
Quantum Information and Computation, Vol. 16, No. 1&2 (2016) 0061–0086
c© Rinton Press

QUANTUM-ENHANCED SECURE DELEGATED CLASSICAL COMPUTING

VEDRAN DUNJKO

Institut fur Theoretische Physik, Universitat Innsbruck, Technikerstrase, 25, A-6020 Innsbruck, Austria

Division of Molecular Biology, Ruder Boskovic Institute, Bijenicka cesta 54, 10002 Zagreb, Croatia

THEODOROS KAPOURNIOTIS

School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, UK

ELHAM KASHEFI

School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, UK

Received February 16, 2015
Revised October 5, 2015

We present a family of quantumly-enhanced protocols to achieve unconditionally secure
delegated classical computation where the client and the server have both their classical
and quantum computing capacity limited. We prove the same task cannot be achieved

using only classical protocols. This extends the work of Anders and Browne on the
computational power of correlations to a security setting. In doing so we are able to
highlight the power of online quantum communication as we prove the same task could
not be achieved using pre-shared (offline) quantum correlations.

Keywords: Delegated Computing, Quantum Communication, Foundation of Quantum
Theory

Communicated by: R Jozsa & R de Wolf

1 Introduction

The concept of delegated quantum computing is a quantum extension of the classical task of

computing with encrypted data without decrypting them first [1]. Many quantum protocols

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] address this challenge for a futuristic quantum client-

server setting achieving a wide range of security properties. The central challenge of all these

protocols to be applicable for classical tasks (such as secure multi party computation [14, 15]

or fully homomorphic encryption [16]) is the requirement of a server with a universal quantum

computer. By restricting the task to classical computation only, we derive a family of protocols

for unconditionally secure delegation of any classical computation to a remote server that has

access to basic quantum devices, currently available in any scientific or commercial labs.

Concretely, we present how a client with access to a non-universal classical gate (e.g. parity

gate) could securely delegate the computation of a universal gate (e.g. NAND gate) to an

untrusted server with capability of manipulating a single qubit. We note that, in this work,

the security of the protocol pertains to the privacy, or confidentiality, of the protocol - we

61

62 Quantum-enhanced secure delegated classical computing

require that no information about the client’s input leaks to the servera.

The general idea behind our protocol for the secure computation of the universal NAND

gate is based on the following simple fact presented for the first time in [17] which was

further utilised for a multi-party cryptographic setting in [18], the role of contextuality in

computational speedup in [19] and the relation of entangled quantum states and multi-party

computational games in [20]. Let M0 to denote a Pauli-X measurement and M1 a Pauli-Y ,

then the three qubit measurement Ma ⊗ M b ⊗ Ma⊕b of the GHZ state (denoted in this

paper as |Ψ〉 = 1/
√
2(|001〉 − |110〉)) computes NAND(a, b) (see more details in Section 2).

We then show how instead of switching the measurements (based on the input a and b) one

can simply apply the pre-rotation operation based on a, b and a ⊕ b to the GHZ state and

then the Pauli-X measurements of all three qubits achieve the same task. This will allow

us to achieve a client-server scenario where the client effectively chooses the measurement

basis by this pre-rotation while hiding his secret input bits (a and b). The next step for

obtaining the full security property is the application of additional random Z gates to hide

the outcome computed by the server. These hiding steps lead to the necessity of quantum

communication (as we prove next) and as a result we can replace the requirement of GHZ

state with sequential rotation and one final measurement on a single qubit state as well. In

other words if we denote the π/2 rotation along the Z axis by S then we prove that the local

operators of the form

S†a⊕b

SbSa|+〉

encode the input of the client in the resource state, |+〉, while permitting the server to perform

the other operations required to compute the NAND gate. In this paper, for any unitary U

and bit x, with Ux we denote the identity 1 (for x = 0) and U (for x = 1). Since all the

information of the client is encoded in the phase of the states, additional randomly chosen Z

gates achieve a full one-time pad of the client’s information, which can easily be decoded by

the client by a bit-flip (for details see Protocols 1 - 4). Here we present specific protocols

based on various manipulations of the single qubit |+〉 and three qubits entangled GHZ state,

however one could easily adapt these protocols to cover various encodings necessary for the

specific noise model or available resources within a particular implementation platform as we

have recently done for an experimental demonstration of our protocol in an optical setting

[21].

The actual setting of our protocols (a restricted client with XOR gate only), on its own,

is not a realistic set-up. The potential advantage of the employment of such quantum scheme

in a classical secure multi-party protocol for reducing the overall overhead should be explored

elsewhere. However one could think of our protocols as a game scenario that exhibits the

power of quantum communication. It is straightforward to prove that purely classical players

(i.e. a classical protocol with classical client and server) could not win deterministically the

game of computing securely the NAND of encoded input bits (Theorem 1). The proof is

based on a reduction to the impossibility of computing a non-linear function (e.g NAND) with

a linear function (e.g Parity) given a generic advice stringb. On the other hand to prove that

aStronger notions of security would also require the verifiability of such a computation, that is, a mechanism
which provides a means for the client to check that the output of the computation is correct. In this work,
we do not require verifiability.
bBy a generic advice string we mean any string which does not depend on the input bits.

V. Dunjko, T. Kapourniotis, and E. Kashefi 63

having pre-shared quantum correlation or equivalently using offline quantum communication

(quantum states independent of classical inputs) will also not lead to a winning strategy, a

completely different proof technique had to to be developed (Theorem 2 and 3). Through a

series of lemmas we show any quantum offline protocol for secure delegated NAND computing

could be reduced to a simple protocol with one round only, where the classical communication

will be necessarily dependent on the client’s secret inputs. Then the correctness criteria for a

deterministic secure NAND computation is proven to be equivalent to perfect discrimination

of the classical encoded messages and hence the leakage of client’s secret, see Lemma 7. To

the best of our knowledge this is the first time that a security game manifests the structural

difference between static pre-shared correlation versus a dynamic quantum communication.c

2 Secure NAND Protocols

There are three types of protocols that we introduce here, to address various implementation

scenarios. These families achieve the same goal and differ only in the required quantum

gadgets of the client. Following the construction steps explained in the introduction, in the

first family of the protocols, it is assumed that client can create or have secure access to some

simple (few qubits) entangled states. On the other hand, in the second family it is assumed

that the client is able to measure the flying qubit that it receives through an untrusted channel

to perform its desired universal computation. In the third setting, the client needs only to

have the capacity to perform simple single qubit rotations. Importantly, in all three scenarios

the classical computation of the client is restricted to XOR operations.

For all of our SecureNAND protocols will always assume that the client is honest, and

behaves as specified by the protocols. In our setting, the server is the untrusted party.

However, we will require and that the protocols are correct - yield correct outputs in the

case of an honest server. This property corresponds to completeness in the terminology of

interactive proof systems, whereas we do not require soundness (verifiability, in the context

of delegated computing).

Aside from correctness, regarding the guarantees for the honest client, we require the

protocols are secure, specifically that they reveal no information about the client’s input

(aside from the input’s size) to the server. This property, also known as blindness, is defined

formally as follows.

Definition 1. We will say that any SecureNAND protocol is secure (also referred to as blind)

if the quantum states sent during the execution of the protocol from the client to the server,

once averaged over the client’s internal secret parameters, do not depend on the secret input

bits to the client i.e. the inputs to the NAND gate which is to be computed in a secure delegated

fashion. In other words, the averaged states sent by the client are the same for any choice of

the inputs.

