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We develop a method for approximate synthesis of single-qubit rotations of the form

e−if(φ1,...,φk)X that is based on the Repeat-Until-Success (RUS) framework for quan-

tum circuit synthesis. We demonstrate how smooth computable functions f can be
synthesized from two basic primitives. This synthesis approach constitutes a manifestly

quantum form of arithmetic that differs greatly from the approaches commonly used in
quantum algorithms. The key advantage of our approach is that it requires far fewer

qubits than existing approaches: as a case in point, we show that using as few as 3 ancilla

qubits, one can obtain RUS circuits for approximate multiplication and reciprocals. We
also analyze the costs of performing multiplication and inversion on a quantum computer

using conventional approaches and find that they can require too many qubits to execute

on a small quantum computer, unlike our approach.
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1 Introduction

Classical arithmetic has a long history in quantum computation. Shor’s algorithm [1], linear

systems algorithms [2] and general purpose quantum simulation algorithms [3] all deeply rely

on arithmetic functions, which are traditionally implemented using reversible circuits (see,

e.g., [4, 5, 6, 7]). Beyond direct applications, there is a substantial body of literature that

focuses specifically on implementing arithmetic functions in a reversible fashion on a quantum

computer, see e.g., [8, 9, 10, 11, 12, 13, 14]. Unfortunately, the inability of reversible circuits

to forget previous parts of the calculation carries with it a heavy price: the number of qubits

required can be large. For example, the number of qubits required to use Newton’s method

to compute reciprocals in linear systems algorithms can easily stretch to several hundred

qubits if ten or more bits of precision are required [15]. This result is interesting because

it suggests that the number of qubits required to implement certain inexpensive classical

algorithms (such as Newton’s method) may be far greater than the number of qubits needed

for the remainder of the quantum algorithm. Thus new methods for performing arithmetic
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and function synthesis may be needed to enable computationally useful examples of linear

systems, or related algorithms, to be run on a small scale quantum computer.

We address this problem by introducing an alternative method for computing functions

on quantum computers. The idea behind our approach is to encode numbers in the am-

plitudes of a qubit, or more properly as polar angles on the Bloch sphere. For example,

we represent the number φ as the quantum state e−iφX |0〉 where X is the Pauli-X opera-

tor. Our approach, in effect, consumes copies of resource states drawn from a set of inputs

{e−iφ1X |0〉 , . . . , e−iφkX |0〉} to approximate a unitary e−if(φ1,...,φk)X for some smooth com-

putable function f : Rk 7→ R. Here f can be an elementary function such as multiplication

or it can be a more complicated function like a trigonometric function or a reciprocal. In this

sense, existing circuit synthesis results [16, 17, 18, 19, 20] reduce to solving this problem for

cases where f is the constant function. If we think of this task as arithmetic, rather than a

unitary synthesis task, then outputting the result as a rotation may at first glance seem un-

natural; however, several important algorithms including quantum linear systems and fitting

algorithms [2, 15, 21, 22] require the result to be output in exactly this fashion.

Computing arithmetic in amplitudes circumvents the use of a qubit representation for

the output and removes many of the ancillas needed in the computation. This results in a

substantial reduction in the number of qubits used relative to conventional approaches. A

further advantage of our approach is that φ need not be input as a qubit string: a quantum

circuit that is promised to output e−iφX suffices. A drawback is that it requires the use of

amplitude estimation [23] or phase estimation when a qubit representation of f(φ1, . . . , φk) is

needed.

We leverage the “Repeat-Until-Success” (RUS) paradigm of circuit design. This paradigm

broadly has two main features: (a) it allows probabilistic execution of unitaries, in particular

the conditional application of unitary operations to parts of the quantum data depending on

the outcomes of earlier measurements, and (b) all failures must be detectable and lead to an

error that is correctable by a Clifford circuit. In this sense, our approach is reminiscent of the

KLM proposal for performing a CNOT gate in linear optical quantum computing [24]. See

also Figure 1 for a visualization of an RUS protocol. The repeat until success moniker is thus

earned because such algorithms do not fail but rather can be corrected and repeated until a

successful outcome is obtained.

Most of the work on RUS circuits focuses on the Clifford+T gate set which is the universal

gate set [25] given by {H,S, T,CNOT}, where H denotes the Hadamard gate, S = diag(1, i)

is the phase gate, T =
√
S, CNOT is the controlled-NOT gate, and we are allowed to apply

these generators to any pair of qubits. The most costly gate in the gate set is assumed to be

the T gate because it is by far the most expensive operation to perform fault tolerantly in

error correcting codes such as the surface code. For these reasons, we also use the number of

T -gates used, or T -count, as a metric to gauge the time-efficiency of our methods.

The RUS paradigm has gained interest after it was realized that it offers advantages for

synthesizing single qubit unitaries [17, 18, 19]. In particular: [17] shows that this paradigm

provides very low depth circuits for approximating small rotations and also elementary circuits

that can approximately implement the square of the product of the input rotation angles. The

circuits used there are RUS in the sense of Figure 1, i.e., in the failure case they implement

a Clifford gate that can be inexpensively corrected. In [18, 19] RUS circuits are used for
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Fig. 1. Implementation of a unitary transformation V via a Repeat-Until-Success (RUS) circuit
protocol. The unitary transformation U acts on the input state |ψ〉 and an ancilla state |ϕ〉 which

has been prepared independent of the input. After application of U the register holding the ancilla

state is measured and in case the desired result x is obtained—which, without loss of generality, can
be chosen to be the outcome “(0, . . . , 0)”—the state V |ψ〉 is propagated to the output. Otherwise,

a state is obtained that differs from the input |ψ〉 only by an application of a Clifford operation Wx

which itself might depend on the measurement outcome x. Hence we can “route” the output back
to the input of U , together with a fresh copy of |ϕ〉. The routing is indicated by the switch that

is controlled by x being different from “(0, . . . , 0)”. After Wx has been applied, another attempt
to compute V |ψ〉 can be started. The classical control of the Clifford gate Wx is also indicated

by double lines. The large dashed box indicates that this procedure is repeated until for the first

time the desired outcome is measured, in which case the classically controlled “switch” is set in
such a way that the output state V |ψ〉 can exit the RUS circuit.

single qubit synthesis and the probabilistic nature of these circuits can be used to achieve an

expected T -count of 1.15 log2(1/ε) for approximating a single qubit axial-rotation using the

Clifford+T gate set, up to an error of ε. This beats a lower bound on the average T -count of

roughly 3 log2(1/ε) that is known for the ancilla-free synthesis using Clifford + T gates.

The repeat until success paradigm has several features that are especially valuable for

quantum arithmetic. First, they allow non-linear functions of the input angles to be computed.

This is very useful for arithmetic because multiplication is itself a non-linear function of its

inputs. Second, the correctability of the circuits allow them to be applied deterministically to

an unknown quantum state (although the run time required to apply the transformation will

vary). This is significant because their success probability would shrink exponentially if such

failures were not easily correctable. Third, the transformations are irreversible. This means

that intermediate computations do not have to be retained for the entire calculation. Finally,

the qubit overheads of this form of arithmetic are extremely low since (in principle) the input,

output and intermediate results can be stored in amplitudes rather than qubit strings.

The paper is organized as follows. We discuss the two circuits that form the core of our

approximations in Section 2. We show that they can be used to provide an arbitrarily accurate

approximation to e−if(x)X for any continuous function f in Section 3 before discussing how

to apply these methods to problems that have entangled inputs in Section 4. We then apply

the ideas of Section 3 to implement multiplication of rotation angles in Section 5 and then

use both of these ideas to show how to implement reciprocals in Section 6 before concluding.
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2 RUS circuit elements

RUS circuits are a class of non-deterministic circuits that have the following property:

Definition 1 The unitary U is an RUS circuit if for any input |0n〉 |ψ〉 ∈ C2n+m

there exists

a set of unitary operations {Wx} that can be exactly implemented using a finite–size deter-

ministic circuit on the quantum computer and a unitary operation V such that

U |0n〉 |ψ〉 = a0 |0n〉V |ψ〉+

2n−1∑
x=1

aj |x〉W †x |ψ〉 . (1)

These circuits have been extensively used in circuit synthesis because of their ability to ex-

pediently synthesize operations that cannot be exactly synthesized without the use of mea-

surement [25, 17, 18, 19]. Assuming a0 6= 0, Definition 1 shows that an RUS circuit can

deterministically apply V to |ψ〉 by applying U and measuring the first register. If the regis-

ter reads |j〉 for j > 0 then the state |ψ〉 can be re-prepared by applying W †x and the protocol

can be repeated until a success is observed.

The core idea behind RUS arithmetic (or function synthesis) is to find repeat until success

circuits, that upon success, perform a rotation that is a non-linear function of input rotation

angles. More specifically, given a set of rotations {e−iφjX} we wish to find a circuit implement

upon success e−if(φ1,...,φk)X |ψ〉 for a known function f . For example, this function could

implement multiplication of φ1 and φ2, or it could be the reciprocal of φ1. In order to

implement a broad class of functions in this sense, we need to have the ability to perform

non-linear transformations on x amongst other requirements. This suggests that measurement

in general, and RUS circuits in particular, will be of great use in implementing such rotations.

We specifically seek a class of circuits that obeys the following four properties:

1. The circuit performs a non-linear mapping that takes single qubit rotations whose angles

are in Rk and maps these to a single qubit rotation whose angle is in R upon success.

2. The circuit will succeed with non-zero probability for all input rotations that lie in a

compact interval centered about φ = 0.

3. The circuit is an RUS circuit in the sense of Definition 1.

4. For any non-negative integers p1, . . . , pk, the family of circuits considered must be able to

exactly implement functions that scale as Θ(φp11 . . . φpkk ) in the limit as maxj{|φj |} → 0.

We use two different classes of circuits that, when combined, allow us to satisfy all four

of these objectives. We refer to these circuits as the gearbox circuit and the generalized

PAR circuit. The gearbox circuit satisfies the first three criteria but cannot achieve the

fourth without incurring prohibitive costs because tan2(x) has only even terms in its Taylor

series expansion and shifting the argument to produce odd terms leads to rapidly diverging

coefficients in the Taylor series expansion. These coefficients can be controlled, but the number

of additional operations required to do so can be prohibitive. Similarly, the PAR circuit

satisfies all these criteria but fails the third unless combined with an expensive amplitude

amplification algorithm or constrained to act on specific input states. We therefore use both

types of circuits to implement elementary functions in order to reduce the costs of the resultant

circuits.
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|0〉 φ1 • −φ1

...

|0〉 φk • −φk

−iX

Fig. 2. Gearbox circuit with k inputs, where
the gate φj denotes e−iφjX . Success is

achieved if every measurement reads 0.

|0〉 φ1 •

GHZ−1
...

|0〉 φk •

(i)k−1X

Fig. 3. Generalized PAR circuit with k inputs, where

GHZ−1 is the inverse GHZ measurement. Success is
achieved if every measurement reads 0.

GHZ−1 =

• H

Fig. 4. Circuit for GHZ−1 demonstrated for 3 qubits.

Circuit Function Success probability Correction circuit

e−iφ1Xe−iφ2X φ1 + φ2 100% –

PAR(φ1, . . . , φk)
∏k
i=1 φi + O(maxi |φi|

k+2) 1
2

(∏k
i=1 cos(φi)

2 +
∏k
i=1 sin(φi)

2
)

1 or 2PAR(φ1, . . . , φk)

RUSPAR(φ1, . . . , φk)
∏k
i=1 φi + O(maxi |φi|

k+2)
(∏k
i=1 cos(φi)

2 +
∏k
i=1 sin(φi)

2
)

1

GB(φ1, . . . , φk)
∏k
i=1 φ

2
i + O(maxi |φi|

2k+2)
(
1 −

∏k
i=1 sin2(φi)

)2
+
∏k
i=1 sin4(φi) e−iπ/4X (Clifford)

Fig. 5. Circuits elements that we use to synthesize arbitrary functions: shown are the circuit

names, the corresponding functions, the success probabilities, and the corresponding correction

circuits. The correction circuit for PAR is either the identity operation or two repetitions of the
PAR circuit (depending on the measurement outcome). RUSPAR, as introduced in Lemma 2, is

an RUS analogue of PAR that can be implemented using amplitude amplification.

2.1 Properties of Gearbox circuits

The gearbox circuit is introduced in [17] as a means for expediently generating small rotation

angles and rescaling the rotation angles output by circuit synthesis methods. They earned

their name because in the circuits can transform coarse input rotations into fine output

rotations in analogy to a gear box. The following result, proven in [17], provides justification

for this claim as well as those made in Figure 5.

In the following, we will use GB to denote the transformation that the gearbox circuit has

on a set of input rotation angles as per

GB : (φ1, . . . , φk) 7→ arctan(tan2(arcsin(sin(φ1) · · · sin(φk)))). (2)

A diagram of the corresponding circuit is given in Figure 2 and the success probability of the

gearbox circuits and their correction operations are given in Figure 5. In most applications, the
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GB(φ1, φ2) = GB(φ2, φ1). (Commutativity)

GB◦k(φ) = arctan(tan2k φ1). (Composition)

GB(φ1 +mπ, φ2 + nπ) = GB(φ1, φ2). (Periodicity)

GB((−1)pφ1, (−1)qφ2) = GB(φ1, φ2). (Evenness)

GB(φ1, . . . , φk) = φ21 · · ·φ2k +O(max
k
|φk|)2k+2. (Non-linearity)

∀φ1 ∈ (−π
4
,

3π

4
) lim
k→∞

GB◦k(φ1) =
π

2
(HHeaviside(φ1/π − 1/4)). (Square Wave Limit)

Fig. 6. Table of properties of Gearbox circuits. HHeaviside is the Heaviside function. We use
the notation GB◦k to represent composition to emphasize the difference between the composed

gearbox circuit and GBk which we use to denote k repetitions of the gearbox circuit on an input

state.

input rotation angles will be quantum states that control the rotations given in the diagram.

GB◦k(x) = GB(GB(· · ·GB(x) · · · )) is used to denote composition of the gearbox circuit with

itself k times and is not typically used in cases where there are more than one input. The

following theorem states the success probability and resultant transformation yielded by GB.

Theorem 1 [Wiebe, Kliuchnikov] Given that each measurement in GB(φ1, . . . , φk) yields

0, the circuit enacts the transformation |ψ〉 7→ e−iX arctan(tan2(φ)) |ψ〉, where

sin2(φ) = sin(φ1)2 · · · sin(φk)2.

