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1 Introduction

Reversible circuits are important parts of quantum algorithms. Grover’s oracles, integer and

finite field arithmetic operations (used in Shor-type discrete logarithm quantum algorithms),

as well as numerous types of Boolean operations over quantum registers are all examples of

the reversible circuits. Consequently, the study of reversible circuits and their complexities

is important in understanding the complexity of quantum circuits and algorithms, as well as

for the efficient implementation of quantum algorithms.

In this paper, we study reversible circuits over the gate library consisting of the NOT, the

CNOT, and the Toffoli gates, also commonly referred to as NCT circuits. The individual gates

are defined via the logical transformations they perform over Boolean variables, as follows:

• NOT gate, NOT(a) : a 7→ a⊕ 1;

• CNOT gate, CNOT(a; b) : (a, b) 7→ (a, b⊕ a);

• Toffoli gate, TOF(a, b; c) : (a, b, c) 7→ (a, b, c⊕ ab).

A reversible circuit is the string of gates, read left to right. In addition to the primary variable

inputs, a reversible circuit may have constant inputs, carrying a constant value of either a

zero or a one. Those additional inputs are called ancillae. They can be a useful resource, as

they provide additional space for the computations.
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A reversible function of n Boolean variables, f(x) = f(x1, x2, ..., xn) = (f1(x1, x2, ..., xn),

f2(x1, x2, ..., xn), ..., fn(x1, x2, ..., xn)) is the bijective mapping of the Boolean n-dimensional

cube into itself. There are three possible notions of what it means to implement a reversible

function by a reversible circuit, that we list next, appearing in the weakest to the strongest

form.

W. Weak. The reversible circuit computes a set of Boolean functions, and among them, are

all n outputs of the desired reversible function f .

I. Intermediate. The reversible circuit computes the mapping (x, y) 7→ (x, y⊕f(x)), where

x, y, and f(x) are n-bit registers, and the EXOR operates bitwise. In addition, some

ancillae may be used, but their values are returned to the original state.

S. Strong. The circuit implementing f performs the mapping x 7→ f(x). Some ancillae

may be used, but their values are returned to the original state.

Stronger notions of the implementability can be used straightforwardly to compute the

weaker notions; some CNOTs may be required. Weaker notions can too be used to compute

the stronger notions. To construct the intermediate implementation using the weak imple-

mentation, apply the weak circuit A, EXOR useful outputs, f(x), to the new register y via

the use of n CNOTs, and then apply A−1. Recall that the circuit A−1 may be obtained

from the NCT circuit A via inverting the order of gates in A. As a result, the intermediate

implementation can be constructed with at most twice the number of gates in the weak im-

plementation, plus n CNOT gates. Incidentally, same procedure can be applied to the strong

implementation to obtain the intermediate implementation from it.

To obtain the strong implementation from the intermediate implementation, take two

circuits—circuit B computing (x, y) 7→ (x, y⊕ f(x)) and circuit C computing (x, y) 7→ (x, y⊕
f−1(x)). To obtain the transformation x 7→ f(x) start with the 2n-bit register (x, 0), apply

B to it to transform it into (x, f(x)), then SWAP first and second n-bit registers to obtain

(f(x), x), and finally apply C to obtain (f(x), x ⊕ f−1(f(x))) = (f(x), x ⊕ x) = (f(x), 0).

Discarding the mention of ancillae, the aggregate transformation can now be described as

x 7→ f(x). A further in-depth study of the relation between the intermediate and strong

forms can be found in [1].

Neither of the above constructions affects asymptotic optimality in the case when we are

concerned with upper bounds on the resources required to obtain the most difficult function.

Indeed, if the upper bound on the resource count used by B, performing the mapping (x, y) 7→
(x, y ⊕ f(x)), is I(n), same number, I(n), applies to upper bound the cost of C, performing

the mapping (x, y) 7→ (x, y ⊕ f−1(x)). Next we summarize how the following notions are

related: W (n) the cost of the weak implementation of an arbitrary n-bit reversible function,

I(n) the cost of the intermediate implementation of an arbitrary n-bit reversible function,

and S(n) the cost of the strong implementation of an arbitrary n-bit reversible function:

WI: W (n) ≤ I(n);

IS: I(n) ≤ 2 · S(n) + n · Cost(CNOT);

WS: W (n) ≤ S(n);
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IW: I(n) ≤ 2 ·W (n) + n · Cost(CNOT);

SI: S(n) ≤ 2 · I(n) + 3n · Cost(CNOT);

SW: S(n) ≤ 4 ·W (n) + 5n · Cost(CNOT).

In the above, we relied on the common notion that the SWAP gate can be implemented via

three CNOTs. We conclude that in the case when W (n), I(n), and S(n) are at least linear

in n, asymptotic optimality of any one of them implies the asymptotic optimality of all other

types of implementations.

The reason to have multiple definitions of computability is rooted in the observation that

the weak notion would be the one expected in the scenario when reversible circuits are in-

teresting in the context of their own. However, reversible circuits are most often viewed in

the broader context of quantum computing [2]. From the point of view of quantum computa-

tions, the weak notion of computability by a reversible circuit may give rise to the unwanted

entanglement residing on those (qu)bits carrying partial results of the computation. The

intermediate notion removes the concern of the unwanted entanglement residing on the par-

tially computed outputs, and furthermore is used broadly within the context of quantum

algorithms. Should the strong notion of computability be required, it is possible to obtain it

too, without affecting the asymptotic optimality. Therefore, from the point of view of this

paper, we will be satisfied with any one type of implementation.