In other words, the system the server receives from the client could have been generated

by the server without receiving any information from the client.

cWhile obviously quantum communication could be achieved using shared entanglement and classical com-
munication, however the restricted client in our set up could not employ teleportation. This is in fact chosen
so that to highlight the differences.

64 Quantum-enhanced secure delegated classical computing

We first prove that it is impossible to achieve the similar task of secure delegated computing

of our protocols by removing the quantum requirement.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can

delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no

initial shared randomness. Any such protocol will have the following three stages: client’s

encoding, server’s computation, and client’s decoding.

client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
−→x),

where a, b are the input bits, −→x is a random bit string (of any length) and C1 is a computation

which can be implemented using only XOR gates. However, the state C1(a, b,
−→x) must be

independent from a and b to maintain blindness when averaged over all −→x .

server’s computation. The only thing the server can do is to apply some computable function

S on C1(a, b,
−→x), thus returning S(C1(a, b,

−→x)).

client’s decoding. The only thing the client can do is to run some function C2, on all the data

he has, which is implementable using XOR gates only:

C2(a, b,
−→x , S(C1(a, b,

−→x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a
′, b′,

−→
x′) be some constant the client may send to the server. Then, because

of blindness it must hold that for all a, b there must exist −→x (a, b), which depends on a, b such

that

C1(a, b,
−→x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a′′ and b′′, then upon

receiving c the server learns something about the input, namely that it is not a′′, b′′, which

violates blindness. Note also that since all the computations the client can perform use only

XOR gates (and without the loss of generality, reversible), the client can compute −→x (a, b)

given a, b using only XOR operations. But then, by the correctness of the protocol we have

that

C2(a, b,
−→x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute

the NAND of any input using just XOR gates, which is not possible.

This argument can be further generalized to a setting with shared randomness and many

rounds of communication. It is easy to see that the randomness cannot help as the protocol

must be deterministic (hence work for any sampling of the joint random variable), whereas

using multiple rounds (all of which must be independent of the input, from the viewpoint of

the server) just yields a longer constant string (analogous to S(c)) using which the client can

compute the NAND on her own, which is again impossible �.

We proceed now with constructing the family of quantum protocols for the same task.

While the simplest protocol is demonstrated last, we present the sequence of adapting the

V. Dunjko, T. Kapourniotis, and E. Kashefi 65

GHZ game as shown in [17] to a security scenario to present a simple security and correctness

proof. Then with each new family we reduce the client’s requirement while maintaining the

same properties.

2.1 Preparing client

Protocol 1 Entangled-based Preparing client SecureNAND

• Input (to client): two bits a, b

• Output (from client): ¬(a ∧ b)

• The Protocol:

– client’s round

1. r ∈R {0, 1}
2. client generates

|Ψ′〉 = Zr
1

(

S†
1

)a(

S†
2

)b(

S†
3

)a⊕b

|Ψ〉

and sends it to the server.

– server’s round

1. server measures the qubits 1,2 and 3, with respect to the observables X1, X2,
and X3, obtaining outcomes b1, b2 and b3, respectively.

2. server sends b1, b2, b3 to client

– client’s round

1. client computes

out = b1 ⊕ b2 ⊕ b3 ⊕ r (1)

2. client outputs out.

In Protocol 1 the client generates a GHZ state of 3 qubits which are rotated depending on

the values of the inputs a, b, a⊕ b and a random bit r. Qubits are sent through an untrusted

quantum channel from client to server who applies a Pauli-X measurement on the qubits and

sends the classical result to the client via an untrusted classical channel. The client produces

the final output by applying classical XOR gates between the received classical bits and the

random bit. In what follows we denote a random selection of an element of a set by ∈R.

We will say any SecureNAND protocol is correct if for every run of the protocol where

both players are honest (adhere to the protocol) and for all inputs a, b we have

out = ¬(a ∧ b) = 1⊕ (ab)

This definition will be used for all the presented protocols in this paper. Throughout this

paper we will be using the notation for the logical and between two bits a, b as a ∧ b and ab

interchangeably.

66 Quantum-enhanced secure delegated classical computing

Lemma 2. Protocol 1 is correct.

Proof. First note that the protocol is correct if the following eigenstate equality is true

for all binary variables a, b, r

X1X2X3|Ψ′〉 = (−1)1⊕ab⊕r|Ψ′〉 (2)

as this equality guarantees that the parity of the outcomes of stabiliser measurements of server

(in basis X1X2X3) equals 1⊕ ab⊕ r which implies client will decode the correct outcome in

Equation 1 of Protocol 1. For simplicity define the following notion for Pauli observable

P i =
{

X if i=0
Y if i=1

we then have the following commutation relations ∀ b, r ∈ {0, 1}

P bZr = (−1)rZrP b

P bSr = (−1)(b⊕1)rSrP b⊕r

P b
(
S†

)r
= (−1)br

(
S†

)r
P b⊕r

and in particular

X
(
S†

)r
=

(
S†

)r
P r

and hence as stated in [22] we obtain that ∀ a, b ∈ {0, 1}

P a
1 P

b
2P

a⊕b
3 |Ψ〉 = (−1)(1⊕ab)|Ψ〉

We proceed to show that Equation (2) holds:

X1X2X3|Ψ′〉 = X1X2X3Z
r
1

(

S†
1

)a(

S†
2

)b(

S†
3

)a⊕b

|Ψ〉

=
[

X1Z
r
1

(

S†
1

)a]

1

[

X2

(

S†
2

)b
]

2

[

X3

(

S†
3

)a⊕b
]

3

|Ψ〉

= (−1)r
[

Zr
1

(

S†
1

)a

P a
1

]

1

[(

S†
2

)b

P b
2

]

2

[(

S†
3

)a⊕b

P a⊕b
3

]

3

|Ψ〉

= (−1)rZr
1

(

S†
1

)a(

S†
2

)b(

S†
3

)a⊕b

P a
1 P

b
2P

a⊕b
3 |Ψ〉

= (−1)1⊕ab⊕rZr
1

(

S†
1

)a(

S†
2

)b(

S†
3

)a⊕b

|Ψ〉 = (−1)1⊕ab⊕r|Ψ′〉

In the derivation above we have simply used the trivial commutativity of operators acting on

disjoint subsystems. So the Lemma holds �.

Next, we prove the blindness of this protocol.

In the remainder of this paper we will use the following short-hand notation:

X := |X〉〈X|

for all labels X. This is a non-standard notation used here for the sake of brevity.

V. Dunjko, T. Kapourniotis, and E. Kashefi 67

Lemma 3. Protocol 1 is blind.

Proof. For fixed input bits a and b the state the server receives from the client can be

written as

ρS =
∑

r

1

2
Zr
1ηZ

r
1 (3)

where

η =
(

S†
1

)a(

S†
2

)b(

S†
3

)a⊕b

|Ψ〉〈Ψ|(S1)
a
(S2)

b
(S3)

a⊕b

Note that η can be written as S|Ψ〉〈Ψ|S†, where

S =
(

S†
1

)a(

S†
2

)b(

S†
3

)a⊕b

The operator S does not depend on the ri variables, and is diagonal in the computational

basis so it commutes with Pauli Z operators and hence we have

ρS = S

(
∑

r

1

2
Zr
1 |Ψ〉〈Ψ|Zr

1

)

S†

The operator
∑

r

1

2
Zr
1 |Ψ〉〈Ψ|Zr

1 can explicitly be written as

1

2

(
1

2
(|001〉〈001|+ |110〉〈110| − |001〉〈110| − |110〉〈001|)+

1

2
(|001〉〈001|+ |110〉〈110|+ |001〉〈110|+ |110〉〈001|)

)

which in our notation is equal to
1

2

(

001 + 110
)

. Hence the operator is diagonal in the

computational basis, and again commutes with S so we get:

ρs =

(
∑

r

1

2
Zr
1 |Ψ〉〈Ψ|Zr

1

)

SS† =
1

2

(

001 + 110
)

This state is independent from a and b and the lemma is proved �.