This outcome occurs with probability cos4(φ) + sin4(φ) and all other measurement outcomes

result in the transformation |ψ〉 → eiπX/4 |ψ〉, regardless of the choice of φ1, . . . , φk.

The gearbox circuit is therefore a repeat until success circuit, which means that the user can

correct the result and try again upon failure just like a Las-Vegas algorithm. This provides a

huge benefit here because it means that these circuit elements can be relied upon to produce

the desired transformation. The only downside, apart from low success probability near

φ = π/4, is that the rotations cannot be pre-cached into qubits and teleported into the

system as per [26]. Non-RUS variants of GB that have this property are given in Appendix

C. These circuits are Clifford circuits and have the further advantage of lower online costs than

GB circuits but cannot be reliably applied to an unknown quantum state. Such circuits can

also be used to simplify the state factory used in applications of floating point synthesis [17]

that are optimized for low online T -counts.

Further properties of the Gearbox circuits are provided for reference in Figure 6. Properties

1−6 are trivial consequences of Theorem 1. Property (7) follows from the following argument.

Lemma 1 For all φ1 ∈ (−π4 ,
3π
4 ) limk→∞GB◦k(φ1) = π

2 (HHeaviside(φ1/π − 1/4))

Proof. Let φ1 = π/4 then GB◦k(φ1) = π/4 since tan(π/4) = 1. Thus for all k, GB◦k(φ1) =

π/4 = π
2 (HHeaviside(φ1/π − 1/4)) if φ1 = π/4 since Heaviside function is 1/2 at 0.

Next if φ1 ∈ (π/4, 3π/4) then | tan(φ1)| > 1 and hence limk→∞ arctan(tan2k(φ1)) = π/2

as required. Now if φ1 ∈ (−π/4, π/4) then | tan(φ1)| < 1. It then similarly follows that
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limk→∞ arctan(tan2k(φ1)) = 0. Thus GB◦k converges to a shifted and rescaled Heaviside

function on this domain as claimed. �
This property will be used extensively later when we discuss how gearbox circuits can be

used to synthesize functions as a sum of square waves in the appendix.

2.2 Properties of Generalized PAR

The generalized PAR circuit takes a very similar form to the programmable ancilla rotation

circuit (or PAR circuit) proposed by Jones, Whitfield et al [26] for teleporting a pre-cached

axial rotation that is stored in an ancilla qubit into a target qubit. The principal differences

between our circuits and those of [26] are: (a) our circuits are adapted to X-rotations and

(b) they map multiple inputs to a single output rotation. Since these circuits are clearly a

generalization of the PAR concept, we refer to them collectively as PAR. A diagram for these

circuits is given in Figure 3 and they perform the following rotation as a function of input

angles:

PAR : (φ1, . . . , φk) 7→ ± arctan(tan(φ1) · · · tan(φk)). (3)

We only consider the positive branch to be a success. It is instructive to note that if k = 1

then PAR : φ1 7→ ±φ1 and thus it reduces to a X-rotation version of the PAR concept

introduced in [26]. This claim is demonstrated in the following theorem.

Theorem 2 PAR(φ1, . . . , φk) performs either exp(i arctan(tan(φ1) · · · tan(φk))X) or the

operation exp(−i arctan(tan(φ1) · · · tan(φk))X) with probability

cos2(φ1) · · · cos2(φk) + sin2(φ1) · · · sin2(φk)

for φj ∈ R, and the positive and negative branches of the rotation occur with equal probability.

All other outcomes result in the identity operation being performed on |ψ〉.
Proof. The initial rotations and the multiply controlled (i)k−1X gate in the PAR circuit

perform the following mapping:

|0〉k |ψ〉 → (exp(−iφ1X)⊗ · · · ⊗ exp(−iθkX) |0〉⊗k

− cos(φ1) · · · cos(φk) |0〉⊗k − (−i)k sin(φ1) · · · sin(φk) |1〉⊗k) |ψ〉

+ |0〉⊗k (cos(φ1) · · · cos(φk)) |ψ〉+ |1〉⊗k (sin(φ1) · · · sin(φk))(−iX) |ψ〉 . (4)

Now let us define the following states:

GHZ |0〉 |0〉k−1 :=
∣∣GHZ+

〉
= (|0〉k + |1〉k)/

√
2

GHZ |1〉 |0〉k−1 :=
∣∣GHZ−

〉
= (|0〉k − |1〉k)/

√
2

|φ〉 :=
(

exp(−iφ1X)⊗ · · · ⊗ exp(−iθkX) |0〉k

− cos(φ1) · · · cos(φk) |0〉k − (−i)k sin(φ1) · · · sin(φk) |1〉k
)
|ψ〉 . (5)

where |φ〉 is subnormalized and orthogonal to
∣∣GHZ+

〉
and

∣∣GHZ−
〉
. The right hand side

of (4) can be written as

|φ〉+
1√
2

∣∣GHZ+
〉

(cos(φ1) · · · cos(φk)1− i sin(φ1) · · · sin(φk)X) |ψ〉

+
1√
2

∣∣GHZ−
〉

(cos(φ1) · · · cos(φk)1 + i sin(φ1) · · · sin(φk)X) |ψ〉 . (6)
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The first register is then measured in the circuit and if either
∣∣GHZ+

〉
or
∣∣GHZ−

〉
is

observed then the outcome is

exp

(
∓i arctan

(
sin(φ1) · · · sin(φk)

cos(φ1) · · · cos(φk)

)
X

)
= exp(∓i arctan(tan(φ1) · · · tan(φk))X), (7)

and the probability of either measurement outcome occurring is

P± =
cos2(φ1) · · · cos2(φk) + sin2(φ1) · · · sin2(φk)

2
. (8)

Finally, since the control register is disentangled with the target register in |φ〉 we have that

Tr1(|φ〉〈φ|) = |ψ〉〈ψ| , (9)

and hence it is clear that if a measurement outcome other than
∣∣GHZ+

〉
or
∣∣GHZ−

〉
is observed

then the output state is |ψ〉 and hence no correction operation needs to be applied before

repeating the circuit. �
The generalized PAR circuit satisfies three of the four required properties but fails the

third criterion. Theorem 2 shows that PAR cannot satisfy the third criteria because it either

implements ei arctan(tan(φ1)··· tan(φk))X or 1 upon failure and the former error cannot be exactly

corrected with a deterministic circuit for arbitrary input states. One approach for correcting

such errors involves using the doubling down strategy of [26]. This strategy attempts to

correct backwards-rotation errors by performing a rotation with twice the original rotation

angle. Should this succeed, the circuit will implement the desired target rotation. Should

it fail, then the correct rotation can be implemented by succeeding on a rotation with four

times the initial rotation angle. This process can be repeated until a successful measurement

is observed.

The success probability for PAR also shrinks as Θ(2−k) for cases where the φ are each

approximately π/4. This does not directly affect the viability of our approach because we

focus on cases where the input rotation angle is small in order to ensure that the rotations

are sufficiently accurate. This means that the number of repetitions needed before a success

is observed will not be prohibitive in practice, given that we have the ability to run PAR as

an RUS circuit.

The PAR circuits do act as RUS circuits on particular inputs. For example, if |ψ〉 = |0〉 and

in such cases the direction of the rotation can be switched by applying a Z-gate if necessary:

e−i(arctan(tan(φ1)··· tan(φk)))X |0〉 = Zei arctan(tan(φ1)··· tan(φk))X |0〉 . (10)

Thus PAR can be repeated until success, at twice the success probability quoted above, if the

generalized PAR gates are applied to a fresh ancilla. We also show below that generalized

PAR circuits (which also includes the PAR circuit [26]) can be converted into a repeat until

success circuit for arbitrary inputs using oblivious amplitude amplification.

Lemma 2 The operation PAR(φ1, . . . , φk) can be converted to a repeat until success circuit,

RUSPAR(φ1, . . . , φk), that has success probability

cos2(φ1) · · · cos2(φk) + sin2(φ1) · · · sin2(φk)

and uses three PAR(φ1, . . . , φk) and a constant sized Clifford circuit. Upon failure, the cor-

rection operation is the identity gate.
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PAR(φ1, φ1) = GB(φ1). (Equivalence)

PAR(PAR(φ1, . . . , φk), φk+1) = PAR(φ1, . . . , φk+1). (Associativity)

PAR(φ1, φ2) = PAR(φ2, φ1). (Commutivity)

PAR(φ1 +mπ, φ2 + nπ) = PAR(φ1, φ2). (Periodicity)

PAR(φ1(−1)p1 , . . . , φk(−1)pk) = (−1)
∑
pkPAR(φ1, . . . , φk) (Oddness)

PAR(φ1, . . . , φk) = φ1 · · ·φk +O(max
k
|φk|)k+2. (Non-linearity)

Fig. 7. Table of properties of output rotation angles generalized PAR circuits upon success.

A proof of this lemma is given in Appendix A. The idea of the proof is to use oblivious

amplitude amplification to eliminate the backwards rotation failure branch. This is possible

to do deterministically because the probability of the PAR circuit falling into that failure

branch is known and because the only measurements used inside U are implemented using

RUS subcircuits that can be trivially inverted by switching the sign of the controlled X gate

in Figure 2 or Figure 3. Note that the basic case RUSPAR(φ1), as introduced in Lemma 2

is entirely de-randomized by this procedure and all other cases are reduced to repeat until

success circuits.

These primitives can be composed by replacing the rotation used in the above circuits

with an RUS sub-circuit. For example, we can implement arctan(tan2(φ1) tan(φ2)) using the

following circuit:

PAR(GB(φ1), φ2) ≡ |0〉 φ1 • −φ1

|0〉 −iX •
GHZ−1

|0〉 φ2 •

iX
(11)

The circuit is intended to be implemented by repeating the top-most measurement until

a “successful outcome” of 0 is measured. Unsuccessful attempts can be corrected with a

Clifford circuit. Note that the output of the entire circuit is equivalent to PAR(φ1, φ1, φ2)

upon success; however, the above method typically requires fewer T gates and has a lower

online cost. Equation (11) can also be promoted to an RUS circuit using oblivious amplitude

amplification since GB is an RUS circuit.

3 Completeness of Gearbox, PAR and addition

We saw in Section 2 that the PAR and GB circuits have many properties in common with

multiplication. Since multiplication and addition can be used to approximately implement

any continuous function on a compact domain, it is natural to expect that compositions of

these circuit elements should also. We refer to arithmetic performed in the fashion as RUS

arithmetic.
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Input: A smooth function f ∈ CM , number of function variables k and order of approxima-
tion m ≤M .

Output: Vector of functions such that |f(φ1, . . . , φk) −
∑m
κ=0 v[κ]| is bounded by

O(max{|φ1|, . . . , |φk|}m+1) and each v[κ] can be implemented using Gearbox and PAR.

function generateApproximant(f , k, m)
F [0]← Zeroth order Taylor series expansion of f(φ1, . . . , φk) about φ1 = · · · = φk = 0.
v[0]← F [0] . Store constant offset in first entry of output vector.

f ← f − v[0]
for i ∈ 1→ m do

F [i]← Lowest-order Taylor series expansion of f(φ1, . . . , φk).
v[i]← Approximate F [i] using Gearbox and PAR circuits to lowest order.

. Approximation always exists but is not unique.

f ← f − v[i]
end for
return v

end function

Fig. 8. Taylor series based approximation algorithm.

Our goal in this section is not to provide efficient circuits for performing RUS arithmetic.

Instead we seek to show a proof of principle demonstration that a broad class of functions

can be implemented using these techniques. We give more efficient methods for implementing

particular functions in subsequent sections.

In order to see the validity of this claim formally, we need to introduce a lemma that

shows that monomials can be approximated to within arbitrarily small error using GB and

PAR via time-slicing ideas reminiscent of those used in Trotter-Suzuki formulas.

Lemma 3 (“time slicing lemma”) Let |a| ≤ 1, b be a positive integer and f(x) = axb be

defined on a compact domain U . Then for any ε > 0 the function f can be implemented as

an RUS circuit using GB and PAR such that the maximum difference between the output of

the RUS circuit and f(x) is at most ε for all x ∈ U . The number of GB and PAR circuits

needed to achieve error ε scales as rb ∈ O((max{x : x ∈ U})b+b2/2/εb/2).

Proof. Assume b is even and 0 < a ≤ 1. Then there exists k such that b = 2k. From the

non-linearity property of GB there exists a gearbox circuit with k + 1 inputs such that

GB(arcsin(
√
a), x, . . . , x) = axb +O(xb+2). (12)

Now assume than −1 ≤ a < 0. Since ZXZ = −X, we can apply a Z-conjugated gearbox

circuit to implement the appropriate negative rotation. Thus we can approximate this function

to O(xb+2) if |a| ≤ 1.

The monomial axb for odd b can be approximated using GB, PAR and addition in a similar

manner. Since b is odd, we can always express b = 2k+ 1 and hence the linearity property of

PAR and (12) then imply that for any |a| ≤ 1

PAR(x,GB(arcsin(
√
a), x, . . . , x)) = axb +O(xb+2). (13)
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Thus odd Taylor series can be formed by nesting PAR and GB circuits (such terms can also

be generated directly using PAR circuits). Note that here and in the following we use PAR to

refer to both the PAR circuit and RUSPAR as appropriate.

In order to use time slicing ideas to make the error less than ε for any ε > 0 we will

need to convert (13) into an RUS circuit. This can be achieved by using oblivious amplitude

amplification to convert PAR into a repeat until success circuit as per Lemma 2. Once the

circuits have been converted to RUS circuits we can write a large rotation as a sum of small

rotations because repeat until success circuits can be reliably corrected when errors occur

and addition can be performed deterministically using serial composition (i.e. e−iaXe−ibX =

e−i(a+b)X). Since the error in small rotations shrinks faster than the size of the rotation, this

process allows arbitrarily small errors to be achieved in exact analogy to the use of Trotter-

Suzuki algorithms in quantum simulation [3]. To see that slicing can make the error arbitrarily

small, let r > 0 be a parameter that is the bth root of the number of slices used and note that

(for odd b)

rbPAR(x/r,GB(arcsin(
√
a), x/r, . . . , x/r)) = rb

(
a(x/r)b +O(x/r)b+2

)
= axb +O(xb+2/r2). (14)

Thus for any x, the error can be made less than ε for any ε > 0 by choosing r ∈ Θ(x1+b/2/
√
ε).