Define La,b,c(n, g), where a, b, c ∈ {0, 1}, and g is a positive integer, to be the smallest

cost of the circuit implementation of the most expensive reversible function of n variables

realized by the NCT circuit using at most g input constants. The input constants are allowed

to take values 0 or 1. The circuit cost is calculated as the sum across all gates participating

in the given circuit, where the NOT gate is counted with the weight a, the CNOT gate is

counted with the weight b, and the Toffoli gate is counted with the weight c. We note that

La,b,c(n, 0) does not exist, as no odd permutation may be synthesized via an NCT circuit

without using an additional ancilla [3]; this explains why we chose g > 0 in the definition of

La,b,c(n, g). La,b,c(n) furthermore reports the best cost NCT implementation of the function

that is most difficult to obtain via its circuit realization in the scenario where the use of an

arbitrary number of ancillae is allowed.

Of the 8 possible choices for parameters a, b, c in La,b,c(n, g), some carry a special meaning.

For instance, L1,0,0(n, g) determines the maximal number of the NOT gates required by

reversible circuits. We will later show that this number is zero, meaning NOT gates by

themselves are not all that useful, as their use can be avoided. L0,0,1(n, g) = L0,0,1(n), when

g is allowed to be arbitrarily high, such as to not limit the space used by the computation, can

be viewed as the multiplicative, or otherwise, non-linear cost of the reversible functions. It is

furthermore closely related to the T -count circuit metric in quantum circuits, as both ignore

the effects of the cost of linear (with respect to EXOR) reversible transformations. The study

of lower and upper bounds on L0,0,1(n), as well as the discussion of the implications, is the

main focus of this paper.

1.1 Motivation

In this paper we study the problem of minimizing the gate counts by their type in reversible

circuits with NOT, CNOT, and Toffoli gates. This study is motivated by the relative hardness
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of constructing the Toffoli gate compared to the effort required to obtain the CNOT, and the

relative hardness of CNOT compared to NOT.

First, compare the implementation costs of NOT and CNOT. Both are Clifford gates,

therefore, on the logical level they are likely to be transversal. This means that both gates

are implemented via a set of NOT, and, respectively, CNOT gates, applied to the physical-

level qubits. On the physical level, a NOT gate is often less expensive than the CNOT gate.

Frequently, this is due to the two-qubit gates taking more effort to implement than any of

the single-qubit gates. It is not uncommon for a CNOT gate to be 20 times more resource

demanding compared to the NOT gate.

Next, compare the cost of the Toffoli gate to the cost of the CNOT gate. Consider

quantum logical-level circuits. Often, all Clifford gates, CNOT included, are relatively easy

to implement on the logical level. In contrast, the Toffoli gate, being a transformation outside

the Clifford group, is more difficult to obtain. Assuming the non-Clifford gate provided by the

fault tolerance approach selected is the so-called T gate, the Toffoli gate may be implemented

as a circuit with 2 Hadamard gates, 7 T/T † gates, and 6 CNOT gates [4]. Discarding the cost

of the Hadamard gate, and taking the sum of the costs of the remaining gates in this circuit

implementation, we obtain Cost(TOF) = 6 · Cost(CNOT) + 7 · Cost(T/T †). While it was

shown that 6 CNOT gates are required to implement the Toffoli gate as a circuit over the

library including arbitrary single-qubit and CNOT gates [5], the number 7 of T/T † gates has

been obtained via a computer search [4] and in principle could be reducible (and, in fact, it is

when additional resources are available [6]). The known way of implementing the fault-tolerant

gate T requires state distillation and then its teleportation. The teleportation is achieved via

the use of the single logical CNOT gate, relying on the well-known teleportation circuit, and

therefore it is not resource demanding. The state distillation relies on a nested application

of the 15-qubit Hamming code [7]. Physical parameters of the quantum information system

used and the overall length of the desired computation play a determining role in deciding

on the details of the protocol and the complexity of implementing the T gate. Assuming the

distillation depth of 2, which appears to be a practical choice for scalable computations, the

cost of implementing the T gate is roughly 50 times that of the logical CNOT. At which point,

the cost of the Toffoli gate expressed in the units corresponding to the cost of the CNOT gates

becomes roughly 6 · 1 + 7 · 50 = 356, being, in practical terms, a large number. While the

number 356 may itself be possible to reduce (e.g., outsource the ancilla production to before

the desired computation), it is likely that the Toffoli gate will remain substantially (provably,

at least 6 times over arbitrary single-qubit gates and the CNOT [5]) more expensive than the

(nearest-neighbour) CNOT gate.

One other resource that can be useful for efficient implementation of reversible functions is

ancillary (qu)bits. It may be difficult to compare the cost of arbitrary gates to that of ancillary

qubits directly, as these are, strictly speaking, resources of a different kind. However, we will

next evaluate the relation between the cost of a logical ancilla qubit and that of the logical

NOT/Toffoli gates to conclude that, within known fault tolerant approaches, an ancilla qubit

is substantially more expensive than the NOT gate, and substantially less expensive than

the Toffoli gate. First, to obtain a logical ancilla qubit in the state |0〉 or |1〉 we need a

physical space (qubits). This physical space needs to be prepared in the respective encoded

logical state. The procedure accomplishing it can be described as a (physical-level) Clifford
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circuit. As a result, one may expect a number of the physical-level CNOT gates to be applied.

Thus, recalling earlier discussions, it can be expected that the cost of this operation exceeds

that of the logical NOT gate. Second, the Toffoli gate relies on the seven T/T † gates that

themselves are obtained with the use of state distillation, which includes a nested application

of the circuits implementing a Clifford unitary. Logical |0〉 or |1〉 state preparation, on the

other hand, uses only one Clifford circuit designed to prepare a state, as opposed to a whole

unitary, which is expected to be much simpler to accomplish.

The cost of an ancilla can thus be said to be roughly similar to that of the CNOT gate.

As such, we will disregard the cost of ancilla every time we exclude the cost of the CNOT

gates from the circuit cost figure (La,b,c(n, g) with b = 0). In the scenario when we include

the CNOT count in the overall calculation, we may consider accounting for ancilla as well.

