)

2. The operator
(
RS + SR

2

)2

−
(
R+ S√

2
− R+ S

|R+ S|

)2

is positive semi-definite.

3. For any vector |v〉,
∥
∥
∥
∥

R+ S√
2

|v〉 − R+ S

|R+ S| |v〉
∥
∥
∥
∥
≤
∥
∥
∥
∥

RS + SR

2
|v〉
∥
∥
∥
∥

Proof. First, we prove the operator identity. We will show that the two operators have

the same eigenvalues and eigenspaces.

We break up C
d into eigenspaces for the self-adjoint operator R + S. Since RS + SR =

(R + S)2 − 2I, these are also eigenspaces for the operator RS + SR, and so also eigenspaces

for the operator

(
RS + SR

2

)(

2I +
RS + SR

2
+ 2

√

I +
RS + SR

2

)−1(
RS + SR

2

)

Consider an eigenspace where R+ S has eigenvalue λ.
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On this eigenspace, the operator

(
R+ S√

2
− R+ S

|R+ S|

)2

has eigenvalue
(
(signλ)λ/

√
2− 1

)2
; this holds in all the three cases λ > 0, λ < 0, λ = 0.

The eigenvalue of (RS + SR)/2 on this eigenspace is (λ2 − 2)/2.

The eigenvalue of

(
RS + SR

2

)(

2I +
RS + SR

2
+ 2

√

I +
RS + SR

2

)−1(
RS + SR

2

)

on this eigenspace is

(
λ2 − 2

2

)2
1

2 + λ2−2
2 + 2

√

1 + λ2−2
2

=

(
(signλ)λ√

2
− 1

)2

Therefore the operators
(
R+ S√

2
− R+ S

|R+ S|

)2

and
(
RS + SR

2

)(

2I +
RS + SR

2
+ 2

√

I +
RS + SR

2

)−1(
RS + SR

2

)

have the same eigenvalue on this eigenspace.

The argument works for any eigenspace, so operator identity (22) holds.

Next we prove the second part. We can see from the argument above that the operator

(

2I +
RS + SR

2
+ 2

√

I +
RS + SR

2

)−1

has eigenvalues of the form
1

(
(signλ)λ√

2
+ 1
)2

and they are all in (0, 1]. Therefore,

(
R+ S√

2
− R+ S

|R+ S|

)2

=

(
RS + SR

2

)(

2I +
RS + SR

2
+ 2

√

I +
RS + SR

2

)−1(
RS + SR

2

)

�
(
RS + SR

2

)2

Finally, we observe that the third part follows directly from the second. Lemma 7 is

proved. �.
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Recall that the goal of this section is to prove Proposition 6 and the overall strategy is to

insert Ai into the product Aj11 . . . Ajnn as if the Ai, i = 1, . . . n were anti-commuting. We have

prepared the tools necessary for this goal. Lemma 5 tells us that

AkAl ⊗ I|ψ〉 ≈ −AlAk ⊗ I|ψ〉

with an error of approximation at most (2
√
2 + 2)n

√
ǫ. We call this apporoximation step an

anticommutation switch. Lemma 6 tells us that

Ak ⊗ I|ψ〉 ≈ I ⊗ ±Bkl +Blk
| ±Bkl +Blk|

|ψ〉

where ±Bkl+Blk

|±Bkl+Blk| is a suitable ±1 observable acting on the B side, and the error of approxi-

mation is at most (2
√
2 + 2)

√
n
√
ǫ. We call this approximation step an AB-switch.

We concatenate a number of these approximation steps to get inequality (10). We present

a procedure that goes from AiA
j1
1 . . . Ajnn ⊗I|ψ〉 to sign(i, j1, . . . jn)Aj11 . . . Aji⊕1

i . . . Ajnn ⊗I|ψ〉
using at most n anti-commutator switches and 2n AB-switches:

1. Start with AiA
j1
1 . . . Ajnn ⊗ I|ψ〉.

2. Switch all elements of the product Aj11 . . . Ajnn to the B side using the AB-switches.

3. Repeat

(a) Switch the last observable on the B side back to the A side

(b) Anti-commute Ai and the newly switched observable

until Ai comes to its proper position.

4. Switch the observables still remaining on the B side back to the A side.

The total approximation error of this procedure is at most

n(2
√
2 + 2)n

√
ǫ+ (2n)(2

√
2 + 2)

√
n
√
ǫ ≤ (6 + 4

√
2)n2

√
ǫ < 12n2

√
ǫ

Inequality (10) is proved. This completes the proof of Proposition 6.

4.7 The second error bound

In this section we prove Proposition 7. The argument is similar to the previous section.