Because x is taken from a compact domain, it is possible to maximize over the values of r to

find a value that uniformly makes the error at most ε. The case for even b is similar except

since GB gives a repeat until success circuit oblivious amplitude amplification is not needed

in such cases. This implies that the L2 distance between axb and its approximant can be

made less than ε for all ε > 0 under these assumptions. �
If |a| > 1 then the proof of Lemma 3 does not directly follow because arcsin(

√
a) is not

well defined. We can circumvent this problem by noting that |a|/2dlog2 ae ≤ 1 and axb =

2dlog2 ae
(

a
2dlog2 ae

)
xb. Thus it follows from (12) that

2dlog2 aeGB

(
arcsin

(√
a

2dlog2 ae

)
, x, . . . , x

)
= axb +O(xb+2). (15)

Thus we can assume without loss of generality that |a| ≤ 1 since all other cases can be found

by adding the results of several gearbox circuits with |a| ≤ 1. This addition step can be

performed by serial composition (i.e. running one circuit after another using the same output

qubit).

It is important to note that this algorithm scales efficiently with the relative error only

in the case where b is fixed. Although the above method is not efficient in many cases, we

present it because it is a simple easy to evaluate result that can be used to show that in

principle the circuit elements that we present can implement any continuous function without

ever needing to resort to using a reversible classical circuit to compute a function value. More

efficient formulas for special cases will be given later. However, for the moment our goal is to

show that these tools can be used to implement a broad class of functions. We illustrate this

with the following theorem.

Theorem 3 For any ε > 0 any function that is analytic on a compact domain U ⊂
R can be implemented within maximum error ε using PAR and GB and addition as an
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RUS circuit. Furthermore, if the function is approximated with a polynomial of degree p(ε)

then the number of GB and PAR circuits needed scale at most as O(p(ε)(max{x : x ∈
U})p(ε)+p(ε)2/2/(ε/2p(ε))p(ε)/2) for fixed U .

Proof. Let f be analytic on R then by definition there exists, for any ε > 0 and x, {aj} and

p(ε) ∈ Z+ such that ∣∣∣∣∣∣f(x)−
p(ε)∑
j=0

ajx
j

∣∣∣∣∣∣ ≤ ε/2. (16)

Let A = max{aj}, it then follows that f/A satisfies (16) but with each aj ≤ 1. Thus by

rescaling the problem we can assume without loss of generality that aj ≤ 1. Lemma 3 shows

that for any ε > 0 an RUS circuit can be constructed that approximates f̃j(x) using GB, PAR

and addition such that

|f̃j(x)− ajxj | < ε/(2p(ε)). (17)

Then two uses of the triangle inequality and (16) and (17) gives us∣∣∣∣∣∣
p(ε)∑
j=0

f̃j(x)− f(x)

∣∣∣∣∣∣ ≤
p(ε)∑
j=0

∣∣∣f̃j(x)− ajxj
∣∣∣+

∣∣∣∣∣∣f(x)−
p(ε)∑
j=0

ajx
j

∣∣∣∣∣∣ ≤ ε. (18)

Finally, each monomial requires O((max{x : x ∈ U})p(ε)+p(ε)2/2/(ε/2p(ε))p(ε)/2) RUS cir-

cuit elements. There are p(ε) + 1 such monomials in the approximation and so the number of

GB and PAR circuits required is it most p(ε) multiplied by the number of circuits required

to implement the most costly operation in the polynomial. The result then follows. �
A natural generalization of this theorem is given below.

Corollary 1 For any ε > 0 and continuous function f on a compact domain U ⊂ R can be

approximated to within maximum error ε using an RUS circuit formed using PAR, GB and

addition.

Proof. Proof trivially follows from Theorem 3 and the Weierstrass approximation theo-

rem [27]. �
Any function that is continuous and computable can therefore be synthesized using repeat

until success circuits. This process is concretely summarized in Figure 8. It is further easy

to see that this generalizes to piecewise continuous functions that have a finite number of

isolated discontinuities at known locations by using elementary control logic.

We have not discussed the success probability of the RUS circuits in the above discussion.

As r increases, the size of the largest rotation considered decreases linearly. The success

probability for each of the RUS circuit elements used tends to a constant in that limit.

The mean number of repetitions needed for each of these RUS elements follows a geometric

distribution with mean equal to the reciprocal of the probability of success. As such the

complexity of these simple proof of principle methods is not infinite, although they may be

expensive in cases where the Taylor series expansion of the function is slowly converging or a

large input angle is required.

4 Entangled inputs

We focused in the previous examples on cases where the input is stored as a product state.

More generally, the qubits fed into the gearbox circuit could be entangled with another regis-
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ter. For example, rather than taking the qubit state |φ〉 as input to a gearbox could consider

input
∑
a αa |a〉 |φa〉 for some sets of states {φa} and amplitudes {αa}. Such cases are not

pathological: they are representative of typical use cases in linear systems algorithms or

quantum simulation algorithms. We will see that the analysis of such cases is much more

complicated than the case of unentangled inputs considered in Section 3.

It is tempting to imagine that our methods will run without modification given entangled

inputs. After all, if a failure occurs then the correction operation is a fixed Clifford gate

regardless of the value of φa. Thus regardless of whether the input is entangled or not, the

operation e−if(φa)X is applied to the target qubit |ψ〉. The problem with this reasoning is that

the probability of success or failure is intimately linked with the value of φa. This means that

if success is measured then amplitudes of all states that lead to low success probability will

be suppressed; whereas if failure is measured then terms with large αa will drop in amplitude.

This is because of the information disturbance property of quantum mechanics. Thus if we

want to apply our RUS circuits to such states without disturbing the distribution then we

must guarantee that success or failure is insufficiently informative for the coefficients to be

significantly altered by the measurements used in RUS circuits.

As an example, let us focus on the case of implementing a gearbox circuit with entangled

inputs. The gearbox circuit has success probability cos(φ)4 + sin(φ)4. This means that, upon

success, a state proportional to∑
a

αaGB(φa) |ψ〉 =
∑
a

αa
√

cos(φa)4 + sin(φa)4αae
−i arctan(tan2(φa))X |ψ〉 , (19)

is prepared.

In cases where almost all of these probabilities are equal, the multiplicative factor due to

the success probability drops out in normalization. Although this may seem like a trivial case,

there are important examples where this actually happens. For example, the circuit PAR(φa),

which is the original PAR circuit of [26], satisfies this and hence works for entangled inputs

without modification. Thus balancing all probabilities to be nearly equivalent will ensure that

the RUS circuits will not have a meaningful impact on the result. In other cases the probability

distribution may be naturally be flat enough such that these errors can be neglected.

The problem of converting GB and PAR to circuits that leak negligible information about

the φa can be solved by using product formulas, oblivious amplitude amplification and time-

slicing. We will focus on GB first. For small input angles, the success probability scales as

cos4(x)+sin4(x) = 1−2x2 +(8/3)x4 +O(x6). These probabilities approach 1 as x approaches

zero. Unfortunately, we cannot implement a squaring circuit using time-slicing because if we

use r2 slices then the deviation of the probability from 1 scales as O(r2(x/r)2) which does

not shrink as r increases. In order to make this approach work we will have to construct a

new function that has a flatter distribution of success probabilities. Consider the following

function

GB
(x

2
+ π/4

)
GB∗

(x
2

+ π/4
)

GB(x) ≡ GB(x), (20)

where GB∗(x) denotes the gearbox circuit with a controlled iX gate rather than a controlled

−iX gate. This circuit is, upon success, equivalent to the inverse of the gearbox circuit.

Since it is only equivalent to the gearbox circuit upon success it is not generally true that
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GB∗ = GB†. Eq. (20) is equivalent to the gearbox circuit if all three operations succeed

because the two left most operations invoke equal and opposite rotations upon success. The

probability of all three of these operations succeeding on the first attempt is

(cos(x/2 + π/4)4 + sin(x/2 + π/4)4)2(cos(x)4 + sin(x)4) =
1

4
− 1

4
x4 +O(x6). (21)

For x ≤ 0.1, the deviation from success probability 1/4 is roughly 10−5. Since the deviation

from uniformity scales like O(x4) here, we can use r2 time slices to reduce the scaling of the

skewness of the distribution to O(x4/r2) while retaining the initial rotation angle (and at the

same time improving its fidelity with an ideal squaring operation) if all such measurements

succeed.

A major problem is that failures do leak O(x2) information about the value of x. If we forgo

measurement and mark all states that would correspond to three successful measurements as

a “good” state then it is straight forward to see from [28] that a single iteration of oblivious

amplitude amplification will make the probability of success 1 − O(x4). Thus by slicing we

can make this probability of success arbitrarily high while minimizing the information leaked.

A similar expansion also exists for PAR:

GB
(a

2
+
π

4

)
GB

(
b

2
+
π

4

)
PAR(a, b),

which leads to success probability 1/4 + (a2b2 − b4 − a4)/4 +O(x6) where x ≥ max{|a|, |b|}.
Here it is not possible to set up the two gearbox circuits to create rotations that cancel each

other out. Instead, by choosing an even number of time-steps, these residual rotations can be

canceled in subsequent steps; thereby removing any information about the values of a and b.

In particular, the subsequent sequence of operations needed to cancel these rotations is

GB∗
(a

2
+
π

4

)
GB∗

(
b

2
+
π

4

)
PAR(a, b)

Thus GB and PAR can be applied in cases where entangled inputs are used. This raises

the possibility that these constructions might be able to substantially reduce the space re-

quirements for linear systems algorithms. Formally analyzing the time complexity of this

application would, however, require carefully trading off both errors in the amplitudes as well

as the errors in implementing |a〉 e−iX/a |0〉 for each |a〉. We leave analyzing such applications

for subsequent work.

5 Multiplication

Multiplication is perhaps the most important application for RUS function synthesis because

of its ubiquity in both quantum algorithms and numerical approximations to other functions

such as reciprocals. The key result that we will show in this section is that repeat until success

circuits can be used to implement a form of multiplication that requires a constant number of

ancilla qubits. In contrast, most methods that have been proposed thus far for implementing

multiplication require a number of qubits that scales at least logarithmically in the number

of bits of precision needed. As per the ideas of the previous section, we do not calculate the
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value of the product into a qubit string but instead we provide methods for approximately

implementing

|φ1〉 |φ2〉 |0〉 7→ |φ1〉 |φ2〉 e−iφ1φ2X |0〉 . (22)

For simplicity, we will first assume that the user can perform a set of rotations, provided

as black boxes, that can implement the single-qubit rotations {e−iφjX : j = 1, . . . , k} and

also has access to a circuit based quantum computer. Later, we consider specific applications

we estimate the total number of T -gates required by the algorithm when these oracles are

replaced by Clifford + T circuits.

The PAR circuit provides simplest approximation to multiplication within our framework

but is only accurate to O(φ4). The relative error will be minuscule for cases where the input

angles are small; however, if φ ≈ 0.5 then the relative error in the circuit is 16%. This

means that more accurate multiplication formulas will be needed for multiplying modestly

large numbers if the error tolerance is small. The following lemma shows that a high-order

multiplication formula can be constructed that utilizes a small number of qubits. It can be

viewed as providing an estimate of the space complexity a specific application of the algorithm

in Figure 8.

Lemma 4 Let max{|φ1|, |φ2|} = x, then e−iφ1φ2X can be approximated to within error

O(xq+2) for any even integer q ≥ 2 on a compact domain U ⊂ R. At most O(log q) qubits

are needed to perform the multiplication.

Proof. Our proof proceeds inductively. The non-linearity property of PAR shows that an

approximate multiplication circuit M4(φ1, φ2) = PAR(φ1, φ2) implements multiplication to

within error O(x4). This demonstrates the case for q = 2. Furthermore, Taylor’s theorem

shows that

φ1φ2 −M4(φ1, φ2) = φ1φ2
∑

j′+j=2

cj,j′φ
j
1φ
j′

2 +O(x6), (23)

where cj,j′ ∈ R are some constants. In (23) we use the property that the error is of order

O(x6) rather than O(x5) as M4(x) is an even power series in φ1 and φ2.

Now, let us assume that for some q ≥ 4 and some cj,j′

φ1φ2 −Mq(φ1, φ2) = φ1φ2
∑

j+j′=q−2
cj,j′φ

j
1φ
j′

2 +O(xq+2). (24)

Lemma 3 shows that each term in the above power series can be implemented within error

O(xq+2). In particular,

cj,j′φ
j+1
1 φj

′+1
2 = cj,j′ × PAR(φ1, φ2,GB(φ

j/2
1 , φ

j′/2
2 )) +O(xq+2). (25)

It then follows that

φ1φ2 −Mq(φ1, φ2)−
∑

j+j′=q−2
cj,j′ × PAR(φ1, φ2,GB(φ

j/2
1 , φ

j′/2
2 )) = O(xq+2). (26)

This process can be iterated in order to implement each φj1 and φj
′

2 using GB and PAR. Now

let us define Mq+2(φ1, φ2) to be the approximant formed in this manner. Note that because

GB is an even function and PAR is an odd function, we have that there exist c′j,j′ such that

φ1φ2 −Mq+2(φ1, φ2) = φ1φ2
∑

j+j′=q

c′j,j′φ
j
1φ
j′

2 +O(xq+4). (27)
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This demonstrates the induction step of our proof. Now using (23) as our induction hypothesis,

we arrive at the conclusion that we can approximate multiplication to within error O(xq+2)

for any even q ≥ 2.

The composed gearbox circuit GB◦k(φ) yields a rotation angle of φ2
k

+ O(φ2
k+2) using

k recursive applications of the circuit. Each application of the circuit requires 1 additional

qubit. Therefore it is trivial to see by induction that φ2
k

can be approximated using at

most k + 1 qubits since φ2 requires 2 qubits. If we consider a binary expansion of j then

we see that at most dlog2(q/2 − 1)e bits are needed to encode j/2. Since the qubits used

each of the φ2
k

in the decomposition φj/2 = φ2φ4 · · · can be recycled and used to implement

the other φ2
k′

terms, the number of qubits required to perform each of these terms is at

most the number of qubits required for the most memory intensive calculation. This means

dlog2(q/2 − 1)e qubits will suffice, if we exclude the output qubits. Since there are at most

dlog2(q/2− 1)e terms in the decomposition, the total number of output qubits is O(log q) as

well. An additional 5 qubits are needed to store the remaining arguments to the function

and implement the multiply controlled Toffoli gate inside the gearbox circuit. Thus the space

total space requirements for this circuit scale as O(log q). �
Lemma 4 gives a procedure that can be used to construct a multiplication formula that

has error that has arbitrarily high order error scaling using a number of qubits that scales

logarithmically with the order of the multiplication formula. This allows us to trade off space

usage and time-complexity for the multipliers.