2.2 Measuring client

In Protocol 2 server generates a GHZ state of 3 qubits. The qubits are sent through an

untrusted quantum channel from the server to the client. The client applies a Pauli-X or

Pauli-Y measurement on the qubits depending on the classical inputs a and b and their

classical XOR and produces the final output by applying classical XOR gates between the

measurement outputs.

Lemma 4. Protocol 2 is blind and correct.

Proof. The correctness of this protocol follows directly from the result in [22]. The

blindness of the protocol trivially follows from the fact that no information is sent from the

client to the server, thus the protocol is blind in all no signaling theories (including standard

Quantum Mechanics) �.

68 Quantum-enhanced secure delegated classical computing

Protocol 2 Entangled-based Measuring client SecureNAND

• Input (to client): two bits a, b

• Output (from client): ¬(a ∧ b)

• The Protocol:

– server’s round

1. The server prepares the state |Ψ〉 and sends it to the client

– client’s round

1. The client computes c = a⊕ b, measures the qubits 1,2 and 3, with respect to
the observables P a, P b, and P c, obtaining outcomes b1, b2 and b3, respectively.

2. client computes

out = b1 ⊕ b2 ⊕ b3 (4)

3. client outputs out.

2.3 Bounce Protocol

In Protocol 3 we reduce the requirements on the client side, which no longer has to measure

or prepare states, but rather only modify locally the GHZ state of 3 qubits prepared by the

server. The client applies single-qubit quantum operators depending on the values of the

inputs a, b, a ⊕ b and 3 classical random bits. The client sends the rotated qubits to the

server via an untrusted quantum channel. The server applies a Pauli-X measurement on the

qubits and sends the classical result to the client via an untrusted classical channel. The client

produces the final output by applying classical XOR gates between the received classical bits

and the random bits.

Lemma 5. Protocol 3 is correct.

Proof. The correctness is directly obtained from Lemma 2 on the correctness of Protocol

1. To see this note that the states the server performs the measurements on are identical in

the two protocols, up to the existence of possible Zr2
2 and Zr3

3 rotations on the second and

third qubit. Since we have

XZr = (−1)rZrX, and
Y Zr = (−1)rZrY,

these rotations cause an additional (multiplicative) phase of (−1)r2⊕r3 . But this is compen-

sated for in the modified decoding of the client (see Equation 5 in Protocol 3) so the output

is correct in this protocol as well �.

Lemma 6. Protocol 3 is blind.

V. Dunjko, T. Kapourniotis, and E. Kashefi 69

Protocol 3 Entangled-based Bounce SecureNAND

• Input (to client): two bits a, b

• Output (from client): ¬(a ∧ b)

• The Protocol:

– server’s round

1. The server prepares the state |Ψ〉 and sends it to the client

– client’s round

1. client receives the state |Ψ〉 from the server.
2. client generates r1, r2, r3 ∈R {0, 1}
3. client modifies the state |Ψ〉 to |Ψ′〉 as follows

|Ψ′〉 = Zr1
1 Zr2

2 Zr3
3

(

S†
1

)a(

S†
2

)b(

S†
3

)a⊕b

|Ψ〉

and sends it to the server.

– server’s round

1. server measures the qubits 1,2 and 3, with respect to the observables X1, X2,
and X3, obtaining outcomes b1, b2 and b3, respectively.

2. server sends b1, b2, b3 to client

– client’s round

1. client computes

out = b1 ⊕ b2 ⊕ b3 ⊕ r1 ⊕ r2 ⊕ r3. (5)

2. client outputs out.

70 Quantum-enhanced secure delegated classical computing

Proof. For fixed input a and b the final state server obtains in the protocol can be

written as

ρfinS =
∑

r1,r2,r3

1

8
(Zr1

1 Zr2
2 Zr3

3 ⊗ 1S) η (Z
r1
1 Zr2

3 Zr3
3 ⊗ 1S)

with

η =

((

S†
1

)a(

S†
2

)b(

S†
3

)a⊕b

⊗ 1S

)

ρinitS

(

(S1)
a
(S2)

b
(S3)

a⊕b ⊗ 1S

)

where ρinitS is any state the malevolent server could have initially prepared. In the expression

above, we have made no assumptions on the dimensionality of the initial state the server may

have prepared, and we only assume that the local operations of the client are correct, single

qubit operations, acting on three distinct qubits.

Note further that the actions of the client are only on a subsystem of the whole system

in the state ρinitS , signifying that the server might have prepared an entangled state, and sent

only a subsystem to the client to be modified, while keeping the remainder of the system. To

simplify the state we could commute the Z operators with the phase S† operators since the

parameters of the phase operators do not depend on ri values. Introducing the shorthand

S =

((

S†
1

)a(

S†
2

)b(

S†
3

)a⊕b

⊗ 1S

)

we can rewrite the state of the server’s system as

ρfinS = (S⊗ 1S)
∑

r1,r2,r3

1

8
(Zr1

1 Zr2
2 Zr3

3 ⊗ 1S) ρ
init
S (Zr1

1 Zr2
3 Zr3

3 ⊗ 1S)
(
S† ⊗ 1S

)

The state ρinitS has two partitions - the partition corresponding to the subsystem the server

sends to the client, and the subsystem he keeps. Thus ρinitS can be written (in the Pauli

operator basis) as
∑

i,j αi,j σi
︸︷︷︸

C

⊗ σj
︸︷︷︸

S′

where C denotes the subsystem sent to the client, and S′ the subsystem kept by the server,

and σi and σj denote general Pauli operators acting on the two respective subsystems. Next,

we have the following derivation:

∑

r1,r2,r3

1

8
(Zr1

1 Zr2
2 Zr3

3 ⊗ 1S) ρ
init
S (Zr1

1 Zr2
3 Zr3

3 ⊗ 1S)

=
∑

r1,r2,r3

1

8
(Zr1

1 Zr2
2 Zr3

3 ⊗ 1S)
∑

i,j αi,j σi
︸︷︷︸

C

⊗ σj
︸︷︷︸

S′

(Zr1
1 Zr2

3 Zr3
3 ⊗ 1S)

=
1

8

∑

i,j αi,j

(
∑

r1,r2,r3
Zr1
1 Zr2

2 Zr3
3 σiZ

r1
1 Zr2

3 Zr3
3

)

⊗ σj

Note that since both X and Y anticommute with Z, the expression

∑

r1,r2,r3

Zr1
1 Zr2

2 Zr3
3 σiZ

r1
1 Zr2

3 Zr3
3

V. Dunjko, T. Kapourniotis, and E. Kashefi 71

is non-zero only if all the single qubit operators making up σi are either Z or identity, and

in both cases diagonal in the computational basis. Thus, we can write the final expression of

the derivation above as
∑

i,j α
′
i,jσ

′
i ⊗ σj

where σ′
i is diagonal in the computational basis. So, overall, for the state of the server’s

system we have

(S⊗ 1S)
∑

r1,r2,r3

1

8
(Zr1

1 Zr2
2 Zr3

3 ⊗ 1S) ρ
init
S (Zr1

1 Zr2
3 Zr3

3 ⊗ 1S)
(
S† ⊗ 1S

)

= (S⊗ 1S)
∑

i,j α
′
i,jσ

′
i ⊗ σj

(
S† ⊗ 1S

)

=
∑

i,j α
′
i,j (S⊗ 1S)σ

′
i ⊗ σj

(
S† ⊗ 1S

)

and since σ′
i commute with S we get:

∑

i,j α
′
i,jσ

′
iSS

† ⊗ σj =
∑

i,j α
′
i,jσ

′
i ⊗ σj

Since α′
i,j is independent from a and b, this state is independent from a and b and the lemma

is proved �.