There are only two interesting cases to consider, L1,1,1(n, g) and L0,1,1(n, g). This is because,

as shown later, the remaining two relevant complexity figures, L0,1,0(n, g) = 0 when g ≥ 1,

and L1,1,0(n, 1) = 1 and L1,1,0(n, g) = 0 when g ≥ 2 carry small values, and there is little

interplay between the value of the complexity function L and the number of ancillae. The

case L0,1,1(n, g) may furthermore be reduced to L1,1,1(n, g). Indeed, constructing the lower

bound involves the counting argument, and the asymptotics of the number of transforma-

tions achievable by cost-1 circuits over the library with “free” NOT gates is the same as the

asymptotics of the number of transformations achievable by cost-1 circuits when the NOT

gates are counted towards the cost figure. This means that essentially the same lower bounds

will apply to both L1,1,1(n, g) and L0,1,1(n, g). An upper bound for the quantity L1,1,1(n, g)

can furthermore be used directly to upper bound the quantity L0,1,1(n, g). As a result, of the

two quantities, L1,1,1(n, g) and L0,1,1(n, g), only one, L1,1,1(n, g), may be studied, with the

results transferable to L0,1,1(n, g).

If we allow arbitrary ancillae, a classical Boolean circuit complexity result stating that any

Boolean function can be implemented using at most O( 2
n

n ) NOT/OR/AND classical gates [8]

can be used to upper bound the number of NOT/OR/AND gates in a classical irreversible

circuit by O(2n) for every reversible function. Making this latter classical circuit reversible

may increase the number of gates used by some constant factor, and will not require more

than O(2n) ancillae. This leads to the upper bound of the form L1,1,1(n,C22
n) . C32

n for

a proper choice of constants C2 and C3. We can furthermore lower bound L1,1,1(n,C22
n) by

the quantity C12
n, for a proper choice of the constant C1, via applying the simple counting

argument, [3, Lemma 8], to obtain asymptotic optimality, C12
n . L1,1,1(n,C22

n) . C32
n.

It is interesting to study how the value of L1,1,1(n, g) function changes when the number of

ancillae g is increased from 1 to C22
n, however, such a study is outside the scope of this

paper. For the rest of the paper, we will restrict the number of ancillae to a constant when

considering the values of the L function with the CNOT gate count included.

1.2 Previous work

The topic of the complexity of NCT realizations of reversible circuits has been studied exten-

sively. Within the terminology introduced above, previous literature encounters the following

results. [3] reports upper and lower bounds of the following form: n2n

3 log2 n . L1,1,1(n, 1) .

9n2n, L0,1,1(n, 1) . 9n2n, and L0,0,1(n, 1) . 9n2n. The upper bounds were improved

to L1,1,1(n, 1) . 5n2n, L0,1,1(n, 1) . 5n2n, and L0,0,1(n, 1) . 3n2n in [9], and then to
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L1,1,1(n, 1) . 4.5n2n, L0,1,1(n, 1) . 4n2n, and L0,0,1(n, 1) . 2n2n in [10, 11]. Finally, [12] re-

ports improved upper bounds of the following form: L1,1,1(n, 1) .
48n2n

log2 n , L0,1,1(n, 1) .
40n2n

log2 n ,

and L0,0,1(n, 1) . 32n2n

log2 n . Technically, to apply the result [12], that was itself developed to

handle even permutations, we need to mention that any odd permutation can be reduced

to an even permutation via multiplying it by the maximal size multiple control Toffoli gate

(one spanning all n bits). This latter multiple control Toffoli gate requires a linear number

of 3-bit Toffoli gates to be implemented as an NCT circuit [13], and therefore does not affect

the advertised asymptotics. The multiplicative constant separating the best known lower [3]

and upper [12] bounds for L1,1,1(n, 1) is about a hundred, however, it is no more a function

of n, allowing to conclude that the asymptotic optimality has been established.

The topic of gate-specific Boolean circuit complexities has also been studied in the lit-

erature. Specifically, [14] studied the complexity of formulas, circuits, and contact relays,

implementing a Boolean single-output function, including the multiplication cost (in the ba-

sis with Boolean multiplication and addition modulo-2, where the addition can be used for

free) of Boolean single-output functions. The upper bound developed in [14] on the number

of multiplications required, 2n/2 + o(2n/2), may be applied to the reversible case to obtain

the upper bound of n2n/2, in the leading order, of the Toffoli gates per a reversible function.

However, in this paper, we are able to develop a better upper bound of 2
√
n2n/2 in the leading

order via a direct construction. The difference between classical and reversible logic cases is

furthermore not only in the different number of outputs (n VS 1, assuming n input bits) that

need to be computed by the reversible circuit simultaneously, but also in the ancillae manage-

ment, that is of no importance in classical circuits. These differences are substantial in that

they appear to prohibit a direct transfer of the results from Boolean logic to the reversible

function/circuit scenario.

2 La,b,c(n, g): practice-motivated and other cases

We have previously established that Cost(NOT) < Cost(CNOT) < Cost(TOF). Therefore,

there is most value in studying circuit complexities by the gate types in the scenario discarding

the costs of the simpler resources first. These are the cases of L0,1,1(n, g) and L0,0,1(n).

Recall that asymptotically optimal lower and upper bounds in the scenario L1,1,1(n, 1) have

already been obtained by the previous authors. We study L0,1,1(n, g) and L0,0,1(n) in the

following sections. In this section, we study optimal and asymptotically optimal circuits in

the remaining four scenarios (L0,0,0(n, g) is trivial), L1,0,0(n, g), L1,1,0(n, g), L0,1,0(n, g), and

L1,0,1(n, g).