We also do not-discuss how the constants in the Taylor series expansion cj,j′ are computed.

For multiplication, the coefficients can be found by performing Taylor expansions of products

of elementary functions. This means that the Taylor series can be explicitly computed using

computer algebra packages. These coefficients can also be estimated numerically if symbolic

computation is too time consuming.

An important remaining issue is that many angles that appear naturally in problems,

such as reciprocal calculation using the binomial method, will be approximately 1. These

rotations can be implemented using time slicing as per Lemma 3 but the cost of doing so

may be prohibitive. Instead, it makes sense to use a Taylor series expansion centered around

x = 1 rather than x = 0. We formally state this in the following corollary.

Corollary 2 Assume that φ1 ≈ φ2 ≈ 1 then φ1φ2 can be implemented within error O(max{|1−
φ1|, |1 − φ2|}q+2) using at most O(log q) qubits. Similarly, if φ1 ≈ 0 and φ2 ≈ 1 then φ1φ2
can be implemented within error O(max{|φ1|, |1−φ2|}q+2) also using at most O(log q) qubits.

Proof. Assume that φ1 ≈ φ2 ≈ 1 then from Lemma 4 we have that

φ1φ2 = −1 + φ1 + φ2 + (1− φ1)(1− φ2),

= −1 + φ1 + φ2 +Mq(1− φ1, 1− φ2) +O(max{|1− φ1|, |1− φ2|}q+2), (28)

and this operation can clearly be implemented using at most O(log q) qubits.

Now let us assume that φ1 ≈ 0 and φ2 ≈ 1. We can then use similar reasoning to show

that

φ1φ2 = φ1 − φ1(1− φ2),

= φ1 −Mq(φ1, 1− φ2) +O(max{|φ1|, |1− φ2|}q+2), (29)
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Name Multiplication formula Error Qubits (RUS)

M4 PAR(φ1, φ2) O(x4) 4

M6 PAR(φ1, φ2,
π
4
− GB(γ2, φ1) − GB(γ2, φ2)) O(x6) 5

M8 PAR(φ1, φ2,
π
4
− GB(γ2, φ1) − GB(γ2, φ2), π

4
− GB(γ3, φ1) − GB(γ3, φ2) + GB(γ2, φ1, φ2)) O(x8) 7

Fig. 9. Lowest three orders of multiplication formula designed using the method of Lemma 4

but optimized for execution as an RUS circuit when acting upon |0〉. We use the constants
γ2 = arcsin(1/

√
6) and γ3 = arcsin(1/

√
15). Circuits are optimized for width and are meant to be

executed from right to left in the PAR to allow the left most qubits to be used as ancillas for the
GB operations appearing to their right.

x |x2| |M4(x, x)− x2| |M6(x, x)− x2| |M8(x, x)− x2|

0.01 1× 10−4 6.7× 10−9 6.6× 10−14 5.5× 10−17

0.05 2.5× 10−3 4.2× 10−7 1.0× 10−9 2.2× 10−11

0.10 1× 10−2 6.7× 10−5 6.6× 10−8 5.5× 10−9

0.5 2.5× 10−1 4.0× 10−2 9.4× 10−4 1.9× 10−3

1.0 1.0 0.18 0.054 0.088

Fig. 10. Errors in the first three orders of multiplication formulas as a function of input angles.

and again the resultant rotation can be implemented using O(log q) qubits. �

5.1 Sixth-order multiplication formulas

As an example, we will show how to derive a sixth-order multiplication formula, M6, from a

fourth-order multiplication formula M4, which we take to be the output of the PAR circuit. If

x is a small parameter then we can evaluate the behavior of the function for two small inputs

by examining the Taylor series of PAR(ax, bx). By Taylor expanding the function in powers

of x (i.e. using arctan(x) = x− x3/3 + · · · and tan(x) = x+ x3/3 + · · · ) we find

PAR(ax, bx) = arctan(tan(ax) tan(bx)) = abx2 +
1

3

(
ab3x4 + ba3x4

)
+O(x6). (30)

(30) shows that M4 behaves as an ideal multiplication circuit but with O(x4) error. These

error terms could be canceled by using the fact that GB(ax) = a2x2+O(x4) and then applying

two more PAR circuits in series and Taylor expanding the result:

PAR(ax, bx)− PAR(ax, bx,GB(ax), tan−1(1/3))− PAR(ax, bx,GB(bx), tan−1(1/3))

= abx2 +O(x6). (31)

This process can then be repeated to make the O(x6) terms zero and so forth.

We do not use (31) in practice because it uses qubits too greedily and is the sum of three

different PAR circuits. Because PAR is only an RUS circuit when it acts on |0〉, the sum

of three outputs from PAR is not an RUS circuit since the three rotations that constitute it

are applied in series and hence cannot possibly all act on |0〉 in the limit of small x (unless
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to implement e−iφ
2X for φ = 0.5 using M4,M6 and

M8 versus approximation error for a number of time

steps, r2, ranging over 22, 24, . . . , 220.

ab = 0). Thus oblivious amplitude estimation will be needed to convert two of the three

generalized PAR circuits into repeat until success circuits. Lemma 2 shows that this involves

roughly tripling the cost of the circuit and so it is desirable to optimize the circuits to avoid

this when possible. M6 uses one particular strategy to address the problem.

The inspiration behind M6 comes from noting that each term in (30) consists of at least

one a and b. This means that we can multiply (1 − a2x2/3 − b2x2/3) by PAR(ax, bx) to

achieve the desired result. An efficient way to do this is to note that

tan(x+ π/4) = 1 + 2x+O(x2). (32)

Thus for any analytic function f(x) we have that

arctan(tan(ax) tan(bx) tan(f(x) + π/4))

= arctan(tan(ax) tan(bx) + 2f(x) tan(ax) tan(bx) +O(f(x))2). (33)

The choice of f(x) used in M6 is f(x) = −GB(ax, arcsin(
√

1/6)) −GB(bx, arcsin(
√

1/6)) =

−a2x2/6− b2x2/6 +O(x4) which then, along with (30), gives us that

tan−1(tan(ax) tan(bx) tan(f(x) + π/4)) = tan−1(tan(ax) tan(bx)− a3bx4/3− b3ax4/3 +O(x6))

= tan−1(tan(ax) tan(bx))− a3bx4/3− b3ax4/3 +O(x6)

= abx2 +O(x6). (34)

M6 therefore gives a sixth order approximation to the product of two numbers. If only one

time slice is needed to achieve the accuracy threshold for the problem then these circuits

will be inexpensive; whereas if more than one time slice is needed then oblivious amplitude

amplification will be needed to convert the PAR into an RUS circuit. This causes the costs

of these circuits to jump substantially during the transition from one to two slices.

There are several ways in which the circuits could be optimized further for execution in

cases where multiple time slices are needed. One of the issues that arises stems from the fact
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that shifting the argument of these functions by π/4 (as per (32)) comes at a steep price: it

reduces the success probability of the circuit by roughly a factor of two. This means that it

should be used sparingly. In cases where one slice is needed, its use results in an increase of a

factor of 2 in the expected cost of the circuit, which is superior (for small arguments) to the

three-fold increase that would result from using amplitude amplification to allow the PAR

circuits to be run in series as RUS circuits. In cases where two or more slices will be needed,

this trick becomes unnecessarily costly and the resulting circuits can be further optimized by

opting instead for a strategy that is closer to (31).

5.2 Performance of multiplication circuits

How well do these multipliers work for concrete inputs and concrete errors? We address this

question by providing a table of elementary multiplication formulas for small rotation angles

in Figure 9. We focus on formulas that are accurate for x ≈ 0, but formulas adapted for x ≈ 1

can be derived from these using the approach of Corollary 2. The formulas M4,M6 and M8

are highly accurate if max{φ1, φ2} ≤ 0.1, but fail to accurately approximate multiplication

for large rotations. This is particularly noticeable with M8, which is actually less accurate

than M6 for max{φ1, φ2} ≥ 0.5. This is because the convergence of the Taylor series for M8

is slowed due to the presence of large coefficients on the O(x8) terms that are introduced in

this construction.

The cost of implementing the multiplication in terms of the number of times that the angles

φ1 and φ2 need to be used is given in Figure 11. There we see that these costs are minimal

for small angles but increase with x because of the probability of failure in the gearbox and

PAR circuits. These costs are given in Corollary B.1. We ignore the costs of the Toffoli gates

needed to perform these rotations because we assume that synthesizing the rotation will be

much more expensive than applying a Toffoli gate.

Figure 11 shows that M4 costs approximately 2 rotations, M6 costs 40 rotations and M8

costs roughly 120 rotations for x ≤ 0.1. If time-slicing is used then all these circuits must

be converted to genuine RUS circuits using Lemma 2, which triples the cost of all rotations.

Regardless, we can use r = 5 for M4 at roughly the same cost as a single iteration of M6

and r = 8 for the same cost as an iteration of M8. The question remaining is, under what

circumstances will using M4 be preferable to its higher order brethren? We see from Figure 12

that each of these methods for multiplying two rotation angles works best in a different regime.

M4 is preferable for low accuracy rotations; whereas M6 and then M8 become methods of

choice as the error tolerance shrinks.

5.3 Comparison with classical methods for multiplication

In this section we compare the resources required for RUS circuits for approximate multipli-

cation with the traditional approaches of implementing multiplication by means of reversible

circuits. Comparing classical approaches to implement a function f(φ1, . . . , φm) of several

inputs φi, i = 1 . . . ,m—which are all assumed to be integers with the same precision, i.e.,

they are given by bit-strings of length n—with the ones described in this paper is not entirely

straightforward: our methods assume that the inputs are given in form of rotations, whereas

in classical approaches usually the inputs are given in a bit-string that encodes a basis state.

To make the models comparable, we force the input and output types to be the same, i.e., a

bit-string for the inputs and rotations for the outputs: for implementations based on classical



N. Wiebe and M. Roetteler 153

Multiplier n = 2 n = 4 n = 8 n = 16

method T -count qubits T -count qubits T -count qubits T -count qubits

Carry-ripple 2.34E+02 4 7.84E+02 8 2.80E+03 16 1.06E+04 32

Table-lookup 3.38E+03 2 3.26E+06 2 3.98E+09 2 1.13E+13 2

M4 6.11E+01 3 1.97E+03 4 4.64E+04 4 3.00E+07 4

M6 7.71E+02 4 1.67E+03 4 3.82E+03 4 5.21E+05 5

Fig. 13. A comparison of the resources required for space efficient multiplication on a quantum
computer. Shown are circuit size (number of T -gates) and number of required qubits for two

n = 2, 4, 8 and 16 bit numbers. M8 is not given because it is strictly more expensive than
M6 for this data set. RUS synthesis was used to implement single-qubit rotations and a Toffoli

construction that uses 7 T -gates was used. Extra qubits required for controlled Toffoli gates in

M6 are assumed to be recycled from prior steps. All operations are assumed to be performed
sequentially, the mean time required by M4 and M6 fall substantially if parallel execution is

permitted.

circuits this means to encode the output from a reversible implementation Uf of f into a

rotation. For this we use the circuit Enc shown in Figure 15. Overall, we get a unitary

circuit as shown in Figure 14 (a) to compute the function by way of a classical reversible

implementation and an RUS circuit as shown in Figure 14 (b) to compute the function in

Repeat-Until-Success style using measurements. In the remainder of this section we give es-

timates on the (expected) required resources for both cases (a) and (b), where we instantiate

the function f to be a multiplier of two n-bit integers φ1 and φ2. Later in Section 6 we

perform a similar analysis for the case where the function f is the reciprocal function applied

to n-bit integers. Out cost estimates for circuit size are based on the total number of T gates

used. Our cost estimates for required number of qubits do not include the qubits required to

encode the inputs but only those required for everything else, i.e., the output qubits and any

ancilla qubits that might be needed in the computation.

5.3.1 Comparison with RUS methods

We compare the two methods by choosing a problem for which both the inputs and outputs

are well defined. The problem that we use to benchmark these algorithms is one where two

input numbers are provided as qubit strings: |φ1〉 |φ2〉 and from these qubit strings we wish to

implement the rotation e−iφ1φ2X within error at most 2−(n+1), meaning that we have n-digits

of precision in the output rotation. We further constrain all algorithms to use gates only from

the Clifford and T library and take the cost to be the number of T -gates used. The RUS

synthesis method of [19] is used to implement the rotations required in the inputs of M4 and

M6 and the outputs of the carry-ripple and table-lookup multipliers. In all cases we assume

that φ1 = φ2 = 1/2 since that maximizes the error incurred for multipliers centered about

φ = 0 because for larger φ we can take φ = 1 − θ and then consider a small expansion in

θ. We also assume that non-entangled inputs are used to provide a proof of principle. The

costs in entangled settings are potentially greater, however in the limit of small φ these costs

become negligible and our formulas can be used directly.

A comparison between the resources required for the carry-ripple and the table-lookup
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(a) (b)

Fig. 14. Comparison of implementing a function f as a rotation of a single target qubit |φ〉.
Shown are two implementations: (a) via a classical, reversible circuit Uf that first computes f and
then encodes the resulting bit-string f(φ1, . . . , φm) as a rotation using a phase encoding circuit

Enc. The implementation of Enc in turn is shown in Figure 15. And (b) via an RUS circuit

as in the methods presented in this paper. Note that in the RUS case, the input bit strings are
encoded directly into rotatations which are then consumed by the RUS circuit. In contrast to the

classical case, several rotations might be required to implement the target rotation: as shown in

the figure li ≥ 1 copies of the rotation corresponding to angle φi, i = 1, . . . ,m are used, denoted

by
∣∣∣φ(1)i 〉

, . . . ,
∣∣∣φ(li)i

〉
.

multipliers with the methods M4 and M6 (which are given in Section 5) can be found in Fig-

ure 13. The data was found by simulating the RUS circuits action on a state and computing

the mean and variance of the number of T gates in these simulations. The values were found

to agree with theoretical expectations given in Appendix B.