2.4 Single Qubit Protocols

Here, we give variants of a new class of secure NAND protocols which only require single

qubit manipulations. Similarly to the variants we have given for the GHZ-based protocols,

the single qubit protocol can also be modified to a client preparation or a measuring client

protocol. In the former, it is the client which would prepare the initial |+〉 state, whereas

in the measuring client protocol, the client would perform the final measurements. Similar

to the entangled-based scenario, all variations of protocols are blind and correct as a simple

consequence of the Single Qubit Bounce SecureNAND protocol (that we describe next).

In Protocol 4, the server generates a single qubit state (|+〉) and sends it via an untrusted

quantum channel to the client who applies a series of single qubit rotation operator depending

on the values of the inputs a, b, a⊕b, and a classical random bit. The client sends the rotated

qubit to the server via untrusted quantum channel. Sever applies a Pauli-X measurement

on the qubit and sends the classical result to the client via an untrusted classical channel.

The client produces the final output by applying classical XOR gates between the received

classical bit and the random bit and constant bit 1. The correctness and blindness are directly

obtained from the proof for the entangled-based protocols. To see the correctness note that

if the server was honest, it is a straightforward calculation to see the state of the qubit the

server receives is

ZrZa∧b|+〉
Then the result of the measurement performed by the server is s = r⊕a∧b, and the decoding

produces out = 1⊕ a∧ b as required. To see the security, note that the most general strategy

of the server is to prepare a bipartite state π1,2 and send the first subsystem to the client.

Then the state of the server system (up to a normalisation factor), once the client performed

his round is

∑

r

(
ZrZa∧b ⊗ 12

)
π1,2

(
ZrZa∧b ⊗ 12

)
=

∑

r′

(

Zr′ ⊗ 12

)

π1,2

(

Zr′ ⊗ 12

)

72 Quantum-enhanced secure delegated classical computing

Protocol 4 Single Qubit Bounce SecureNAND

• Input (to client): two bits a, b

• Output (from client): ¬(a ∧ b)

• The Protocol:

– server’s round

1. The server prepares the state |+〉 and sends it to the client

– client’s round

1. client receives the state |+〉 from the server.
2. client generates r ∈R {0, 1}
3. client modifies the state |+〉 to |Ψ〉 as follows

|Ψ〉 = ZrSaSb
(
S†

)a⊕b|+〉

and sends it to the server.

– server’s round

1. The server measures the qubit with respect to the X basis, obtaining the
outcome s

2. server sends s to client

– client’s round

1. client computes

out = s⊕ r ⊕ 1 (6)

2. client outputs out.

where r′ = r ⊕ a ∧ b. Since r is distributed uniformly at random, so is r′ so the state above

does not depend on a or b.

3 No-go Result

The main contribution of our paper is to prove the optimality of the quantum protocols of the

last section. We prove that it is impossible to achieve the similar task of the secure delegated

NAND computing if one attempts to remove any quantum communication. Next we show

that the communicated quantum states must also depend on the classical input of the client

as it is done in our protocols. More precisely, we will show that any quantum protocol where

a XOR-restricted client computes NAND(a, b), by initially sending a quantum state ρ to

the server, followed by classical communication only, can be perfectly blind and perfectly

correct only if the state ρ depends on the input bits a, b of the client. The protocols without

this dependence, so where all the quantum communication can be done independently from

the input of the client (hence can be done before the client decides on her input bits), we

call quantum off-line protocols. Thus, we show that a blind quantum-offline protocol with a

V. Dunjko, T. Kapourniotis, and E. Kashefi 73

XOR-restricted client is not possible d. We begin by addressing protocols with two rounds of

communication between the client and the server. By round we refer to an instance of either

the client sending a message to the server, or the server sending a message to the client. Since

the last message, for it to have any meaning, must come from the server, the order of the two

rounds is client → server, followed by server → client. The generic description of a potential

secure NAND quantum offline protocol with two rounds is given later in Protocol 7. In order

to prove the impossibility of obtaining such a protocol we prove several lemmas proving first

the impossibility of a particular class of somehow ‘minimal’ NAND quantum offline protocols

(see Protocol 5 and 6 below). Following this, we present the reduction between these protocols

i.e. if a generic protocol of type Protocol 7 is possible then so is the minimal protocol, hence

proving the impossibility of obtaining any offline quantum protocol. Finally we extend our

argument to the multi-rounds scenario.

These types of protocols are intimately linked to the composability of secure NAND com-

putations in a larger computation e. Note that since, for the second layer of any computation,

the client does not know the inputs in advance (since she cannot compute them herself) but

knows the encryption of the outputs in advance, thus, quantum offline protocols are neces-

sary and probably sufficient for the composition of NANDs in a larger computation, without

requiring additional run-timethe multi-round scenarios communication. The case where run-

time communication is allowed will be studied presently. Note also that it does not matter

what function, which in tandem with XOR and NOT gates forms a universal set, we use.

For simplicity, here we focus on AND. To shorten our expressions, in this section we will be

predominantly use ab to denote a ∧ b the logical AND operator of two bits a and b.

The simple quantum offline secure AND computation with two rounds of communica-

tion (Simple AND QO2, Protocol 5) is the most natural first attempt, which is inspired by

information-theoretic considerations - since the client’s input is two bits a and b, hence the

quantum state encodes two bits of x and y. Therefore to hide the two bits in the quantum

state, additional randomness of two bits r1 and r2 is needed.

Recall that the correctness of these protocols are defined by requesting out = ab, and

blindness is defined by the equation
∑

x
m(a, b) ⊗ ρx = η ∀a, b,

where a, b are the input bits, m(a, b) the classical message which may depend on the input,

ρx a quantum state which depends on some random parameters x (but may also depend on

a, b), and η is a positive-semidefinite operator, independent from a, b. For simplicity, we are

omitting any normalisation factors, so η may be of non-unit trace.

Lemma 7. No Simple SecureAND QO2 can be correct and blind.

Proof. As in any Simple SecureAND QO2 protocol the client sends two classical bits of

information to the server (here denoted a′, b′), without the loss of generality, we may assume

dNote, in contrast, that the blind quantum computing protocol in [4] is quantum-offline, as the initial qubits
the client sends are chosen uniformly at random. However, in this protocol, the computing power of the client
is beyond just XOR gates.
eWe do not explicitly address the security issues of composability of our protocols. However, note that our
obtained lower bounds on what is possible implies also that the impossibility results will also hold true in any
composable security setting.