Consider L1,0,0(n, g), counting the number of NOT gates in reversible NCT circuits. It

may be easily established that ∀g L1,0,0(n, g) = 0. Indeed, assign the value of 1 to the ancillary

qubit y. Every time a NOT(xi) gate is used by the synthesis algorithm reported in, e.g., [15]

(a NOT gate is applied at most once to each primary input in the beginning of the circuit),

replace it with the CNOT(y;xi). The result of this modification of the synthesis algorithm in

[15] is no NOT gates are used, and therefore L1,0,0(n, g) = 0. Similarly, if one were to discard

the cost of the Toffoli gates, and study the NOT/CNOT cost, the following statement is true:

∀g ≥ 2 L1,1,0(n, g) = 0. The case of L1,1,0(n, 1) is somewhat more complex and requires an
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explicit proof.

Lemma 1: L1,1,0(n, 1) = 1.

Proof: Lower bound. There are two cases to consider: on the input side we have either

(a) values x1, x2, ..., xn, 0 or (b) values x1, x2, ..., xn, 1, where x1, x2, ..., xn are primary inputs.

To keep the NOT and CNOT count to zero, we may use only the Toffoli gates. We next

prove that there exists a reversible function that may not be computed by such a circuit. The

impossibility implies that at least one NOT or CNOT gate needs to be used. In the proof

of the upper bound that follows we will furthermore show that one NOT gate does suffice,

leading to the desired equality. To prove that we need a NOT or a CNOT gate, apply a series

of Toffoli gates, and observe that the number of components with term 1 in their PPRM

expansion (Positive Polarity Reed-Muller expansion, see (1)) remains constant (zero in the

case (a) and one in the case (b)). Indeed, to include the term 1 in some component y not yet

containing a 1 in its PPRM expansion, this bit needs to be a target of a Toffoli gate. Suppose

this is the Toffoli gate with controls y1 and y2. To obtain term 1 in the PPRM expansion of the

product y1y2 both y1 and y2 need to contain the term 1 in their PPRM expansion. However,

we have at most zero (case (a)) or one (case (b)) components containing the term 1, but not

two that we need. To conclude the proof observe that the function (x1 ⊕ 1, x2 ⊕ 1, x3, ..., xn)

is reversible and has two of its components contain term 1 in their PPRM expansion. This

function cannot be generated by the Toffoli gates alone.

Upper bound. We modify the algorithm reported in [15] to implement any reversible

function using only the Toffoli gates and at most one NOT gate, when only a single ancilla

is available. First, choose the value of the ancilla to be 1. Take a reversible function and

synthesize a reversible circuit implementing it using the Toffoli gates and no more than one

NOT gate.

Step 1 of the basic algorithm [15] prescribes the use of NOT gates for every bit where

f(0) 6= 0. Without loss of generality, assume these are the first k bits. Then, replace the cir-

cuit composed with these k NOT gates, NOT(x1)NOT(x2)...NOT(xk), with the functionally

equivalent circuit TOF(1, x1;x2)TOF(1, x1;x3)...TOF(1, x1;xk)NOT(x1)TOF(1, x1;xk)...

TOF(1, x1;x3)TOF(1, x1;x2), such as illustrated next (k = 3, n = 4):

x1

x2

x3

x4

1

7→

x1 • • • •
x2

x3

x4

1 • • • •
Observe that the circuit on the right hand side uses only one NOT gate, at which point, the

circuit we have synthesized thus far has the NOT/CNOT cost of one.

Steps 2− 2n use only CNOT, Toffoli, and multiple control Toffoli gates. We replace each

CNOT(xi;xj) with TOF(1, xi;xj) and replace each multiple control Toffoli gate with its

Toffoli gate realization, [13, Lemmas 7.2, 7.3]. In particular, when needed, we break down

the given multiple control Toffoli gate into four smaller multiple control Toffoli gates using

Lemma 7.3, and then apply Lemma 7.2 to decompose all smaller multiple control Toffoli gates
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into 3-bit Toffoli gates. The resulting circuit may use the anicilla bit that we have available,

carrying the known value 1. As such, steps 2 − 2n use no NOT or CNOT gates, and the

overall NOT/CNOT gate count is 1 � .

Next, consider L0,1,0(n, g), counting the number of CNOTs in the reversible NCT circuits.

∀g L0,1,0(n, g) = 0, since one may select the ancillary qubit y to carry the value 1, and replace

each CNOT(xi;xj) used [15] with TOF(y, xi;xj).

Finally, the case L1,0,1(n, g) may be reduced to L0,0,1(n, g), considered in Section 4. This

is because in the presence of “free” CNOT gates, each NOT(xi) gate can be replaced by a

CNOT(1;xi), being an implementation of NOT with zero cost.

3 L0,1,1(n, g)

Lemma 2: n2n

3 log2 n . L0,1,1(n, 1) .
40n2n

log2 n .

Proof: Lower bound. We rely on [3, Lemma 8] to construct the lower bound. Specifically,

[3, Lemma 8] states that the quantity log2 G
log2 b , where G is the size of the set of functions

being computed, and b is the number of different cost-one circuits, lower bounds the cost of

the circuits that implement an arbitrary function. In our calculations, G = 2n!
2n , since each

function may be implemented by a circuit up to the possible “free” negation of all output side

wires. The number of the different cost-one circuits (Toffoli and CNOT gates with arbitrary

NOT gates on the input side) is 4n3 + o(n3). The ratio log2 G
log2 b is then equal to n2n

3 log2 n up to

the lower degree additive terms.

Upper bound. L0,1,1(n, 1) .
40n2n

log2 n was shown in [12] � .