We see that the number of qubits needed is substantially lower than those required to

obtain comparable accuracy using the carry-ripple multiplier, although the T -count required

for these implementations of RUS arithmetic are several times higher (except for M4 at two

bits of precision). In contrast, lookup tables also require a constant number of qubits since

but the T -count required by them is prohibitive for n > 4. We see from this data that M4

and M6 give viable alternatives to performing multiplication using traditional methods on

a fault tolerant quantum computer. Perhaps most significantly, both methods require fewer

than 5 qubits to implement which means that they can be performed on existing quantum

computers unlike carry-ripple multiplication.

As our RUS implementations are highly space efficient—recall that for instance M4 re-

quires only 4 additional qubits to approximately compute the product of two n-bit numbers—

we focus on classical implementations that optimize circuit width. Specifically, we consider

the straightforward way of implementing a multiplication of two n bit numbers using the

näıve method of reducing the problem to n additions. The advantage of this method is that

it requires only O(log n) space in addition to the input and output registers. The size of

the resulting circuit scales as O(n2). More advanced algorithms that achieve asymptotically

better scaling in terms of total circuit size such as Karatsuba-Ofman or FFT-based methods

seem to require a significant higher amount of space [29], so we do not consider them in the

comparison.

As our methods require only a constant amount of space, arguably the most meaningful

comparison is to compare them with classical multipliers that only use a constant amount of
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Fig. 15. Implementation of the phase encoding Enc of an n-bit string φ = an−1 . . . a1a0 using

controlled rotations. The cost for each controlled rotation depends on the overall target error ε

and scales as O(log 1/ε) and is assumed to be the same for all rotations shown in the figure.

memory to do so. While there is work on the complexity of computing output bits of the

product in the context of space-bounded computation models such as OBDD or branching

programs—e.g., on the middle bit [30] or the most significant bit [31]—we are unaware of work

that addresses the space-bounded complexity for the approximate multiplication problem. In

the absence of such results, we instead consider an extremal case of table-lookup computations,

i.e., computations that can be implemented with a constant number of additional qubits but

which implements the function in a brute force way that does not exploit any features that

the function might possess.

We do not consider entangled inputs in this comparison. For M4, we can easily see that

the errors introduced from measurement can be made comparable to the truncation errors by

increasing the gates by a factor of 3 by using the techniques of Section 4. Higher-order methods

can also be implemented using these ideas, but are much more involved. For simplicity we

have focused on the single input case and leave a full comparison of these methods in cases

where there is substantial entanglement for subsequent work.

5.3.2 Carry-ripple multipliers

The näıve method implements multiplication of two n-bit numbers x =
∑n−1
i=0 xi2

i and y =∑n−1
i=0 yi2

i by performing n − 1 additions where the summands are shifted versions of x.

Overall, this requires scratch space that is logarithmic in the number of input bits. Moreover,

carry-save techniques can be applied to keep circuit depth of the additions small [32], i.e., the

first of the n−2 additions can be performed in constant depth using a suitable data structure.

As we are interested in optimizing space, we chose a different path and consider a carry ripple

adder [10] which we then use n− 1 times to produce the desired output. From the quantum

circuits for additions that have been studied in the literature [10, 11, 14], we pick one that

has the property that a controlled adder can be implemented at relatively low overhead.

While classically the näıve method needs only log n additional space, in the quantum case

we have to store the intermediate results because the overall computation must be reversible.

We obtain an upper bound of 3n qubits for the total space required, including input and

output qubits as we can implement the multiplication using n controlled adders that add

shifted copies of the input x to the output register, where the controls depend on the bits of

y. The resultant T -count can be upper bounded by n times the cost for an in-place adder

that is controlled on a single qubit.
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To keep space as well as circuit size small, we choose the in-place adder presented in

[10, Figure 5] as this has the particular useful feature that a controlled adder can be derived

directly from it without using many additional control gates, an observation also used in [33,

Section V]. Explicitly, by counting the number of gates we obtain that at most 12n Toffoli

gates are required. Using the fact that a Toffoli gate can be implemented using 7 T -gates

[25, 34] we obtain an upper bound of 84n T -gates for a controlled adder. We now use n

controlled adders (of input size n, n+1, . . . 2n bits) conditioned on the bits of y for an overall

T -count of
∑2n
k=n 12k = 18n2+18n for the carry-ripple multiplier, i.e., for the implementation

of Uf as in Figure 14. The cost for implementing Enc can be estimated as follows: to be

comparable with the RUS-based multipliers that produce n + 1-bit approximations of the

rotations, not all 2n− 1 bits of the output of f have to participate in the controlled rotations

as in Figure 15. Indeed, it is enough it the highest n + 2-bits participate in order to get

an n + 1-bit approximation. As we then have n + 2 rotations and we have the target error

εtarget = 2−(n+2), we obtain that we need at most 1.15 log2((n+2)/2−(n+2)) many T -gates per

each rotation in Enc where we choose to distribute errors uniformly, i.e., ε = εtarget/(n+2) and

we used the upper bound [19] for RUS-based single qubit decompositions. Putting everything

together, we get an overall cost of 2 · (18n2 + 18n) + 1.15(n + 2) log2((n + 2)/2(n+2)) many

T -gates, where the leading factor of 2 is due to the cleanup of the ancillas. For small values

of n, the resulting upper bound estimates on the number of T -gates are shown in Figure 13.

Note that the space bound on the number of qubits for the carry-ripple adders are given by

2n− 1 for storing the output of f plus 1 qubit for the finally resulting rotation.

5.3.3 Table-lookup multipliers

The problem of computing the product of two n-bit numbers x and y can be restated as a

problem of computing 2n− 1 Boolean functions

f0(x0, . . . , xn−1, y0, . . . , yn−1), . . . , f2n−2(x0, . . . , xn−1, y0, . . . , yn−1),

i.e., one Boolean function fi : {0, 1}2n → {0, 1} for each output bit. This function can be

stored as a lookup table wherein the individual bits yielded by the Boolean functions are

stored in an array. We now consider the complexity of implementing all these functions via

lookup tables. As we are interested in uniform families of circuits (as opposed to non-uniform

circuit models in which lookup tables can be implemented in O(n) time and O(n) space) we

are therefore looking for a quantum circuit that can implement a lookup-table with 2n inputs

and n + 2 outputs. Note that we need only the highest order (n + 2) of the result to be

comparable to the RUS-based implementation, so we do not have to synthesize all 2n − 1

output functions. One simple way to upper bound the cost for implementing such a lookup-

table is to assume that each output bit is implemented via a sequence of 2n-fold controlled

NOT gates Λ2n(NOT), where Λk(U) is defined as the operation Λk(|x0, . . . , xk−1〉 |ψ〉) =

|x0, . . . , xk−1〉 |ψ〉 if (x0, . . . , xk−1) 6= (1, . . . , 1) and Λk(|1, . . . , 1〉 |ψ〉) = |1, . . . , 1〉U |ψ〉.
From [35] follows that we can implement a k-fold controlled NOT (i.e., the case U = NOT)

using at most 8k − 24 many Toffoli gates, provided that k ≥ 5. For small values of k, a case

analysis shows that k = 2 requires 1 Toffoli gate, k = 3 requires at most 4, and k = 4 at most

10.

We now break these Toffoli circuits further down over the Clifford+T gate set, specifically,

we count the number of T gates. Using known implementations [25, 34] of the Toffoli gate
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over Clifford+T it can be shown that its cost in terms of T -gates is given by 7. Note, however,

that often it is useful to consider a Toffoli up to a diagonal phase. It is known that this leads

to savings in the T -count, specifically, an implementation of Toffoli up to a phase is known

that requires 4 T gates only [35, 36].

An analysis of the Toffoli network for the k-fold NOT given in [35], while using as much

as possible the cheaper Toffoli up to phase whenever phase cancellations are possible, reveals

that for k ≥ 5 the T -count can be upper bounded by 32k− 84. For small values of k, again a

case analysis can be done which shows that k = 2 requires at most 7 T -gates, k = 3 requires

at most 22 T -gates, and k = 4 at most 52.

Each output bit is a Boolean function of 2n inputs and each non-zero line of the truth

table is implemented by a Λ2n(NOT) gate, up to Clifford gates (NOTs). The space overhead

of this implementation is constant, namely we need 1 additional qubit in order to implement

the decomposition as in [35]. Note that as above we have to only implement the leading

n + 2 bits of the product. We make make the conservative worst case assumption that the

Hamming weight of each output bit could potentially be as high as 22n and we have n + 2

output bits, i.e., we get an upper bound of (n+ 2)(22n(32(2n)− 84) = 22n(64n2 + 44n− 168)

T -gates are required for computing the (n+ 2) highest order bits of the product of two n-bit

numbers using a reversible cicuit Uf . Here we used 1 additional ancilla qubit to enable the

linear time factorization of the 2n-fold controlled NOT gates.

As above we have an overhead of 1.15(n + 2) log2((n + 2)/2(n+2)) T gates to implement

the Enc gates. Putting everything together we get an overall cost of 2 · 22n(64n2 + 44n −
168) + 1.15(n+ 2) log2((n+ 2)/2(n+2)) many T -gates, where the leading factor of 2 is due to

the cleanup of the ancillas. For small values of n, the resulting upper bound estimates on the

number of T -gates are shown in Table 13. Note that for the case n = 2 we cannot use the

formula as it falls within one of the special cases of small number of controls. In this case we

obtain a bound of the T gates arising from the reversible part of the circuit as 6, 656 gates to

which the cost for Enc has to be added.

Note that the space bound on the number of qubits for the table lookup implementation

is given by 1 qubit for the result of each output function, 1 qubit as an ancilla, and 1 qubit

to store the final rotation, i.e., a total of 3 qubits.

It seems possible that this crude upper bound on the number of T gates can be improved

by reusing intermediate results and output bits [37, 38] or by applying synthesis techniques

based on the Reed-Muller transform [7], however, an exponential lower bound for fn (the

“middle bit”) of Ω(2n/2) is known for branching programs that are allowed to read the inputs

a constant number of times [30] and also for the most significant bit an exponential lower

bound of Ω(2n/720) is known (for OBDDs which are a special case of branching programs)

[31], hence even after optimization, the circuit complexity will be exponential in case there is

only a constant amount of memory available.

6 Reciprocals

An important gap in the application of the Harrow, Hassidim and Lloyd quantum algorithm

for solving linear systems [2] is the fact that a rotation of the form e−iX/a must be performed

for some superposition over the values of a stored in a quantum state. The conventional

approach to solving this problem is to provide a classical reversible circuit for the reciprocal
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and use it to compute 1/a into a qubit string stored in a tensor product with a. With this

value in hand, e−iX/a can be performed using a series of controlled rotations. This procedure

is discussed in detail in [15] and also in Section 6.3. A major drawback of this approach is that

many qubits are required to store 1/a. A method that goes directly from |a〉 to |a〉 e−iX/a |0〉
without needing to compute 1/a in a qubit register would therefore be quite useful.

Newton’s method is perhaps the most commonly prescribed method for computing the

reciprocal. The reason for its popularity stems from the fact that (i) Newton’s method con-

verges quadratically for a good initial guess and (ii) the approach only requires multiplication

and addition. In particular, if xn is an approximation to the value of the reciprocal then

Newton’s method provides a new approximation

xn+1 = 2xn − ax2n. (35)

This process begins with a reasonable guess for the value of the reciprocal, such as x1 =

2−dlog2 ae, and (35) is then iterated until the error is sufficiently small. Since the error shrinks

quadratically, n ∈ Θ(log log 1/ε) iterations suffice to reduce the error to at most ε. A direct

application of Newton’s method is not well suited for calculating the reciprocal using RUS

arithmetic because each iteration requires four copies of xn and hence the total number of

rotations required scales as O(4n); making a direct application of this method costly. This

approach can be made more viable by unrolling the recurrence relation into a polynomial

and then approximating the polynomial using the methods of Section 3, but the cost of

implementing the resulting polynomial using RUS arithmetic can be prohibitive because the

coefficients in the polynomial diverge exponentially. Caching methods, described in Appendix

D, can also be used to reduce the cost of implementing Newton’s method using RUS arithmetic

at the price of increased circuit width.

We focus on two other methods for computing the reciprocal using RUS circuits. First we

discuss directly implementing a Chebyshev approximant to the reciprocal and then consider

implementing the binomial method for implementing the reciprocal. Both approaches yield

practical methods for approximating 1/a using RUS arithmetic. The first step in both of these

methods involves rescaling a. This step is important because it circumvents the problem of

exponentially diverging coefficients that appears in a direct application of Newton’s method.

This rescaling can be expressed as

1

a
= 2−dlog2 ae

(
1

2−dlog2 aea

)
, (36)

where 2−dlog2 aea ∈ [1/2, 1]. We can therefore introduce a new variable

y = 1− 2−dlog2 aea, (37)

where y ∈ [0, 1/2]. In other words, we seek to find a power series approximation in powers of

y to

2−dlog2 ae
(

1

1− y

)
. (38)

Three natural methods then arise for implementing this: Taylor series, Chebyshev polyno-

mials and the binomial division algorithm. Taylor series tend to provide poor accuracy for

this application because of the slow convergence of the series near y = 1/2 (as alluded to

previously). For this reason, we focus our attention on the remaining two methods.
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Gadget name Formula Maximum error

R2 1.012194 + .608948y + 2.664355y2 1.6 × 10−2

R4 1.000359 + .966359y + 1.490195y2 − 1.362554y3 + 5.019604y4 5.1 × 10−4

R6 1.000012 + .9980208y + 1.059785y2 + .336629y3 + 4.386547y4 − 7.295458y5 + 9.456853y6 1.2 × 10−5

Fig. 16. Chebyshev approximants to 1/(1− y) on y = 0 . . . 1/2 where y = 1− 2−dlog2 aea.
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6.1 Chebyshev polynomials

Chebyshev polynomials are a complete set of orthogonal polynomials that can be used to

represent any piecewise continuous function, such that the infinity norm of the difference

between the approximation and the original function is minimized. Taylor series approxima-

tions (such as those used in Section 5) provide extremely accurate local approximations to

a function but tend not to provide approximations that are accurate throughout the domain

of the function. Thus Chebyshev polynomials are often the preferred method for obtaining a

polynomial approximation to a function on an interval. The properties of these polynomials

are well studied and discussed in detail in [39]. The key point behind this approach is that by

doing a Chebyshev polynomial expansion, we can reduce the problem of finding the reciprocal

to that of implementing a polynomial. This can be achieved by using the multiplication for-

mulas provided in Section 5. The three lowest-order Chebyshev approximants to the rescaled

reciprocal, 1/(1− y), are given in Figure 16.