74 Quantum-enhanced secure delegated classical computing

Protocol 5 Simple SecureAND QO2

The functionality of the Small AND protocol:

• Input (to the client): two bits a, b

• Output (from the client): (a ∧ b)

• The Protocol:

– client’s round

1. client generates a quantum state ρx,yr1,r2
, characterized by random bits x, y, r1, r2

and sends it to the server.

2. client receives her input bits a, b.

3. client computes mc = (x⊕ a, y ⊕ b) and sends it to the server.

– server’s round

1. server performs a (generalized) measurement of ρx,yr1,r2
, parametrized by mc.

He obtains the outcome ms and sends it to the client.

– client’s round

1. client computes out = ms ⊕ r1 ⊕ r2.

2. client outputs out.

that the message the server returns to the client is a single bit measurement outcome of one of

four (generalised) measurements (one for each message (a′, b′)) which we denoteMa′,b′(ρx,yr1,r2
).

The correctness of the protocol entails that

Ma′,b′(ρx,yr1,r2
) = (a′ ⊕ x)(b′ ⊕ y)⊕ r1 ⊕ r2

For clarity we briefly comment on the equation above. Since, for message (a′, b′) the server

performs a generalised two-outcome measurement, this measurement can be represented by

the POVM elements Πa′,b′

0 ,Πa′,b′

1 (which are positive operators summing to the identity),

corresponding to outcomes 0 and 1, respectively. Then the equation above means that

Tr(Πa′,b′

(a′⊕x)(b′⊕y)⊕r1⊕r2
ρx,yr1,r2

) = 1

Then, by taking r = r1 ⊕ r2 and defining ρx,yr = 1/2(ρx,y0,r + ρx,y1,1⊕r) we get, by linearity, that

Ma′,b′(ρx,yr) = (a′ ⊕ x)(b′ ⊕ y)⊕ r,

or equivalently,

Tr(Πa′,b′

(a′⊕x)(b′⊕y)⊕r
ρx,yr) = 1

and also that

Tr(Πa′,b′

(a′⊕x)(b′⊕y)⊕r
ρx,yr⊕1) = 0

The two equations above immediately entail that ρx,yr and ρx,yr⊕1 must be (mixtures of mutually)

orthogonal states, which we denote as

ρx,yr ⊥ρx,yr⊕1

V. Dunjko, T. Kapourniotis, and E. Kashefi 75

But, more generally, the equations above imply that two states ρx,yr and ρx
′,y′

r′ must be in

orthogonal subspaces, whenever any of the sub/superscripts differ. To see this, we will consider

the remaining cases separately. First, assume that r = r′, but x 6= x′ and/or y 6= y′. Then if

we set a′ = x⊕ 1 and b′ = y ⊕ 1 we see that

Ma′,b′(ρx,yr) = (a′ ⊕ x)(b′ ⊕ y)⊕ r = 1⊕ r

but

Ma′,b′(ρx
′,y′

r) = (a′ ⊕ x′)(b′ ⊕ y′)⊕ r = r

so the outcomes deterministically differ, meaning that the two states must be in orthogonal

subspaces. We have already seen that the same conclusion follows if r 6= r′, and x = x′ and

y = y′. The next case is when r 6= r′, and either x 6= x′ or y 6= y′ (but one is an equality).

Assume that x = x′, y 6= y′ and r = 0. Then if we set a′ = x = x′ we see that

Mx,b′(ρx,y0) = (x⊕ x)(b′ ⊕ y) = 0

and

Mx,b′(ρx,y
′

1) = (x⊕ x′)(b′ ⊕ y′)⊕ 1 = 1

Similarly, if r = 1 we get opposite results, and if x 6= x′ and y = y′ we get the same by setting

b′ = y = y′. Finally, we must consider the case when all the parameters differ. First, assume

r = 0, then by setting a′ = x and b′ = 1⊕ y we get

Ma′,b′(ρx,y0) = (x⊕ x)(b′ ⊕ y) = 0

Ma′,b′(ρx
′,y′

1) = (x⊕ x′)(1⊕ y ⊕ y′)⊕ 1 = 1

since y 6= y′, if r = 1 then the first equation above would yield 1, and the last would yield 0,

since 1 ⊕ y ⊕ y′ = 0. Thus we can conclude that the states {ρx,yr }x,y,r are all in orthogonal

subspaces. But this means, in particular, that the states 1/4(
∑

r1,r2
ρx,yr1,r2

) are in orthogonal

subspaces for all x, y which implies that there exists a measurement which perfectly reveals x

and y given any ρx,yr1,r2
. Thus, the server can perfectly learn x and y and, given the classical

message of the client, the inputs of the client, and the protocol is not blind �.

In the above proof we have quickly concluded that the two bits r1, r2 are superfluous and

one will suffice (which is intuitive as only one random bit is needed to one-time pad the one

bit outcome). This gives us the definition of the next general family of protocols (Small AND

QO2, Protocol 6) as we describe below and will refer to later.

Lemma 8. No small SecureAND QO2 can be correct and blind.

Proof. Obvious from the proof of impossibility of simple AND QO2, where we have

actually reduced simple to small protocols �.

3.1 Generalization: QO2

In order to prove a reduction between the general case of Protocol 7 and the simple scenario

of Protocol 6 we start with a supposedly given blind and correct QO2 protocol and iteratively

76 Quantum-enhanced secure delegated classical computing

Protocol 6 Small SecureAND QO2

The functionality of the Small AND protocol:

• Input (to the client): two bits a, b

• Output (from the client): (a ∧ b)

• The Protocol:

– client’s round

1. client generates a quantum state ρx,yr , characterized by random bits x, y, r and
sends it to the server.

2. client receives her input bits a, b.

3. client computes mc = (x⊕ a, y ⊕ b) and sends it to the server.

– server’s round

1. server performs a (generalized) measurement of ρx,yr , parametrized by mc. He
obtains the outcome ms and sends it to the client

– client’s round

1. client computes out = ms ⊕ r.

2. client outputs out.

construct a blind correct small QO2, using a sequence of claims which define increasingly

simpler protocols.

Theorem 2. If there exists a blind, correct SecureAND QO2 then there exists a blind correct

Small SecureAND QO2.

The objects which appear in the protocol (which differ from the objects in the small QO2)

are as follows:

ρx, with x = (x1, . . . , xn) − the quantum state parametrized by n bits
mc = XORE(a, b,x) − the m bit message from the client
ms, the k bit message from the server
ab = out = XORD(a, b,x,ms) − the calculation of the output

Lemma 9. Nothing is gained from using multi-bit ms.

Proof. Note that since the client is restricted to computing XOR operations, we can

dissect

XORD(a, b,x,ms)

and see that it must be of the form

XORD(a, b,x,ms) = XOR′
D(a, b,x)⊕⊕

j∈I⊆[k][ms]j ,

where [ms]j is the j
th bit of the k-bit message ms. That is, it is a mod 2 addition of something

which does not depend on the server’s message, and the mod 2 addition of some of the bits

V. Dunjko, T. Kapourniotis, and E. Kashefi 77

Protocol 7 SecureAND QO2

The functionality of the AND protocol:

• Input (to the client): two bits a, b

• Output (from the client): (a ∧ b)

• The Protocol:

– client’s round

1. client generates a quantum state ρx, characterised by a sequence of random
parameters x = (x1, . . . , xn), and sends it to the server.

2. client receives her input bits a, b (the client could have had her bits all along.
It is however the defining property of quantum-offline protocols that the pa-
rameters x are independent from a, b).