4 L0,0,1(n)

4.1 Lower bound

In the next we will show that the number of the Toffoli gates required to implement an

arbitrary reversible n-bit function f(x1, x2, ..., xn) = (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ...,

fn(x1, x2, ..., xn)) of n primary inputs x1, x2, ..., xn with n primary outputs f1, f2, ..., fn,

L0,0,1(n), is at least
√
n2n/2+ o(

√
n2n/2). To accomplish this consider a circuit with h Toffoli

gates. We will number and refer to the Toffoli gates within the circuit as TOF1,TOF2, ....,

TOFh, in the order they appear in the circuit (first to last). We furthermore break bits/wires

in the circuit into smaller chunks. In particular, denote wa to be an uninterrupted piece of

wire between some two gates. The values carried by those pieces of wire are equal to the

respective primary input/constant between that input/constant and the first gate applied;

the values of the pieces of wire in the middle of the circuit and the output depend on which

gates were applied by the circuit. For instance, for a TOFi(wa, wb;wc) over three input-side

pieces of wire, being two input controls wa and wb, and one input target wc, and three pieces

of wire on the output side, wd, we, and wf , the values carried by the pieces of wire are related

by the following formulas wd = wa, we = wb, and wf = wc ⊕ wawb. We will furthermore

denote the Boolean product computed by the Toffoli gate TOFi and EXORed into its target,

wawb, as Prod(TOFi).

Lemma 3: In a reversible NCT circuit with h Toffoli gates each value carried by a piece
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of wire wa can be written as a linear sum LS(wa) =
⊕h

i=1 ciProd(TOFi) ⊕ l(x), where

ci ∈ {0, 1} and l(x) is a linear function of primary inputs.

Proof: To construct the linear representation advertised in the statement of Lemma, start

with an empty linear sum, LS = 0 and traverse the given piece of wire wa back towards the

beginning of the circuit until the terminal pieces of wire are found. Terminal pieces of wire

include all primary inputs and all input constants. Define S := {wa}. The set S contains all

pieces of wire we need to look at. We next traverse the circuit and compute LS.

• For a piece of wire wa ∈ S and upon finding a NOT gate with input wb and output wa,

replace wa with wb in the set S, and replace LS with LS ⊕ 1.

• For a piece of wire wa ∈ S and upon finding a CNOT gate with input control wb, input

target wc, and output target wa, replace S with S \ {wa} ∪ {wb, wc}.

• For a piece of wire wa ∈ S and upon finding a CNOT gate with input control wb and

output control wa, replace S with S \ {wa} ∪ {wb}.

• For a piece of wire wa ∈ S and upon finding a Toffoli gate TOFi with input target wb

and output target wa, replace wa with wb in S, and replace LS with LS⊕Prod(TOFi).

• For a piece of wire wa ∈ S and upon finding a Toffoli gate TOFi with output control

wa, and input control wb on the same bit as wa, replace wa with wb in the set S.

• For a piece of wire wa ∈ S carrying a primary input signal xk or an input constant Const,

remove wa from S and replace LS with LS ⊕ xk or LS ⊕ Const, correspondingly.

Observe that S may already include a wb when we try to add wb to it. It is safe to keep only

those pieces of wire in the set S that appear in it with odd multiplicity. The above algorithm

terminates in time at most linear in the number of gates in the circuit � .

Theorem 1:
√
n2n/2 . L0,0,1(n).

Proof: We will apply the counting argument to obtain the desired lower bound. The key

in successfully using this strategy is to encode reversible functions via such a combinatorial

structure that tightly (the encoding must not be too wasteful, such as to affect asymptotics)

encodes different functions via their circuit representation and it is easy to either count or

upper bound the number of such structures, as parametrized by the number of the Toffoli gates

used. In such case, the number h, a parameter in the formula counting the number of such

structures, may be used to lower bound the value L0,0,1(n), as h needs to be sufficiently high

before the number of combinatorial structures becomes large enough to contain 2n! instances,

where 2n! is the number of reversible functions of n inputs.

We next map reversible NCT circuits over n primary inputs containing h Toffoli gates into

directed acyclic graphs with edge and vertex labels.

Vertices and edges. The set of vertices is a union of two sets, T and F . The set

T contains h elements, {T1, T2, ..., Th}, each corresponding to the respective Toffoli gate in

the original circuit, {TOF1,TOF2, ...,TOFh}. The Toffoli gates within the original circuit

are numbered in the ascending order as they appear in the circuit. The set F consists of n
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terminal vertices, {F1, F2, ..., Fn}, each corresponding to a single bit of output. The number

of vertices in the DAG is thus h + n. We draw a directed edge (Ti, Tj) iff for some input

control wa of TOFj , LS(wa) contains Prod(TOFi) with the non-zero coefficient ci. We draw

a directed edge (Ti, Fk) iff LS(wa), where wa is the piece of wire corresponding to the output

fk, contains Prod(TOFi).

Edge labels. To each edge (Ti, Tj) ending in the vertex Tj , we assign a label ELTi,Tj

with a numeric value from the set {1, 2, 3}. The binary encoding of the label ELTi,Tj
tells

which input-side controls of the gate TOFj contain term Prod(TOFi) in their LS linear

form representation. Specifically, label 1 = 012 says the second control of TOFj requires the

knowledge of Prod(TOFi) to be computed (i.e., Prod(TOFi) is included in the linear sum

LS of this piece of wire), label 2 = 102 says the first control of TOFj contains Prod(TOFi)

in its LS form, and label 3 = 112 says both controls of TOFj contain Prod(TOFi) in their

LS forms. To each edge (Ti, Fk) ending in the vertex Fk we assign the numeric label of 1.

The meaning of each such edge is the statement that the Prod(TOFi) is EXOR-ed with

something else to obtain the output bit fk, but it will become useful to think of the label as

being equal to 1, as opposed to any other number or no label, when counting the number of

DAGs.

Vertex labels. Enumerate all 2n+1 linear functions of prime inputs {x1, x2, ..., xn}.
Each vertex Ti is labelled by a set of two numbers, V LTi

:= (lwi,a
, lwi,b

), reporting the

numeric orders of the linear functions of the primary inputs that are being EXORed to the

LS of the two input-side controls of the gate TOFi, being the pieces of wire wi,a and wi,b

directly feeding into the gate itself. lwi,a
(lwi,b

) is obtained via removing all Prod(·) terms

from LS(wi,a)(LS(wi,b)) and computing the numeric order of the respective linear function

of the primary inputs. Each vertex Fk is labelled by the number lFk
, corresponding to the

numeric order of the linear function of primary inputs EXORed to the kth primary output.