We could directly implement these formulas for the (rescaled) reciprocal using the multi-

plication circuits discussed in Section 5 for implementing y2 but instead using gearbox circuits

to implement an approximate squaring circuit. We do this because GB is naturally an RUS

circuit so it is much less costly to construct an approximate squaring circuit using these com-

ponents then it is to use PAR circuits and oblivious amplitude amplification to convert them

into RUS circuits.

We also use another optimization that exploits the fact that y ∈ [0, 1/2]. This means that

the worst-case errors can be minimized by using a Taylor-series expansion about y = 1/2
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rather than one centered about y = 0. In other words, we express y2 as The second trick uses

the fact that

y2 = (y − 1/4)2 +
y

2
− 1

16
, (39)

and use GB(y − 1/4) ≈ (y − 1/4)2.

A further optimization that we consider is using high-order formulas for computing (y −
1/4)2. The methods of Section 3 can be used to show that

x2 = GB(x)−GB(x, x, arcsin(
√

2/3))−GB(x, x, x, arcsin(
√

22/45)) +O(x8). (40)

If we cost all such inputs at one rotation, this approximant requires a minimum of 16 rotations.

Similarly, for any constant α ≥ 2/
√

15 ≈ 0.52.

αx2 = GB(x, arcsin(
√
α))−GB(x, x, arcsin(

√
α2 − α/3))

−GB(x, x, x, arcsin(
√

2α3/3− 8α/45)) +O(x8). (41)

Thus 0.664355(y − 1/4)2 can be approximated to eighth order using this approach using a

minimum of 18 rotations. Since the requisite rotations are nearly half the size of those required

for y2, we do not need to expand about the midpoint to obtain sufficient accuracy for this

rotation. The approximant R2 can then be realized by combining these ideas and noting that

αy can be directly prepared from |a〉 for any constant α using standard synthesis methods.

Expansion into Chebyshev polynomials provides an excellent way to represent 1/(1−y) as a

power series in y that minimizes the max-norm of the difference between the approximant and

the actual function. Although such expansions can be practical and highly space efficient, we

see that the coefficients in R2, R4 and R6 do not remain small as the order of the polynomial

approximation increases. Although the Chebyshev approximation theorem clearly shows that

such errors can be made arbitrarily small by increasing the order of the polynomial, the

coefficients may increase with the approximation order. This makes the complexity analysis

much challenging since the cost of RUS arithmetic depends on these coefficients. We will see

below that such problems do not occur when the binomial method is used for division.

6.2 The binomial method

The binomial method is an alternative to Newton’s method for computing the reciprocal that

also has the property that it converges quadratically. Here quadratic convergence means that

the error drops doubly exponentially with the number of iterations used in the method. At

its heart, the binomial method is simply a re-grouping of the terms in the Taylor series of

(1− y)−1. It reads
1

1− y
≈ (1 + y)(1 + y2) · · · (1 + y2

n−1

), (42)

and the error in this approximation is at most 2−2
n

. The resultant series can be implemented

as a series of multiplications of a form that is similar to that in Corollary 2.

Quadratic convergence does not occur for direct implementations of the binomial method

using RUS arithmetic. This is because the product (1 + X)(1 + Y ) requires O(1/(ε1/(2k)))

copies of X and Y if we want to implement the multiplication within error ε. By iterating

this process, it is then clear that (1 + y)(1 + y2) · · · (1 + y2
n−1

) requires eO(1/ε1/(2k)) copies of
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y, y2, . . . , y2
n−1

. Thus linear, rather than quadratic convergence, is expected if the operations

in the product are performed sequentially using RUS arithmetic. Quadratic convergence can

be recovered, however, in architectures that can prepare eO(n) = O(polylog(1/ε)) copies of

the requisite states in parallel or by using caching strategies (which we discuss in Appendix

D). In either case, the price of recovering quadratic convergence is a substantial increase in

the width of the resulting circuits.

The following corollary shows that the binomial method can be used to compute the

reciprocal in a remarkably space efficient manner.

Corollary 3 Given a qubit string |a〉 ∈ C2m the rotation exp(−iX/a) can be approximated to

within distance ε as measured by the 2-norm using dlog2(m+ 1)e+O(log log(1/ε)) additional

qubits.

Proof. The error in the binomial approximation to the reciprocal is at most 2−2
n

for any n,

hence if we wish the error to be ε then it suffices to take n ∈ Ω(log log(1/ε)). This also suffices

to make the error O(ε/n), which is sufficient to guarantee that the overall error is at most

O(ε). All of the monomials present in the binomial expansion can either be constructed using

GB◦p(y) for p = 1, . . . , n or directly implemented from the qubit representation of y. This

construction requires at most n qubits. Since this is an RUS circuit, we can make the error

arbitrarily small using time-slicing without resorting to oblivious amplitude amplification,

which substantially reduces the cost of method. Corollary 2 can then be used to perform the

multiplications using M2, which requires only 2 qubits within error at most O(ε/n). Therefore

the total error can be made at most O(ε) using the claimed number of qubits.

The remaining issue is that of constructing y = 1 − 2−dlog aea from |a〉. This problem is

equivalent to bit shifting a to the right until a number in the range [1/2, 1] is attained. This,

in effect, becomes the problem of preparing the state |a〉 |dlog2 ae〉. This can be implemented

using a simple reversible circuit, as illustrated below for the case of 4 input qubits, where

+j represents an adder circuit that increments a register by j.

• •
• •

• •
• •

|0〉

+4

•

+3 +2 +1 −1|0〉 • •

|0〉 • •

|0〉

This requires dlog2m+ 1e additional qubits (for technical reasons one additional qubit is also

used in the reversible circuit that implements this, but this does not change the scaling).

Given this state, the input bit string a can be logically bit shifted so that exp(−i2−dlog aeaX)

can be performed from |a〉 using a series of controlled rotations. Thus the rotation can be

implemented within error ε using dlog2(m+ 1)e+O(log log(1/ε)) qubits, as claimed. �
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6.3 Comparison with classical methods for computing reciprocals

Similar to the case of multiplication, we provide a comparison between the resources required

for RUS circuits for approximate computation of reciprocals with reversible circuits. We

consider three different ways of implementing the computation of the reciprocal of n-bit

integers: (i) a reversible implementation of the (extended) Euclidean algorithm following [40],

(ii) a reversible implementation of Newton’s method following [15], and (iii) a table-lookup

implementation.

Similar to our comparison of conventional reversible circuits against RUS arithmetic for

multiplication, we will choose a problem for which the inputs and outputs of both algorithms

are comparable. We take our problem to be one inspired by the linear systems algorithm [2].

A qubit string encoding a value a is provided consisting of n bits and we wish to use this

to perform e−iX/a. Again we assume that all operations are decomposed into Clifford and T

gates and that the result is accurate to n bits, meaning that the error in the resultant rotation

is at most 2−(n+1).

6.3.1 Reciprocals via extended Euclidean algorithm

The basic idea is that for an input x =
∑n−1
i=0 xi2

i the first n digits of the reciprocal of x

can be computed by running the extended Euclidean algorithm for the computation of the

greatest common divisor GCD(x, 2n). By performing bit-shifts if necessary, we can assume

that x is odd, i.e., we are in the case where the GCD is equal to 1. The extended Euclidean

algorithm will then produce two integers r and s such that rx + s2n = 1. If r =
∑n−1
i=0 ri2

i,

then the bit presentation of x−1 is given by
∑n−1
i=0 ri2

−n+i. The computation of the extended

Euclidean algorithm is highly non-trivial as the number of iterations of the basic reduction

step depends on the inputs.

A reversible implementation of the extended Euclidean algorithm has been given that

synchronizes the computation for any pairs of inputs so that it has the same number of steps

is given in [40] and resources estimates are provided in [40, Section 5.4.1]. The synchronization

of the computation of the GCD of two n-bit number requires 4.5n repetitions of a fundamental

cycle which in turn consists of the controlled application—depending on the content of a flag

qubits—of 4 adders, one swap, and one comparison circuit. Up to leading order, only the

controlled adders matter and as a comparison can be reduced to an adder, we get an overall

cost of 5 times the cost for a controlled n-bit adder which we estimated earlier in Section 5.3

to be upper bounded by 84n in terms of T -gates. Hence we obtain 4.5n · 5 · 84n = 1, 890n2

as an upper bound for the number of T -gates. Putting everything together, we obtain the

upper bound 2 · 1, 890n2 + 1.15(n + 2) log2((n + 2)/2(n+2)) on the number of T gates. The

space requirements for this method are bounded above by 5n+ 4 log2(n) in [40, Section 5.4.2]

plus 1 additional qubit for the output rotation.

6.3.2 Reciprocals via Newton’s method

For a given n-bit integer x one can obtain an approximation for 1/x by iterating the map

µ : z 7→ 2z − xz2 which quickly converges toward the fixed point of µ which is given by

µ(1/x) = 1/x. In order to achieve an output that has the first n bits equal to those of of 1/x,

one needs at most O(log n) many iterations of µ, when starting from an initial value that can

be chosen to be any number between 2−n and 2−n+1. A detailed analysis of the number of
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iterations to achieve a target precision of n bits has been provided in [15]: as the number of

operations for the computation of µ in each iteration can be bounded by the circuit sizes for

two multiplications (one for the square and one for multiplication with x; the multiplication

by 2 can be implemented as a bit shits), the number of iterations can be bounded by 2 log2(n)

and there is an overhead of a factor of 2 as the computation has to be reversed to disentangle

the ancillae used in the algorithm. Overall, we obtain 4 log2(n) times the cost for one adder

and two multipliers. We bound the T -count for an n-bit multiplier in Section 5.3 above by

18n2 + 18n and choose the adder to be the in-place adder from [11, Table 1] for which the

cost in terms of Toffoli gates has been bounded by 2n − 1, i.e., we can bound the number

of T -gates for this adder by 14n − 7. The total T -count is therefore the sum of all these

contributions: 4 log2(n) · (2(18n2 + 18n) + (14n − 7)) = (144n2 + 200n − 28) log2(n) for the

computation of Uf as in Figure 14

Putting everything together, we obtain 2·(144n2+200n−28) log2(n)+1.15(n+2) log2((n+

2)/2(n+2)) many T -gates, where as before the leading factor of 2 is due to the cleanup of the

ancillas. For small values of n, the resulting upper bound estimates on the number of T -gates

are shown in Table Figure 19.

For the space requirements we obtain that in each iteration n+ 2(2n− 1) new ancillas are

required, so that in total we get an upper bound of 2 log2(n)(5n− 2) = (10n− 4) log2(n) for

the computation of Uf . As in case of the multiplier we now have to compute the result into

a rotation which leads to an additional overhead of 1 qubit so that in total we need no more

than log2(n)(10n− 4) + 1 qubits.

6.3.3 Reciprocals via table-lookups

This leads to the same bound as in the case of the table-lookup implementation of the multi-

pliers, with the only difference being that the input and output sizes are n. We get an upper

bound of 2 · (n2n(32n− 84)) + 1.15(n+ 2) log2((n+ 2)/2(n+2)) = 2n+1(32n2− 84n) + 1.15(n+

2) log2((n+ 2)/2(n+2)) many T -gates that are required to implement the computation of the

reciprocal of an n-bit numbers in constant space where n ≥ 5. For n = 2 we obtain the bound

8 · 2 · 7 = 112 plus the cost for Enc and for n = 4 we obtain the bound 25 · 5 · 52 = 8320 plus

the cost for Enc. These results are summarized in Figure 19.

As in case of the multiplier we obtain that the circuit can be implemented with an addi-

tional of 3 qubits only.

6.3.4 Comparison with RUS methods

A comparison between the resources required for reciprocals based on the Euclidean method,

Newton’s method, and the table-lookup method and R2 is given in Figure 19. The comparison

was done using RUS synthesis to convert the rotations in R2 into Clifford and T circuits and

using the same Toffoli gate used in previous steps. M4 and M6 were used for n = 2 and n = 4

respectively to rescale the reciprocal after 1/(1−y) was computed using R2, and in both cases

99% of the error tolerance was used in the synthesis steps on the rotations in R2 because these

constitute the inner loop of the algorithm. Making these rotations as inexpensive as possible

helps reduce the cost of the overall algorithm because they are repeated many more times

than the rescaling operation used after 1/(1− y) is computed.

The first feature to note is that the number of ancilla qubits used in a reversible implemen-

tation of Euclid’s algorithm and Newton’s method are quite daunting. Our estimates suggest
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Reciprocal n = 2 n = 4 n = 8 n = 16

method T -count qubits T -count qubits T -count qubits T -count qubits

Euclid 1.51E+04 12 6.05E+04 23 2.42E+05 44 9.68E+05 85

Newton 1.92E+03 17 6.21E+03 73 2.17E+04 229 8.05E+04 625

Table-lookup 1.40E+02 3 8.38E+03 3 7.05E+05 3 8.98E+08 3

R2 3.17E+03 6 1.53E+05 6 NA NA

Fig. 19. A comparison of the resources required for space efficient computation of reciprocals on

a quantum computer. Shown are mean circuit sizes (number of T -gates) and number of required
qubits for n = 2, 4, 8, 16 bit numbers. We assume a ∈ (1, 2] for simplicity in the case of R2.

Input: Function f , endpoints for interpolation range xmin and xmax, number of square waves
used in the synthesis N , k recursion order for Gearbox circuit.

Output: {aj : j = 1, . . . , N} such that f(x) ≈
∑
j aj

4
π (GB◦k(xNπ/(2j(xmax − xmin)) +

π/4)− π/4).

function squareWaveApprox(f , xmin, xmax, N)
xj ← xmin + (xmax − xmin)(j − 1/2)/N
Tj ← 2(xmax − xmin)j/N

Aj,k = 4
π (GB◦k(xjπ/Tk + π/4)− π/4)

~y ← f(xj) . Compute function on mesh

return A−1~y . Solve system of equations, A~a = ~y, for coefficients aj

end function

Fig. 20. Square Wave Synthesis Algorithm.

that dozens to hundreds of qubits will be needed to perform a computationally useful quantum

linear systems algorithm. The Chebyshev approximation implemented using RUS synthesis

methods, R2, requires 6 qubits in contrast to these results and requires a number of T -gates

that is comparable to Euclid’s method but substantially greater than Newton’s method. Un-

fortunately, because Chebyshev approximants have fixed accuracy, it is impossible to provide

more than 4 bits of precision. Perhaps surprisingly, for the circuit sizes considered, table-

lookup proved to be a viable approach because the table is only one dimensional. We see that

it is clearly a method of choice for small inversion problems, but its poor asymptotic scaling

will make higher-order variants of R2 much less expensive for more inversion problems with

more stringent requirements on the error tolerance. These results show that, unless further

optimizations are used for division algorithms, the qubit requirements involved in performing

an inversion are far beyond the capabilities of existing quantum computers and may exceed

those of even near-future quantum computers.