3. client computes an XOR-computable function

mc = XORE(a, b,x)

(E for encryption) of the input and the random parameters. Note that it would
be superfluous for the client to generate additional random values at this stage
- they could be part of x, without influencing the state the client generates.

4. client sends mc to the server.

– server’s round

1. server performs a (generalized) measurement of ρx, parametrized by mc. He
obtains the outcome ms and sends it to the client.

– client’s round

1. client computes an XOR-computable function

out = XORD(a, b,x,ms)

(D for decryption).

2. client outputs out.

of the message responded by the server. Since the form of the message (i.e the explicitly

description of the function XORD) is public, being in the protocol description, the protocol

remains secure and correct if the server himself computes the bit
⊕

j∈I⊆[k][ms]j , and returns

this to the client. Thus, for every correct, blind QO2 there exists a correct blind QO21 where

the server’s message comprises only one bit. The remainder of the claims assumes we are

dealing with a QO21 protocol �.

Lemma 10. No random parameters which do not appear in the encryption or decryption are

needed.

Proof. Let S ⊂ [n] be a subset of indices of the random parameters which appear in

78 Quantum-enhanced secure delegated classical computing

either encryption (as variables of XORE) or decryption (XORD), and let S′ = [n] \ S be the

subset which does not appear. Then, by exchanging the state ρx with the state

(ρ′)x
′

=
∑

xj |j∈S′

1

2|S′|
ρx

in a QO21 protocol it is easy to see we again obtain a protocol (which we refer to as QO22)

which is correct and blind. In QO22 protocols, all the random parameters appear either in

the decryption or encryption. The remainder of the claims assumes we are dealing with a

QO22 protocol �.

Lemma 11. No more than one random parameter which appears only in the decryption is

needed.

Proof. Let SD\E ⊂ [n] be the set of indices of random parameters which appear only in

the decryption, that is, as a variable of the function XORD. Without the loss of generality, we

will assume that the last k indices are such. Then XORD(a, b,x,ms) (due to the restrictions

on the client) can be written as:

XORD(a, b,x,ms) = XOR′
D(a, b,ms, x1 . . . , xn−k)⊕ xn−k+1 ⊕ · · · ⊕ xn,

Then, by exchanging the state ρx with the state

(ρ′)x1,...,xN−k,x =
∑

xj |j∈SD\E

s.t.
⊕jxj=x

1

2|SD\E |−1
ρx

in a QO22 protocol we again obtain a protocol (which we refer to as QO23) which is correct

and blind. Blindness is trivial, as the sum over all the random parameters for the state

ρx yields the same density operator as the sum over all random parameters for the state

(ρ′)x1,...,xn−k,x (and no message correlated to the summed up random parameters is sent from

the client to the server). Correctness holds as the correctness of the (original) QO22 protocol

only depended on the parity of the k random parameters, and the construction above preserves

this �.

In QO23 protocols, at most one random parameter appears in the decryption only. The

remainder of the claims assumes we are dealing with a QO23 protocol.

Lemma 12. The client’s input bits a and b do not need to appear in the decryption function.

Proof. In general the decryption function of the client (for QO23) protocols attains the

form
XORD(a, b,x,ms) = XOR′

D(a, b,ms)⊕
⊕

j∈SE∩D
xj ⊕ xn or

XORD(a, b,x,ms) = XOR′
D(a, b,ms)⊕

⊕

j∈SE∩D
xj

where SE∩D is the set of indices of random parameters which appear in both the decryption

and encryption function, and xn may appear only in the decryption function. Here, we have

assumed without the loss of generality that it is the last random parameter that (possibly)

V. Dunjko, T. Kapourniotis, and E. Kashefi 79

appears only in the decryption function. First, we show that at least one random parameter

must appear in the decryption, meaning that either xn must appear or SE∩D is non-empty

(or both). Assume this is not the case. Then we have

XORD(a, b,x,ms) = XOR′
D(a, b,ms)

and this must be equal to ab by the correctness of the protocol. But, due to the restrictions

of the client we have

XOR′
D(a, b,ms) = XOR′′

D(a, b)⊕ms = ab or
XOR′

D(a, b,ms) = XOR′′
D(a, b) = ab

The latter is not possible as no function computable using only XOR can yield the output ab,

so
XOR′

D(a, b,ms) = XOR′′
D(a, b)⊕ms = ab ⇔

ms = ab⊕XOR′′
D(a, b).

The function XOR′′
D(a, b) can only be one of six functions, which are such that either a or

b appear in the decryption:

XOR′′
D(a, b) = a; XOR′′

D(a, b) = 1⊕ a
XOR′′

D(a, b) = b; XOR′′
D(a, b) = 1⊕ b;

XOR′′
D(a, b) = a⊕ b; XOR′′

D(a, b) = 1⊕ a⊕ b.

But, for all of these functions we have that ab ⊕ XOR′′
D(a, b) is correlated to a, b, hence not

blind. For example a⊕b⊕ab = a∨b, so if the server obtainsms = 0 this means a = b = 0. Thus,

for the protocol to be blind, at least one random parameter must appear in the decryption.

Let j be the index of this random parameter. Then xj either appears or does not appear

in the encryption. First assume xj appears in the encryption, and let XOR′′
D(a, b) = a.

Then by modifying XORD in such a way that it no longer depends on a (by substituting

XOR′′
D(a, b) with 0 in the definition of XORD) and by modifying the encryption function in

such a way that all instances of xj are substituted with xj ⊕ XOR′′
D(a, b), we obtain a new

protocol, in which the inputs a, b no longer appear in the decryption function. This protocol

is correct, as the initial protocol was correct for all possible inputs and random variables, and

all we have done is a substitution of variables. Since, from the perspective of the server, both

xj ⊕XOR′′
D(a, b) and xj are equally distributed (uniformly at random), the protocol is blind

as well.

Consider now the case where xj does not appear in the encryption (thus no random

parameters appearing in the encryption appear in the decryption), and let XOR′′
D(a, b) be

the function which appears in the evaluation of the decryption, and is not constant. Then,

we need to modify the messages the client sends, and the measurement the server does. Let

mc be the message the client sends in the original protocol. Then, in the modified protocol,

the client will send the message (mc,XOR′′
D(a, b) ⊕ y), where y is a new random bit. The

server will perform the same measurement as in the original protocol, as defined by mc but

will output mnew
s = moriginal

s ⊕ XOR′′
D(a, b) ⊕ y. Note that this process can be viewed as a

redefinition of the measurement the server does. the client decrypts almost the same as in

the original protocol, altered by substituting XOR′′
D(a, b) with 0, and by XORing with y . So

80 Quantum-enhanced secure delegated classical computing

we have:

The original decryption in original protocol :
out = XOR′′

D(a, b)⊕moriginal
s ⊕ xj

The new decryption in new protocol :
0⊕mnew

s ⊕ xj ⊕ y = moriginal
s ⊕XOR′′

D(a, b)⊕ y ⊕ xj ⊕ y = out.

Thus, the new protocol is also correct. To see that it is blind, note that the only piece

of additional information given to the server, relative to the original protocol is the bit

XOR′′
D(a, b)⊕ y. However, since y is chosen uniformly at random, this reveals no extra infor-

mation so the protocol is blind as well.

Thus for every QO23 blind correct protocol, there exists a blind correct QO24 protocol

where the inputs of the client do not appear in the decryption function �.