It is obtained via removing all product terms from LS(wFk
), where wFk

is the piece of wire

carrying kth primary output.

Each such DAG uniquely defines a reversible function, and as such the number of different

DAGs upper bounds the number of different reversible functions possible to obtain as a

function of h—the number of Toffoli gates used. Indeed, consider a specific instance of the

above DAG, and obtain the reversible function it encodes. We next construct logical functions

computed in each vertex of the DAG, in the following order: T1, T2, ..., Th, F1, F2, ..., Fn. T1

has no incoming edges and is labelled by V LT1
= (lw1,a

, lw1,b
). The product computed by the

TOF1 gate is thus Prod(T1) = lw1,a
(x)&lw1,b

(x); here, we use the numeric order of the linear

function to call the function itself. Incidentally, it is same as LS(w1,a)&LS(w1,b) since this

is the first Toffoli in the circuit. Ti has incoming edges that may be broken down into two

sets STi,1 and STi,2, such that the edge label in each set has a non-zero digit j = {1, 2}. The
product function Prod(Ti) takes the value

Prod(Ti) :=



lwi,a
(x)⊕

⊕

(Tk,Ti)∈STi,1

Prod(Tk)



&



lwi,b
(x)⊕

⊕

(Tk,Ti)∈STi,2

Prod(Tk)



 .

The function assigned to Fk is

Out(Fk) := lFk
(x)⊕

⊕

(Ti,Fk)∈SFk

Prod(Ti),
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where SFk
is the set of edges coming into the vertex Fk. The reversible function is given by

the output vector (Out(F1), Out(F2), ..., Out(Fn)).

We count the number of DAGs representing NCT circuits using the following product

formula: the number of DAGs with vertex and edge labels equals to the product of the

number of DAGs with edge labels and the number of ways to label vertices. The second

number is easy to obtain. Each vertex Ti is labelled by a pair of linear Boolean functions of n

variables. There are 2n+1 linear Boolean functions of n variables, and as such the number of

choices for the label of Ti is 2
2(n+1). The number of choices for the label of Fk is 2n+1. Given

the total number of T type vertices is h and the number of F type vertices is n, the overall

number of vertex labels is 22h(n+1) · 2n(n+1).

To count the number of DAGs with edge labels, describe those by a size h× (h+n) matrix

B = {bi,j}i=1..h,j=1..h+n, bi,j ∈ {0, 1, 2, 3}, where bi,j = ELTi,Tj
, when j ≤ h and edge (Ti, Tj)

is in the DAG, bi,j = ELTi,Fk
, when j > h, k = j − h, and edge (Ti, Fk) is in the DAG, and

bi,j = 0 everywhere else. Such matrices encode all DAGs, however, not every h × (h + n)

matrix is being used by this encoding. Specifically, bi,h+k (k > 0) never take values above 1,

all diagonal elements bi,i = 0, and, by construction of the DAG, its matrix B has zeros below

the diagonal. Including those constraints gives an improved count compared to a simple count

of all h× (h+n) matrices whose elements take one of 4 values. Specifically, the restricted set

of matrices, subject to the above conditions, has h(h−1)
2 elements that may take any one of 4

values and nh elements that may take binary values. The number of such restricted matrices

is thus 4h(h−1)/2 · 2nh.
The number of DAGs, 4h(h−1)/2 · 2nh · 22h(n+1) · 2n(n+1), should be at least as high as the

number of reversible functions, 2n!. Solving for h, we obtain:

2h(h−1) · 2nh · 22h(n+1) · 2n(n+1) ≥ 2n! ≥
√
2π2n · 2n2n · e−2n

h2 + 3nh+ h+ n2 + n ≥ n2n + C12
n + C2n

h ≥
√
n2n/2 + o(

√
n2n/2)

Dropping smaller degree additive terms, we obtain the desired inequality
√
n2n/2 . h =

L0,0,1(n) � .

4.2 Upper bound

Recall that every Boolean function can be written as a positive polarity Reed-Muller (PPRM)

expansion, also known as Zhegalkin polynomial,

f(x1, x2, ..., xn) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x1x2 ⊕ ...⊕ a2n−1x1x2...xn, (1)

where ai|i=0..2n−1 are Boolean numbers. We will rely on the PPRM expansion in our con-

struction. In particular, we start by describing how one may obtain all product terms that

the PPRM expansion relies on using optimal number of the Toffoli gates.

Lemma 4: The set of all 2n n-bit product terms {1, x1, x2, x1x2, ..., x1x2...xn} may be gen-

erated by a reversible NCT circuit with the optimal number of 2n − n− 1 Toffoli gates.

Proof: Lower bound. The set {1, x1, x2, x1x2, ..., x1x2...xn} contains 2n − 1 linearly in-

dependent terms (all but first term are linearly independent). The set of primary inputs,
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{x1, x2, ..., xn}, contains n linearly independent terms. For a set S of Boolean functions the

only way to obtain a new Boolean function that is linearly independent from all those in the

set S using NOT, CNOT, and Toffoli gates, is to use a Toffoli gate. As such, to generate

2n − 1 linearly independent functions from the original set containing n linearly independent

functions, one must use at least 2n − 1− n Toffoli gates.