We will now illustrate these ideas by using approximate square waves to implement 1/(1−
y) on y ∈ [−0.1, 0.6]. We use k = 8 and take N = 71 and find from the data in Figure E.1

that the function can be approximated on the subinterval y ∈ [0, 0.5] to within a maximum
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error of 2.1% and a mean error of 0.36%. These spikes in the error occur because if y is in

the interval where the function is ramping up from −1 to 1 then the midpoint approximation

will fail to be very accurate. The probability of such events can be decreased by increasing k

at the price of increasing the circuit size.

The cost of this synthesis process is O(2kN logN). However, an advantage of this method

is that the rotation-depth of the resulting circuit is substantially smaller: O(kN logN) [17],

meaning that the overwhelming majority of the rotations used can be performed simultane-

ously in an architecture that allows parallel execution.

As a final note, the square wave method should not just be seen as a method for imple-

menting a piecewise constant function. A broader view is to see each square wave as a logical

function that thresholds the rotation angles input into the gearbox circuit. These circuits

therefore give a way to approximate logical operations on rotation angles and hence square

wave synthesis can be viewed as a special case of logical operations being used to implement a

function via a lookup table on N points with piecewise constant interpolation between them.

7 Conclusion

Our main contribution is a fundamentally quantum approach to arithmetic that stores both

inputs and outputs not as qubit strings but as amplitudes. More specifically, our method rep-

resents the value φ as e−iφX |0〉. The approach uses measurement as an active participant in

the approximations. This strategy is profitable because of the use of repeat until success cir-

cuits, which removes the possibility of a faulty measurement irreparably corrupting an entire

multi-step computation. In a deep sense, our work can be thought of as providing a gener-

alization of existing circuit synthesis ideas wherein axial rotations of the form e−if(φ1,...,φk)X

are implemented instead of a constant function of the form e−ifX .

Optimizing the performance of our circuits therefore requires a different flavor of numerical

analysis that takes into account the ability of measurement to non-deterministically apply

non-linear transformations on the input data. We provide a first foray into this field of

quantum numerical analysis by providing Taylor series based methods for finding arbitrarily

high-order approximations to smooth functions using repeat until success circuits. Specific

examples are given for multiplication and division wherein we find that we can implement

both operations using substantially fewer operations than the most popular methods currently

proposed. In particular, our methods can provide an arbitrarily accurate multiplier using a

constant number of ancilla qubits. Reciprocals can also be implemented in this manner using

a number of qubits that scales logarithmically in the number of bits of precision required. This

is significant because reversible circuits for division or multiplication can require hundreds of

logical qubits, making algorithms like linear systems algorithms outside of the reach of small

quantum computers. Our ideas promise to enable such applications of quantum computers.

An interesting point to note, however, is that we find that the costs of implementing

reciprocals using a lookup table was found to be surprisingly small for applications where

modest precision (at most 16 bits) are required. This suggests that brute force inversion may

also be a practical way to implement the inversion step in linear systems algorithms on a

small quantum computer.

Looking forward, there are several potential further avenues of inquiry revealed by this

work. There may exist other classes of repeat until success circuits that are yet to be found
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that could enable new ways of synthesizing functions. This may lead to more efficient, or

more natural, ways of implementing arithmetic in our paradigm. In a similar vein, synthe-

sizing functions by way of a Taylor series expansion is perhaps not the most natural way to

implement these rotations since multiplication is not natural for large angles in our frame-

work. The gearbox and generalized PAR circuits proposed here may also have applications

beyond function synthesis. Also the question of whether sub-polynomial scaling with ε−1 can

be obtained with this method also remains open. Finally, a natural extension of our work on

square wave synthesis is to consider a decomposition of f into a sum of approximate Walsh

functions (previously considered for circuit synthesis in [41]). This idea would constitute

a natural way to approximate arbitrary functions on a quantum computer without using a

polynomial expansion. This list is by no means exhaustive and we suspect that the ideas

presented here may stimulate the development of new and innovative methods for performing

arithmetic, function approximation or state distillation on fault-tolerant quantum computers.
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Appendix A. Proof of Lemma 2

The proof of Lemma 2 requires the use of oblivious amplitude amplification [28], which is

a technique that allows amplitude amplification to be performed without knowing the initial

state that the system is prepared in. We state the result, proven in Lemma 3.6 of [28], in the

following lemma.

Lemma A.1 (Berry, Childs, Cleve, Kothari, Somma) Let U and V be unitary matrices on

µ+n qubits and n qubits, respectively, and let θ ∈ (0, π/2). Suppose that for any n-qubit state

|ψ〉

U |0〉 |ψ〉 = sin(θ) |0µ〉V |ψ〉+ cos(θ) |φ〉 ,

where |φ〉 satisfies (|0µ〉〈0µ ⊗ 1| |φ〉 = 0. Let R := (2 |0µ〉〈0µ| ⊗ 1) − 1 and S := −URU†R.

Then for any t ∈ Z,

StU |0〉 |ψ〉 = sin((2t+ 1)θ) |0µ〉V |ψ〉+ cos((2t+ 1)θ) |φ〉 .

In our context the R operation in the above lemma can simply be taken to be the Z gate.

This result naturally leads to the following corollary:

Corollary A.1 If U : |0〉 |ψ〉 7→ |0〉V |ψ〉+|1〉|φ〉√
2

and θ = π/4 then the state V |ψ〉 can be

prepared deterministically using three applications of U and a constant sized Clifford circuit.

Proof. Oblivious amplitude estimation cannot be used directly to see this result because

θ = π/4 in this case. Since the amplitudes of the “good” state vary like sin((2t + 1)θ), it

is clear that amplitude is not transferred to the good solution by repeatedly using oblivious

amplitude amplification. Instead we poison the success probability by defining a new success

condition that would happen with probability 1/4 if amplitude amplification was not used.

Ũ |0〉2 |ψ〉 := H |0〉 ⊗ (U |0〉 |ψ〉) =
1

2

∣∣02〉V |ψ〉+

√
3

4

∣∣∣φ̃〉 , (A.1)

where
〈
φ̃
∣∣∣ (∣∣02〉V |ψ〉) = 0. If the top qubit in the above circuit were to be measured then it

would yield the desired transformation on the bottom qubit with probability 1/4. This means

that in essence, these transformations allow us to implement a transformation that logically

has the same action upon success but with half the original success probability. This is all

that we need in order to make the application of V to |ψ〉 deterministic.

Eq. (A.1) is in exactly in the form required by Lemma A.1 with θ = arcsin(1/2) = π/6

and µ = 2. Thus we see that

−ŨRŨ†RŨ
∣∣02〉 |ψ〉 = sin((2 + 1)π/6)

(∣∣02〉V |ψ〉)+ cos((2 + 1)π/6)

√
3

2

∣∣∣φ̃〉
=
∣∣02〉V |ψ〉 . (A.2)

Thus the success probability can be boosted to 100% using three calls to Ũ .

The fact that we require a constant sized Clifford circuit can easily be seen from the

following circuit, which implements oblivious amplitude amplification for these cases (up to
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an irrelevant global phase)

−ŨRŨ†RŨ
∣∣02〉 |ψ〉 ≡ |0〉 H −Z H −Z H

|0〉
U U† U

|ψ〉

This completes the proof �

This corollary is significant because it allows us to make any such circuit, such as those

used in PAR circuits or non-deterministic circuit synthesis methods [18, 19]. In particular,

Corollary A.1 leads directly to a proof of Lemma 2.

Proof of Lemma 2. Consider PAR(φ1, . . . , φk). Eq. (6) shows that the generalized PAR

circuits prepare the state

PAR(φ1, . . . , φk) : |0〉 |0〉k−1 |ψ〉

7→ GHZ−1

e−iθ1X ⊗ · · · ⊗ e−iθkX |0〉k |ψ〉 − k∏
j=1

cos(φj)
∣∣0k〉 |ψ〉 − (−i)k

k∏
j=1

sin(φj)
∣∣1k〉 |ψ〉


+

1√
2

∣∣0k〉 (cos(φ1) · · · cos(φk)1− i sin(φ1) · · · sin(φk)X) |ψ〉

+
1√
2
|1〉
∣∣0k−1〉 (cos(φ1) · · · cos(φk)1 + i sin(φ1) · · · sin(φk)X) |ψ〉 . (A.3)

For notational simplicity in the following we will represent a number v as a bitstring v1 · · · vk,

where products within the ket of the form |v1 · · · vk〉 are interpreted to be the concatenation

of the bits so that |v1 · · · vk〉 ≡ |v〉. Similarly we define powers such that
∣∣v2j 〉 ≡ |vjvj〉. Then

applying the k− 1 controlled not gates to the state and then the Hadamard on the transform

first qubit we find that we can write

GHZ−1

e−iθ1X ⊗ · · · ⊗ e−iθkX |0〉k |ψ〉 − k∏
j=1

cos(φj)
∣∣0k〉 |ψ〉 − (−i)k

k∏
j=1

sin(φj)
∣∣1k〉 |ψ〉


= (H ⊗ 1)

∑
0k 6=v 6=1k

k∏
j=1

cos(φj)
1−vj sin(φj)

vj (−i)
∑k
q=1 vq

∣∣v ⊕ 0(v1)k−1
〉
|ψ〉 (A.4)
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Then by expanding the result we see that it is equivalent to∑
0k 6=v 6=1k

k∏
j=1

(
cos(φj)

1−vj sin(φj)
vj (−i)

∑k
q=1 vq

√
2

× (
∣∣v ⊕ (v1)k

〉
+ (−1)v1

∣∣v ⊕ (v1 + 1)vk−11

〉
) |ψ〉

)

=
∑

0k 6=v 6=1k

k∏
j=1

(
cos(φj)

1−vj sin(φj)
vj (−i)

∑k
q=1 vq

√
2

× (|0〉
∣∣v2 · · · vk ⊕ (v1)k−1

〉
+ (−1)v1 |1〉

∣∣v2 · · · vk ⊕ vk−11

〉
) |ψ〉

)

:=

√
1− β2

√
2

(|0〉 |χ0〉+ |1〉 |χ1〉) |ψ〉 , (A.5)

for some β that is a function of φ1, . . . , φk. The quantity β is included in order to ensure

that the resulting state has less than unit length. Since v2 · · · vk 6= (v1)k−1 for any of the

states in (A.5), GHZ−1 |φ〉 is orthogonal to span(
∣∣0k〉 , |1〉 ∣∣0k−1〉), which means that we can

use (A.5) to write for V0 = exp(−i arctan(
∏
j tan(φj))X)

PAR(φ1, . . . , φk) : |0〉k |ψ〉 7→

|0〉
(
β |0〉k−1 V0 |ψ〉+

√
1− |β|2 |χ0〉 |ψ〉

)
+ |1〉

(
β |0〉k−1 V †0 |ψ〉+

√
1− β2 |χ1〉 |ψ〉

)
√

2
. (A.6)

Since the overall state must be normalized to unit length, we can infer from (A.3) that

|β| =

√√√√ k∏
j=1

cos2(φj) +

k∏
j=1

sin2(φj). (A.7)

Equation (A.6) is of the form required by Corollary A.1, which implies that we can use

oblivious amplitude amplification to deterministically prepare the state

β |0〉k−1 V0 |ψ〉+
√

1− β2 |χ0〉 |ψ〉 ,

using 3 PAR rotations and a constant sized Clifford circuit. If we then measure the first

k − 1 qubits of this state to be 0k−1 then V0 |ψ〉 will be performed as required; whereas if

we measure any other outcome the identity gate will be applied to |ψ〉. The probability of

implementing V0 is therefore β2 =
∏k
j=1 cos2(φj) +

∏k
j=1 sin2(φj). The circuit is therefore

satisfies Definition 1 and is a Repeat-Until-Success circuit with the success probability claimed

by Lemma 2. �

Appendix B. Bounds on mean and variance of cost of RUS circuits

Of course, if we nest several PAR and Gearbox circuits then we have to be able to bound

the number of repetitions needed for success to occur with high probability. This can be done

using Chebyshev’s inequality given the expectation value and the variance of the number of

repetitions of the RUS circuits used. These properties are summarized in the following lemma.
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Lemma B.1 Let V be an RUS circuit composed of k RUS circuits whose success probabilities

are independent. Let x1, . . . , xk be random variables that describe the number of attempts of

each of the k RUS circuits that are needed in order to achieve a successful measurement of each

of the k RUS circuits and let N be a random variable describing total number of repetitions

of V needed for success. The total number of repetitions of x1, . . . , xk, Rx, that are needed

obeys

E(Rx) = E(N)

k∑
j=1

E(xj) (B.1)

V(Rx) = E(N)

k∑
j=1

V(xj) + V(N)

 k∑
j=1

E(xj)

2

(B.2)

Proof. Expanding Rx,

Rx :=

N∑
i=1

k∑
j=1

xj =

∞∑
i=1

k∑
j=1

xj1i≤N =

∞∑
i=1

k∑
j=1

(χj + E(xj))1i≤N , (B.3)

where each χj is a zero-mean random variable such that xj = χj + E(xj) and 1i≤N is the

indicator function that is 1 for i ≤ N and 0 otherwise.

The random variables N and χj are independent and each χj has zero-mean, which means

that

E(Rx) = E

 ∞∑
i=1

k∑
j=1

(χj + E(xj))1i≤N

 = E

( ∞∑
i=1

1i≤N

)
k∑
j=1

E(xj) = E(N)

k∑
j=1

E(xj).

(B.4)

The variance is a little more difficult to compute

V(Rx) = E(R2
x)− E(Rx)2. (B.5)

Expanding this out we find

V(Rx) = E

 ∞∑
i=1

k∑
j=1

(χj + Exj)1i≤N

 ∞∑
i′=1

k∑
j′=1

(χj′ + Exj′)1i′≤N ′

− E(N)2

 k∑
j=1

E(xj)

2

.