By the triangle inequality, we have
∥
∥
∥
∥
∥
Aj11 . . . Ajnn ⊗Bkl|ψ〉 −

1√
2

(

± sign(j1, . . . jn, k)A
j1
1 . . . Ajk⊕1

k . . . Ajnn ⊗ I|ψ〉

+ sign(j1, . . . jn, l)A
j1
1 . . . Ajl⊕1

l . . . Ajnn ⊗ I|ψ〉
)
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
Aj11 . . . Ajnn ⊗Bkl|ψ〉 −Aj11 . . . Ajnn

±Ak +Al√
2

⊗ I|ψ〉
∥
∥
∥
∥

+
1√
2

∥
∥
∥A

j1
1 . . . Ajnn Ak ⊗ I|ψ〉 − sign(j1, . . . jn, k)A

j1
1 . . . Ajk⊕1

k . . . Ajnn ⊗ I|ψ〉
∥
∥
∥

+
1√
2

∥
∥
∥A

j1
1 . . . Ajnn Al ⊗ I|ψ〉 − sign(j1, . . . jn, l)A

j1
1 . . . Ajl⊕1

l . . . Ajnn ⊗ I|ψ〉
∥
∥
∥ (23)
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For the first term we have:

∥
∥
∥
∥
Aj11 . . . Ajnn ⊗Bkl|ψ〉 −Aj11 . . . Ajnn

±Ak +Al√
2

⊗ I|ψ〉
∥
∥
∥
∥

=

∥
∥
∥
∥
I ⊗Bkl|ψ〉 −

±Ak +Al√
2

⊗ I|ψ〉
∥
∥
∥
∥
≤
√

2n(n− 1)ǫ (24)

where we have used the inequalities in Proposition 1.

For the second term, we claim that

∥
∥
∥A

j1
1 . . . Ajnn Ak ⊗ I|ψ〉 − sign(j1, . . . jn, k)A

j1
1 . . . Ajk⊕1

k . . . Ajnn ⊗ I|ψ〉
∥
∥
∥ ≤ (6+ 4

√
2)n2

√
ǫ

(25)

The argument is similar to the argument in the previous section: we present a procedure that

goes from Aj11 . . . Ajnn Ak ⊗ I|ψ〉 to sign(j1, . . . jn, k)Aj11 . . . Ajk⊕1
k . . . Ajnn ⊗ I|ψ〉 using at most

n anti-commutator switches and 2n AB-switches. The procedure is the following:

1. Start with Aj11 . . . Ajnn Ak ⊗ I|ψ〉.

2. Repeat

(a) Anti-commute Ak and the next to last observable on the A side

(b) Move the newly switched observable to the B side

until Ak comes to its proper position.

3. Switch the observables still remaining on the B side back to the A side.

The third term is analyzed in the same manner and we get

∥
∥
∥A

j1
1 . . . Ajnn Al ⊗ I|ψ〉 − sign(j1, . . . jn, l)A

j1
1 . . . Ajl⊕1

l . . . Ajnn ⊗ I|ψ〉
∥
∥
∥ ≤ (6 + 4

√
2)n2

√
ǫ

(26)

Finally, we combine inequalities (23), (24), (25) and (26) to get inequality (11). This

completes the proof of Proposition 7.

4.8 Putting everything together

The aim of this subsection is to put all the previous steps together and prove Theorem 1.

We start with the first of inequalities (5). We know from Proposition 4 that

(Ai ⊗ I)T − T (Ãi ⊗ I) =
1√
2n

∑

(j1...jn)∈{0,1}n

(

AiA
j1
1 . . . Ajnn ⊗ I|ψ〉

− sign(i, j1, . . . jn)A
j1
1 . . . Aji⊕1

i . . . Ajnn ⊗ I|ψ〉
)

〈ψ̃|
(

Ãj11 . . . Ãjnn ⊗ I
)†

We know from Proposition 2 that the vectors

{

Ãj11 . . . Ãjnn ⊗ I|ψ̃〉 : (j1 . . . jn) ∈ {0, 1}n
}
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are orthonormal.

We also know from Proposition 6 that for all i, for all (j1 . . . jn) ∈ {0, 1}n

∥
∥
∥AiA

j1
1 . . . Ajnn ⊗ I|ψ〉 − sign(i, j1, . . . jn)A

j1
1 . . . Aji⊕1

i . . . Ajnn ⊗ I|ψ〉
∥
∥
∥ < 12n2

√
ǫ

We combine these facts using Lemma 4 and we get that for all i,

‖(Ai ⊗ I)T − T (Ãi ⊗ I)‖ < 12n2
√
ǫ = 12n2

√
ǫ‖T‖

where in the last step we have used ‖T‖ = 1 (Proposition 3).

In a similar manner, we take the results of Propositions 2, 3, 5, and 7, apply Lemma 4,

and get that for all j 6= k ∈ {1, . . . n}

‖(I ⊗Bjk)T − T (I ⊗ B̃jk)‖ < 17n2
√
ǫ‖T‖

The proof of Theorem 1 is complete.

5 Conclusion and open problems

In this paper, we focused on the CHSH(n) XOR games, and derived the structure of their

nearly-optimal quantum strategies.

One possible direction for future work is whether structure results like the one for CHSH(n)

nearly-optimal quantum strategies can be proved for other non-local games. The optimal

quantum strategies for the CHSH(n) games are related to representations of the Clifford alge-

bra with n anti-commuting generators, and the arguments in this paper use this connection.

However, it may be possible to construct an argument of this form, or another form altogether,

for other XOR games with less regular structure.

Another possible direction for future work is whether the CHSH(n) games can be used

in device-independent protocols. The CHSH game, the first member of the CHSH(n) family,

has already been used in device-independent protocols. Whether all the CHSH(n) games can

be used, and which of the CHSH(n) games gives protocols with the best parameters, are two

questions that are still open.
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