Upper bound. Denote C(n) to be the number of Toffoli gates used to obtain the set of

the product terms {1, x1, x2, x1x2, ..., x1x2...xn}. Once the set {1, x1, x2, x1x2, ..., x1x2...xn}
over n variables is constructed, obtain the set {1, x1, x2, x1x2, ..., xn+1, ..., x1x2...xn+1} over

n+1 variables as follows. For each register r in the existing set except first use the Toffoli gate

with controls r and xn+1, and target residing in the value 0 to compute the product rxn+1 into

the target bit. This allows constructing the set of 2n−1 terms, {x1xn+1, x2xn+1, x1x2xn+1, ...,

x1x2...xnxn+1}, at the cost of 2n−1 Toffoli gates. Uniting these newly constructed terms with

{1, x1, x2, x1x2, ..., x1x2...xn} that we already have and the input variable xn+1 obtains the

desired set {1, x1, x2, x1x2, ..., xn+1, ..., x1x2...xn+1}. To summarise the above construction,

we can write the following equality

C(n+ 1) = C(n) + 2n − 1.

Observing that C(1) = 0 allows solving this recurrence to obtain the desired C(n) = 2n−n−1

� .

Theorem 2: L0,0,1(n) . 2
√
n2n/2.

Proof: To obtain a circuit computing the reversible function f(x1, x2, ..., xn) = (f1(x1, x2, ...,

xn), f2(x1, x2, ..., xn), ..., fn(x1, x2, ..., xn)), we rely on the PPRM decomposition of the indi-

vidual output components, followed by the grouping of variables into two non-overlapping

sets A and B, A ⊔ B = {x1, x2, ..., xn}, containing a and b variables each (a + b = n). Fur-

thermore denote P (σ1, σ2, ..., σn) = xσi1
xσi2

...xσik
, where σi|i=1..n are Boolean numbers and

{σi1 , σi2 , ..., σik} is the set of all σi = 1 within the set {σ1, σ2, ..., σn}. Boolean n-tuples can

furthermore be treated as natural numbers (via binary decomposition of integers).

fi(x1, x2, ..., xn) =

2n−1
⊕

j=0

P (j)fi(j)

=
⊕

j=0..2a−1,fi(j,σ)=1

P (j2b)&
(

⊕

k=0..2b−1

P (k)fi(j, k)
)

=
⊕

j=0..2a−1,fi(j,σ)=1

P (j2b)&
(

⊕

k=0..2b−1,fi(j,k)=1

P (k)
)

The circuit implementing f(x1, x2, ..., xn) is constructed as follows:

1. Construct all positive polarity product terms over the set B with b variables. Per Lemma

4, this requires 2b − b− 1 Toffoli gates.

2. Construct all positive polarity product terms over the set A with a variables. Per Lemma

4, this requires 2a − a− 1 Toffoli gates.
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3. For each of the 2a product terms in the set A, multiply this term by the proper function

over the set B, constructed as a linear combination of product terms over the set B.

Add the constructed terms together to obtain ith output bit. This operation requires

2a − 1 Toffoli gates per each of the n bits of the target function f(x1, x2, ..., xn); this

is because we use a CNOT instead of the Toffoli gate to multiply by term 1. The total

Toffoli gate count of this part is thus n(2a − 1).

The total Toffoli gate count in the above construction is 2a + 2b − a − b − 2 + n(2a − 1).

Assigning a := n−log2 n
2 and b := n+log2 n

2 , we furthermore obtain:

2
n−log2 n

2 + 2
n+log2 n

2 − n− 2 + n(2
n−log2 n

2 − 1) =
2n/2√

n
+

√
n2n/2 − 2n− 2 +

√
n2n/2

= 2
√
n2n/2 + o(

√
n2n/2) ≥ L0,0,1(n).

� .

Conjecture 1: L0,0,1(n) .
√
n2n/2.

4.3 Corollaries and discussion

Define the non-Clifford cost of a quantum circuit to be the number of operations outside the

Clifford group that it contains. T -count, a metric of this kind, is popular in applications,

owing to the dominating cost of the T/T † gates over the cost of other gates.

Corollary 1: The T -count of quantum circuits implementing a reversible function f(x) of n

primary inputs in the form of the mapping (x, 0) 7→ (x, f(x)) can be upper bounded by the

expression 21
√
n2n/2 + o(

√
n2n/2).

Proof: The desired construction relies on the Bennett’s trick [16]. The Bennett’s trick ensures

that all auxiliary bits are properly cleaned and no residual entanglement remains that may

prohibit from using the desired reversible circuit within quantum algorithms. In particular,

apply the result of Theorem 2 to obtain a reversible NCT circuit with n Boolean outputs

(f1(x), f2(x), ..., fn(x)) = f(x). This circuit, C, relies on 2
√
n2n/2 + o(

√
n2n/2) Toffoli gates

and computes functions f1, f2, ..., fn, product terms over the set A, and product terms over the

set B. To obtain the desired mapping (x, 0) 7→ (x, f(x)), we only need to uncompute product

terms over the sets A and B using the inversion of the circuit that was used to compute

them. Such a circuit uses
√
n2n/2 + o(

√
n2n/2) Toffoli gates. The overall transformation is

now described by the mapping (x, 0) 7→ (x, f(x)), and the number of the Toffoli gates used

is 3
√
n2n/2 + o(

√
n2n/2). Since each Toffoli gate can be implemented via the use of 7 T/T †

gates, the overall number of the T/T † gates is 21
√
n2n/2 + o(

√
n2n/2) � .

Table 1 reports upper bounds on the number of T/T † gates in reversible n-bit circuits, for

some small values n.

In our constructions of the upper bounds we relied on the seven T/T † gate implementation

of the Toffoli gate. However, in the presence of measurements and the ability for classical

feedback, a Toffoli gate can be implemented via a circuit with only four T/T † gates [6]. This

means that the upper bound in Corollary 1 drops down to 12
√
n2n/2 + o(

√
n2n/2), and all
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Table 1. Upper bounds on the T -count of an arbitrary reversible f(x) over n variables, implemented
as the mapping (x, 0) 7→ (x, f(x)) with the use of arbitrary ancillae.

n T -count n T -count
3 36 12 4,648
4 84 13 6,643
5 175 14 10,430
6 294 15 14,441
7 525 16 22,036
8 812 17 30,975
9 1,295 18 46,186
10 2,002 19 65,877
11 2,989 20 96,320

T -counts in Table 1 can be reduced by the factor of 7/4 (e.g., a 15-bit reversible function

would require only at most 8252 T/T † gates).