To summarise, to this point we have shown that we only need to consider protocols in

which the server’s output is a single bit, at most one random parameter which appears in

the decryption (but not in encryption) is used, and the decryption function does not take

the inputs of the client as parameters. Additionally we have shown that we only need the

random parameters which appear either in encryption or decryption. Next, we deal with the

size of the client’s messages, and the number of required random parameters appearing in the

encryption.

Consider the encryption, and the generated quantum state in the protocol:

mc = XORE(a, b,x) − the m bit message from the client
ρx, for x = (x1, . . . , xn) − the quantum state parametrized by n bits.

and let (mc)j denote the jth bit of the m bit message mc.

Lemma 13. No single isolated random variables are needed.

Proof. Assume that, for some j and k we have, (mc)j = xk. Then, the protocol reveals

xk. But this means that if we fix xk = 0 (that is, by dropping that random parameter from

the protocol) we yield again a blind correct protocol (with one less random parameter). We

get the same if the negation of xk appears. By repeating this, we obtain a protocol for which

no part of the message is equal to a single random parameter, or its negation �.

Lemma 14. No arbitrary XOR functions of random variables are needed.

Proof. Next, assume that for some j and k, l we have, (mc)j = xk ⊕ xl. Then, we

can introduce the variable xk,l = xk ⊕ xl, and substitute all instances of xl in the protocol

with xk,l ⊕ xl. This again yields a correct blind protocol, with the same number of random

parameters as the original protocol. However, the modified protocol has the new variable xk,l

appearing in (mc)j isolated, so it (by the argument in the last paragraph) be dropped from

the protocol.

We can perform analogous substitutions whenever arbitrary XOR functions of random

parameters appear in isolation: for a function b⊕xk1
⊕· · ·⊕xkp

we can define the substituting

variable xb
k1,...,kp

= b⊕ xk1
⊕ · · · ⊕ xkp

, and substitute all instances of xk1
with xb

k1,...,kp
⊕ b⊕

V. Dunjko, T. Kapourniotis, and E. Kashefi 81

xk2
⊕ · · ·xkp

. Thus we retain exactly the same number of random parameters, but xb
k1,...,kp

now appears in isolation. So, this variable can be dropped.

Thus, for any QO24 protocol, there exists a protocol (blind and correct) where no functions

of random parameters appear in isolation in mc.

Thus, each entry of mc is of the form XOR(a, b, x1, . . . xn), where this function is not

constant in a or b (or both). However, it is clear that this function cannot be constant in all

the random parameters x as otherwise the protocol would not be blind �.

We can now complete the main proof of the impossibility of quantum offline protocol by

showing how the redundancies could be removed.

Proof of Theorem 2. Define

(mc)j = XOR(a, b)⊕⊕

k∈Sj⊆[N] xk

(mc)k 6=j = XOR(a, b)⊕⊕

k∈Sk⊆[N] xk

Then, the XOR of those two entries reveals the XOR of the random parameters with indices

in the intersection Sj ∩ Sk. Let

x̃ =
⊕

k∈Sj⊆[N] xk ⊕⊕

k∈Sk⊆[N] xk =
⊕

k∈Sk∩Sj⊆[N] xl

Then the original protocol is equally blind as the protocol (we will call it MOD1 for modifi-

cation 1) in which the message element (mc)k is substituted with x̃ and the server, upon the

receipt of the message redefines (mc)k := (mc)j ⊕ x.

For simplicity, assume that Sk ∩ Sj = {1, 2, . . . l}. If we further modify MOD1 to MOD2

by substituting all instances of x1 in this protocol with x̃ ⊕ x2 . . . xl we obtain a protocol in

which x̃ is a randomly chosen variable, and note that it appears isolated in message element

(mc)k. Thus, it can by the arguments we presented earlier, be dropped from the protocol,

by setting it to zero. Note that analogous transformations of the protocol can be done if the

XOR functions on two positions differ by a bit flip.

Hence, we only need to consider protocols where each function of a, b in the message of

the client appears only once, where functions which differ by a bit flip can be considered

duplicates as well. There are only three XOR computable non-constant functions of two

binary parameters, up to a bit flip:

XOR(a, b) = a, XOR(a, b) = b, XOR(a, b) = a⊕ b

Thus, the message the client sends to the server, without the loss of generality, is of the form:

mc = (a⊕⊕

k∈S1⊆[n] xk, b⊕
⊕

k∈S2⊆[n] xk, a⊕ b⊕⊕

k∈S3⊆[n] xk)

Now, we can eliminate any single one of the three, and for our purposes of reduction to the

small QO2 protocol, we will eliminate the last one. Note that

(mc)3 = (mc)1 ⊕ (mc)2 ⊕
⊕

k∈S1⊆[n] xk ⊕⊕

k∈S2⊆[N] xk ⊕⊕

k∈S3⊆[N] xk,

and that the server can obtain

x̃ =
⊕

k∈S1⊆[n] xk ⊕⊕

k∈S2⊆[n] xk ⊕⊕

k∈S3⊆[n] xk

82 Quantum-enhanced secure delegated classical computing

by XORing the three bits of the client’s message. Thus, similarly to the approach we used

earlier, the protocol can be further modified in such a way that x̃ is given as the third bit of

the message. Furthermore, by substitution, the third bit can be eliminated as well. Thus we

obtain the third modification of the protocol, in which the client’s message is of the form

mc = (a⊕⊕

k∈S1⊆[n] xk, b⊕
⊕

k∈S2⊆[n] xk)

with S1∪S2 = [n]. Note S1 6= S2 as otherwise the protocol would not be blind. Let SDE be the

subset of indices of the random parameters which appear in the decryption and encryption.

Then all the random parameters in S1 \ (S2 ∪ SDE) can be substituted by only one random

parameter x̃1 which is the mod 2 sum of random parameters indexed in S1 \ (S2 ∪ SDE).

Additionally, the quantum state the client sends to the server needs to be averaged over all

states where the mod 2 sum of random parameters indexed in S1 \ (S2 ∪ SDE) is zero (for

x̃1 = 0) and for the case it is one (for x̃1 = 1). The same can be done for all the random

parameters in S2 \ (S1 ∪SDE), generating the single random parameter ỹ1 appearing only in

(mc)2. The indices in SDE must appear either in S1 or in S2. Let p1 . . . pq be the set which

appears in both. Then we can substitute these random parameters with one p̃ = p1⊕ · · ·⊕ pq
by again modifying the state the client sends to the server, by averaging over those states

for which p = 0 or p = 1. Similarly can be done for those indices in SDE which appear only

in (mc)1 (same for (mc)2) resulting in one random parameter x̃2 (ỹ2). Thus we obtain the

protocol in which the client sends

mc = (a⊕ x̃1 ⊕ x̃2 ⊕ p, b⊕ ỹ1 ⊕ ỹ2 ⊕ p)

and the decryption is given with:

out = ms ⊕ x̃2 ⊕ ỹ2 ⊕ p⊕ r

where r was the random parameter not appearing in the encryption, and the quantum state

is parametrized with:

ρx̃1,x̃2,ỹ1,ỹ2,p,r

We will refer to such protocols as QO25 protocols. Note that

Mα,β(ρx̃1,x̃2,ỹ1,ỹ2,p,r) = (α⊕ x̃1 ⊕ x̃2 ⊕ p)(β ⊕ ỹ1 ⊕ ỹ2 ⊕ p)⊕ x̃2 ⊕ ỹ2 ⊕ p⊕ r

and equivalently that

Mα,β(ρx̃
′
1
,x̃′

2
,ỹ′

1
,ỹ2,p

′,r′) = (α⊕ x̃′
1 ⊕ x̃′

2 ⊕ p′)(β ⊕ ỹ′1 ⊕ ỹ′2 ⊕ p′)⊕ x̃′
2 ⊕ ỹ′2 ⊕ p′ ⊕ r′.