(B.6)

Since E(χj) = 0, many of the terms in (B.6) are zero. In fact, any term in that is not of the

form χ2
j or E(χj)E(χk) is zero. After this observation we see using the independence of each
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random variable that the variance V(Rx) is

E

 ∞∑
i=1

k∑
j=1

χ2
j1i≤N

+

 ∞∑
i=1

k∑
j=1

Exj1i≤N

 ∞∑
i′=1

k∑
j′=1

Exj′1i′≤N ′

− E(N)2

 k∑
j=1

E(xj)

2

= V(xj)E(N) + E(N2)

 k∑
j=1

E(xj)

2

− E(N)2

 k∑
j=1

E(xj)

2

= V(xj)E(N) + V(N)

 k∑
j=1

E(xj)

2

. (B.7)

This completes the proof. �
This provides estimates of the mean and the variance of the number of times that the

RUS circuits have to be applied in order to achieve the desired rotation. It is easy to go from

these results to find estimates for the number of T gates needed to implement either PAR or

GB. We focus on the number of T gates required because of their importance in fault tolerant

quantum computing wherein T gates are often considered to be the most costly operations

because they can require several rounds of magic state distillation.

Corollary B.1 Let T1, . . . , Tk be the probability distributions that describe the number of T

gates needed to implement the unitaries φ1, . . . , φk, TPAR(φ1,...,φk) be the cost of the PAR

circuit (acting on |0〉) and TGB(φ1,...,φk) be the number of T gates needed to implement the

gearbox circuit then

E(TPAR(φ1,...,φk)) =
4(k − 1) +

∑k
j=1 E(Tj)

P
, (B.8)

V(TPAR(φ1,...,φk)) =
(4(k − 1) +

∑k
j=1 E(Tj))

2(1− P )

P 2
+

∑k
j=1 V(Tj)

P
, (B.9)

where P =
∏k
j=1 cos(φj)

2 +
∏k
j=1 sin(φj)

2. Similarly,

E(TGB(φ1,...,φk)) =
4(k − 1) + 2

∑k
j=1 E(Tj)

P
, (B.10)

V(TGB(φ1,...,φk)) =
(4(k − 1) + 2

∑k
j=1 E(Tj))

2(1− P )

P 2
+

2
∑k
j=1 V(Tj)

P
, (B.11)

where Q =
∏k
j=1 cos(φj)

4 +
∏k
j=1 sin(φj)

4.

Proof. Let us first begin with PAR. There are two sources of T gates in PAR: T gates from

the k-controlled X gate and T gates from implementing the k rotations:

E(TPAR(φ1,...,φk)) = 4(k−1)E(N)+E

 N∑
i=1

k∑
j=1

Tj

 =

4(k − 1) +

k∑
j=1

E(Tj)

E(N), (B.12)

here we assumed that the Toffoli gate construction of [26] is used to implement the k-controlled

X gate. N obeys a geometric distribution with p = P , which means that E(N) = 1/P . Hence,
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we find by substituting xj → Tj in Lemma B.1 that

E(TPAR(φ1,...,φk)) =
4(k − 1) +

∑k
j=1 E(Tj)

P
. (B.13)

Similarly, since the variance of the geometric distribution is (1− P )/P 2,

V(TPAR(φ1,...,φk)) = V

 N∑
i=1

k∑
j=1

Tj + 4(k − 1)


=

(4(k − 1) +
∑k
j=1 E(Tj))

2(1− P )

P 2
+

∑k
j=1 V(Tj)

P
. (B.14)

The analogous formulas for GB can be found by noting that the main difference between

the T count of GB and PAR is that each φj is repeated twice in GB, which leads to the costs

claimed above. �

Appendix C. Non-RUS gearbox circuits

GB can be converted into a non-deterministic circuit that requires no online rotations as

given below. Such circuits are particularly important in cases where qubits are inexpensive

and the architecture allows any parallel operations to be performed simultaneously. This

circuit may be preferable to PAR(φ1, φ1) for approximately squaring input rotations because

the circuit requires only online Clifford operations, which are typically inexpensive in fault

tolerant implementations. Such circuits also provide a lower T -depth method for implementing

GB◦k(x) than that used in Appendix E or [17] because the gearbox circuit is insensitive to

the sign of the input rotation angle and also because most of the required operations act upon

|0〉. The latter case is significant because under-rotations can be corrected by applying a Z

gate if required.

Lemma C.1 There exists a non-deterministic version of the gearbox circuit GB(φ1) wherein

all of the rotations can be performed offline that has success probability 1
2 (cos4(φ1)+sin4(φ1))

and upon failure either performs ei arctan(tan
2(φ1)X) or applies a Clifford operation.

Proof. The circuit is

e−iXφ1 |0〉 • H

e−iXφ1 |0〉 •

|ψ〉 −iX

(C.1)

We have from Theorem 2 that the operations affecting the topmost qubit simply act to teleport

the rotation to the middle qubit upon success. In this case, we want the rotation direction to

flip which happens with probability 1/2 for PAR(φ1). If this operation is successful then the

operations on the bottom two qubits are equivalent to those in GB(φ1), which succeeds with

probability (cos4(φ1)+sin4(φ1)) [17]. The claim regarding the overall success probability then

follows from noting that the measurement success probabilities are independent and hence

the total success probability is the product of the two probabilities.
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If the first measurement yield “1” then the circuit will deviate from the original gearbox

circuit. This results in the following effective transformation for the bottom two qubits.

e−iφ1X |ψ〉 7→ cos2(φ1) |0〉 |ψ〉 − sin2(φ1) |0〉 (−iX) |ψ〉 − i cos(φ1) sin(φ1)(|1〉 |ψ〉+ |1〉 (−iX) |ψ〉).
(C.2)

If the middle qubit is measured to be 0 then ei arctan(tan
2(φ1))X is applied on the bottom most

qubit, which is a rotation in the opposite direction from what is intended. Alternatively if

the middle qubit is measured to be 1 then a Clifford operation, e−iπX/4, is applied to |ψ〉. �

The possibility of failure can also be removed from these circuits if the user has access to

φ1 as well as {φj : j = 2, . . .∞} wherein

φj+1 = arctan

(√
tan(2 arctan(tan2(φj)))

)
. (C.3)

This is because GB(φj+1) = 2GB(φj) and thus, similar to [26], if the direction of the rotation

is opposite to that initially intended then GB(φj), for any j ≥ 2, will correct the sum of all

failures due to prior attempts:

GB(φj)−
j−1∑
j=1

GB(φ2) = φ1. (C.4)

Obviously, the cost of preparing such states using reversible logic or RUS synthesis may be

quite high so we do not advocate this approach in general. However, it is interesting to note

that many of the costs of RUS synthesis can be reduced if we were to posit the existence of

a more complex resource state factory.

Appendix D. Caching strategies

One of the drawbacks of the approaches we outline above is that arithmetic elements de-

signed using the previous methods do not necessarily compose nicely. For example, if function

f1 requires N1 rotations to implement and f2 requires N2 rotations then f1 ◦f2 requires N1N2

rotations. It may be in principle natural to unravel the recursion and approximate the result-

ing function using RUS arithmetic, but in practice methods such as Newton’s method or the

Binomial method that explicitly use recursion and avoiding an exponential slowdown at the

price of increased circuit width may be desirable in such cases. Such exponential slowdowns

can be avoided by using phase estimation to “cache” the result of the f2(x) in a register before

using that result in f1(x). These results are also valuable for cases where is is useful to output

the result of the RUS arithmetic as a qubit string.

Lemma D.1 Let f1 be a differentiable function that requires N1 rotations to implement and

satisfies |∂φf1(φ)| ≤ κ and let f2 be a piecewise continuous function that requires N2 rotations

to implement. Then e−i(f1(f2(φ))X) can be implemented within error ε with probability at least

1− δ using

dlog2(κ/ε)e+ dlog2(2 + 1/(2δ))e

additional qubits and

O

(
N2κ

εδ
+N1

)
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additional single qubit rotations.

Proof. In order to ensure that the total error is at most ε for the computation of f1(f2(φ))

it suffices to guarantee that f2(φ) is computed within error ε because Taylor’s remainder

theorem implies that

|f1(f2(φ))− f1(f2(φ) + ε/κ)| ≤ ε

κ
max
x
|f ′(x)| ≤ ε, (D.1)

by assumption.

Instead of viewing f2 as faulty, imagine instead that f2 is given by a qubit string that

stores the result of approximating its value using phase estimation. Given a unitary that

enacts e−if2(φ)X using N1 fundamental rotations, it then follows that the following unitary

can be implemented using N1 rotations

He−if2(φ)XH |0〉 = e−if2(φ) |0〉 . (D.2)

Thus phase estimation can be used to estimate f2(φ) within error ε/κ using t qubits and

success probability 1− δ where t is [25]

t = dlog2(κ/ε)e+ dlog2(2 + 1/(2δ))e. (D.3)

Phase estimation requires 2t applications of e−if2(φ)X in order to learn the state within the

required tolerances. This means that the cost of preparing |f2(φ)〉 is given by (D.3) to be

O(N2κ/(εδ)). Now if we cost performing e−if2(φ)X using this state as a single rotation then

the cost of performing e−if1(f2(φ))X is N1. The lemma then follows by summing both terms.

�
Lemma D.1 shows that caching can reduce the cost of using RUS arithmetic to approximate

recursive functions from exponential to linear at the price of additional costs incurred by

using phase estimation. Such tradeoffs are asymptotically beneficial when εδ
κ ∈ o(N1). Since

recursion can be quite expensive in terms of either time or space it may often be of practical

interest to find alternatives to these approaches, such as that given below.

Appendix E. Square wave synthesis

An alternative approach to the method described above is to synthesize functions using

the square wave property of the GB function. The idea behind our approach builds upon

existing classical results that use exact square waves to approximate a function [42]. Assume

a function f(x) is provided and that the objective is to approximate it on a uniform mesh of

points on [xmin, xmax] and define {xi : i = 1, . . . , N} to be the midpoints of each segment of

the mesh. An approximation to the function of the form

f(x) ≈
N∑
j=1

ajSj(x), (E.1)

is then sought where each Sj(x) is a square wave with period Tj . We achieve this by demanding

that the approximant equals f(x) at each midpoint xi

f(xi) =

N∑
j=1

ajSj(xi). (E.2)
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Fig. E.1. Plot of the relative error in square wave synthesis of 1/(1− y) for k = 8 and N = 71 for
values of y corresponding to a ∈ [1, 1024].

The values of aj are then found by solving the resultant system of equations. The error in

this piecewise approximation is therefore at most∣∣∣∣∣∣f(x)−
N∑
j=1

ajSj(x)

∣∣∣∣∣∣ ≤ max
x
|f ′(x)|(xmax − xmin)/(2N). (E.3)

Now let us consider a quantization of this problem. Assume that we have a qubit string,

|x〉, that encodes the number x and we want to implement

|x〉 |0〉 7→ |x〉 e−if(x)X |0〉 . (E.4)

As an intermediate step, note that if |x〉 is given then |x〉 e−iaxX |0〉 can be implemented for

any fixed a ∈ R using traditional circuit synthesis methods and rescaling the rotations used

in implementing the rotations that are conditioned on the value of x. For example, if x is

represented using three qubits then |x〉 e−iaxX |0〉 can be implemented as

|x1〉 •
|x2〉 •
|x3〉 •

e−iaX e−i2aX e−i4aX

This observation will be useful because it shows that we can rescale inputs by a constant

factor without using RUS arithmetic.

There are a few slight complications that arise when using GB to approximate the square

waves that appear in the synthesis method. Firstly, instead of square waves we use

4

π
(GB◦k(xπ + π/4)− π/4) ≈ S(x), (E.5)
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Fig. E.2. GB◦k(x) for k = 1, 2, and 3. The functions approach a square wave as k →∞.

where S is the square wave function with period 1, and replace each term in (E.1) with

GB

(
arctan

(√
tan (2aj)

)
,GB◦k(xπ/Tj + π/4)

)
− aj , (E.6)

for aj ≤ π/8. This can be verified by observing that when GB◦k(xπ + π/4) evaluates to π/2

the function evaluates to aj as required. Larger values of aj can also be straight forwardly

implemented by summing several gearbox circuits that use smaller aj .

The approximation procedure then works as follows. We first linearize the expressions and

find aj such that for each midpoint xi,

f(xi) =

N∑
j=1

aj

(
4

π
(GB◦k(xiπ/Tj + π/4)− π/4)

)
. (E.7)

The product of the aj with each of the square waves could be approximated using the multi-

plication circuits given previously. A much better approach is to approximate the near-linear

function of aj given in (E.8) as

f(x) ≈
N∑
j=1

GB

(
arctan

(√
tan (2aj)

)
,GB◦k(xπ/Tj + π/4)

)
− aj , (E.8)

where the periods for each square wave obey Tj = 2(xmax − xmin)j/N . The resultant circuit

does not require time slicing in order to increase the approximation accuracy, unlike the

previous methods. A formal description of the algorithm is given in Figure 20. It is worth

noting that square waves can also be generated using the analogous property of PAR, but we

favor GB in this construction because it is naturally an RUS circuit.

There are some issues that arise from this approximation. The first is results of composed

gearbox circuits do not approximate the square wave well near each discontinuity. In partic-

ular, GB◦k(x + π/4) ≈ π/4 + 2kx whereas GB◦k(x) ≈ x2
k

. Therefore we expect the square

wave to jump to its maximum value over a range of 2−k radians whereas the gearbox circuit

will be in near perfect agreement with the square wave near x = 0. This means that k ≥ 8

may be needed to appreciably reduce the errors due to non-instantaneous ramp up near π/4.
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Since the expected number of rotations for GB◦k is roughly 2k−1/2 [17] this implies that these

errors are can be reduced at linear cost.

Another issue facing square wave synthesis is that each of the approximate square waves

achieves a value of 0 near x = 0. If the function is continuous then there exists an ε neighbor-

hood about 0 such that for any finite k the approximation error is O(1), unless the function to

be approximated also obeys f(0) = 0. Similar problems can occur at the end of the approx-

imation interval. Both such issues can be addressed by padding the approximation interval

from [xmin, xmax] to [xmin −∆, xmax + ∆] for some ∆ > 0.
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