In the above, we have shown that the T -count cost of the implementations of reversible

functions is upper bounded by the expression 21
√
n2n/2 + o(

√
n2n/2), as well as reported a

table showing that the T -count remains reasonably small for a small number of inputs (Table

1). We will next consider a more realistic circuit cost metric and establish a lower bound on

its value to show that the use of the T -count may significantly misrepresent/downplay the

real cost of circuit implementations. The lesson here is the T -count metric must be used with

extra care, or better yet replaced with a metric that does not lead to an abuse of a resource

deemed less costly and thereby ignored, such as the T -count does with the CNOT gates.

Per Corollary 1, the number of the Toffoli gates that suffice to implement an arbitrary

n-bit reversible function is upper bounded by the expression

min
{a>0,b>0,a+b=n}

(2(2a + 2b − n− 2) + n(2a − 1)),

and thereby the T -count is no more than

X := 7 · min
{a>0,b>0,a+b=n}

(2(2a + 2b − n− 2) + n(2a − 1))

in the scenario when we are concerned with the potential unwanted entanglement. Recall that

when applying the Bennett’s trick to this circuit, the sub-functions
⊕

k=0..2b−1,fi(j,k)=1 P (k)

need to be computed and multiplied by a proper product the over variable set A only in the

first part of the circuit, but are unnecessary in the second part, as they are uncomputed after

each use. Such circuits implementing the reversible functions use no more than a total of

S = 2a + 2b + n+ 1 bits: 2a bits contain products over the set A (including primary inputs),

plus 2b bits containing products over the set B (including primary inputs), plus n bits where

the output values f1, f2, ..., fn are being constructed, plus 1 bit to compute/uncompute dif-

ferent sub-functions
⊕

k=0..2b−1,fi(j,k)=1 P (k). Next, establish a lower bound on the quantity

L0,1,1(n, S−n), counting the number of CNOT and Toffoli gates in the reversible circuits over

S bits and implementing reversible n-bit functions. Considering the quantity L0,1,1(n, S − n)

ensures we use same number of ancillary qubits as that used to obtain the number X. Ap-
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plying [3, Lemma 8], a lower bound is given by the expression

Y :=
log2 G

log2 b
=

log2(2
n!/2n)

log2(4S(S − 1)(S − 2) + 4S(S − 1))
(=

2n+1

3
+ o(2n)).

To be able to compare the numeric values of X, being the upper bound expressing the

T -count to Y , being the lower bound for the number of CNOT/Toffoli gates, divide Y by

the cost of the T gate expressed in terms of the cost of the CNOT, being the cheaper one

between the CNOT and the Toffoli. We have previously established that this number may

carry a value of about 50. Comparing X to Y/50 reveals that for n = 27, a = 12 the latter

is already greater than the former. This means that the T -count cost metric may already

undervalue the real cost of the circuits when n is as small as 27. By the time n = 50 (a = 23),

the difference between the two grows to a factor of 2662, meaning that for the numbers this

high the T -count cost metric can be rather misleading. The discrepancy furthermore grows

very rapidly with n—specifically, with the speed C 2n/2
√
n
, for some constant C.

While the above numbers clearly discourage from the use of the T -count circuit metric

in scalable designs, we suspect that the real scope of the potential misinformation carried

by using the T -count may be much larger. This is because in our calculations we did not

account for such resources as the cost of ancilla, or the cost of the long-range CNOT gates,

that are downplayed (in fact, ignored) by the T -count. On the other hand, we proved that

the discrepancy exists in principle, whereas practical quantum computations rely on very

specific and well-structured reversible transformations (such as arithmetic circuits, including

exponentiation part of Shor’s algorithm). The extent to which the discrepancy can and does

manifest itself in practice and over such structured circuits needs to be studied separately.

5 Summary of the Results

Our study details reversible NCT circuit complexity figures by the gate types, leading to the

following list of refined optimal and asymptotically optimal values for the respective counts.

000. ∀g L0,0,0(n, g) = 0;

001.
√
n2n/2 . L0,0,1(n) . 2

√
n2n/2;

010. ∀g L0,1,0(n, g) = 0;

011. n2n

3 log2 n . L0,1,1(n, 1) .
40n2n

log2 n ;

100. ∀g L1,0,0(n, g) = 0;

101.
√
n2n/2 . L1,0,1(n) . 2

√
n2n/2;

110. L1,1,0(n, 1) = 1, ∀g > 1 L1,1,0(n, g) = 0;

111. n2n

3 log2 n . L1,1,1(n, 1) .
48n2n

log2 n ;
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6 Conclusion

In this paper, we studied the complexity function La,b,c(n, g), detailing reversible NCT circuit

costs by the gate types used. We established asymptotically optimal or optimal counts in

every possible scenario. Of these, some bounds were known from the previous literature. We

upper and lower bounded the multiplicative complexity of reversible circuits, leading to their

asymptotic optimality. We formulated a conjecture stating that L0,0,1(n) .
√
n2n/2. Proving

this conjecture would establish that the multiplicative complexity of reversible functions is

equal to
√
n2n/2 up to smaller order additive terms. We furthermore applied our study to

show the limitations on the use of the T -count, multiplicative complexity, and Toffoli count

metrics in practical designs. The discrepancy between a real cost and the one provided by

the T -count/multiplicative complexity/Toffoli count may be as high as C 2n/2
√
n
, where C is a

constant. Taking some realistic parameters we estimated that for n = 50 the T -count may

misrepresent a real cost of the circuit it is applied to evaluate by a factor of at least 2662.
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