Therefore we obtain the following relation:

Mα,β(ρx̃1,x̃2,ỹ1,ỹ2,p,r) = Mα,β(ρx̃
′
1
,x̃′

2
,ỹ′

1
,ỹ′

2
,p′,r′) if

x̃1 ⊕ x̃2 ⊕ p = x̃′
1 ⊕ x̃′

2 ⊕ p′, and
ỹ1 ⊕ ỹ2 ⊕ p = ỹ′1 ⊕ ỹ′2 ⊕ p′ and
x̃2 ⊕ ỹ2 ⊕ p⊕ r = x̃′

2 ⊕ ỹ′2 ⊕ p′ ⊕ r′.

Since the state ρ is parametrized by 6 independent parameters and we have three independent

equations, this implies that there are 8 differing equivalency classes (as defined by the three

V. Dunjko, T. Kapourniotis, and E. Kashefi 83

equalities) over the set of all possible random parameters. The equivalency classes can be

represented by three bits c1, c2, c3 as follows:

(c1, c2, c3) ≡ {(x̃1, x̃2, ỹ1, ỹ2, p, r)|x̃1 ⊕ x̃2 ⊕ p = c1
ỹ1 ⊕ ỹ2 ⊕ p = c2, x̃2 ⊕ ỹ2 ⊕ p⊕ r = c3}

We can then define the states ρ, averaged per equivalency class:

ρc1,c2,c3 = 1/8
∑

(x̃1,x̃2,ỹ1,ỹ2,p,r)∈(c1,c2,c3)
ρx̃1,x̃2,ỹ1,ỹ2,p,r

Note that the first bit of the message the client sends to the server in QO25 is given with

(a⊕ x1 ⊕ x2 ⊕ p) which is equal to c1. Similarly, the second bit (b⊕ y1 ⊕ y2 ⊕ p) is equal to

c2. The decryption is given with out = ms ⊕ x2 ⊕ y2 ⊕ p⊕ r which is equal to ms ⊕ c3. This

gives us a protocol in which the client sends

mc = (a⊕ c1, b⊕ c2)

and the decryption is given with:

out = ms ⊕ c3

where c3 was the random parameter not appearing in the encryption, and the quantum state

is parametrized with:

ρc1,c2,c3

This protocol is correct by construction, and it is also blind as the classical messages the client

sends are the same as in the QO25 protocol, and the quantum state is averaged over the degrees

of freedom which do not appear in the abbreviated protocol - but then the averaging over the

remaining free parameters yields the same state on the server’s side as in the QO25 protocol.

Thus it is blind as well.

But this is also a small QO2 protocol. Thus, symbolically, we have shown:

∃QO2 → ∃QO21 → ∃QO22 → ∃QO23 → ∃QO24 → ∃QO25 → ∃ small QO2

which implies the proof of the main theorem since we have already proven no small QO2

protocol exists .

3.2 Multi rounds

In the definition of QO2 protocols, we have explicitly demanded that client and server use

only two rounds of classical communication to achieve the desired functionality. That is,

after the quantum offline preparation stage, client sends one classical message to server, to

which server responds. This offers the possibility that including multiple rounds of classical

communication may circumvent the no-go result of Theorem 2. Now we show that this is

not the case. To develop the proper intuition, first consider the very first possible extension

- that the protocol ends with client sending an extra message to server. This trivially cannot

help, as client’s output then cannot depend on whatever server does. Next consider the case

where client is allowed to send an additional message to server, to which server responds.

To clarify this case, we shall use the notation of Protocol 7 (SecureAND QO2). Consider

84 Quantum-enhanced secure delegated classical computing

the client’s round in protocol 7 in which the client computes the output out. In the most

general setting of a 4 round, instead of computing an output, client stores server’s message

ms, computes some XORE2 function of ms a, b and perhaps new random parameters, which

she then forwards back to server. Denote this message m2
c . Note that the function XORE2 is

specified by the protocol (that is, it is known to server), and that it can only be a combination

of XOR functions and negations of its arguments. It can also be a multi-bit XOR function: if

m2
c = (y1, . . . , yk) is a k− bit message, each bit yl is of the form XORE2l(a, b,ms,x, r) (where

r are random bits), where some of the arguments may appear with a negation, or may not

appear at all. Then each bit yl of m
2
c can be written as

XORE2l(a, b,ms,x, r) = XORE2′
l
(a, b,x, r)⊕XORE2′′

l
(ms) (7)

where we have just separated the function into parts which depend onms an which do not. We

can do this since all operations that the client can do, commute. Now, since the server knows

all the component functions and ms, and since the protocol is by assumption blind, the part

XORE2′
l
(a, b,x, r) must be independent from a, b, when averaged over x and r, otherwise it

would reveal information to server. We emphasize two properties of XORE2′
l
(a, b,x, r). First

it does not depend on ms, and second it does not reveal anything about the input. Hence,

client could have sent XORE2′
l
(a, b,x, r) as a part of mc, and the protocol would be extended

by having server compute

XORE2l(a, b,ms,x, r) = XORE2′
l
(a, b,x, r)⊕XORE2′′

l
(ms) (8)

himself, after his measurement, without jeopardizing blindess or correctness. This shows

that any 4 round blind and correct quantum offline protocol can be reduced to a two round

protocol. However, this argument trivially generalizes: in an 2n round protocol, at client’s

kth interaction step, any computation client does on server’s prior responses, the inputs and

random parameters, can be split into parts which depend on server’s input and those which

do not. Since server knows his responses, and the protocol is blind, the parts which do not

depend on server’s input cannot reveal any information about client’s inputs, and also (by

definition) do not depend on server’s responses. Hence, client could have sent all of them in

the first round of communication, and delegate the computations to server while maintaining

security and correctness. This shows that any blind and correct, quantum offlice, n−round

SecureAND protocol (denoted QOn) implies the existence of QO2. Since we have shown that

the latter is impossible, so are QOn protocols. This proves our ultimate no-go result.

Theorem 3. Blind, correct quantum-offline, n−round SecureAND protocols are impossible

for every number of rounds n.

4 Conclusion

In this work, we have considered the problem of secure quantum delegated classical compu-

tation, in the setting of a client with minimal computational capabilities. In particular, the

client we consider is, on the classical side, restricted only to XOR operations and random bit

generation. This is arguably a minimal setting for the client where security can be obtained

- XOR gates and random bits suffice for a one-time pad of the classical information of the

V. Dunjko, T. Kapourniotis, and E. Kashefi 85

client, and, at least for the simpler task of transmitting of confidential information, both are

neccesary.

We have first shown that no fully classical delegated computation protocol can enable such

a client to compute the NAND gate on two bits (which is necessary for universal classical

computation). Following this, inspired by the results in [17], we have shown through a family

of protocols, how various types of minimal quantum capabilities on the side of the client and

server do allow for the computation of the NAND gate. The simplest protocol only requires

the client to prepare a single qubit state - however, the state of the qubit depends on the

inputs of the client. That is, the required quantum state cannot be prepared before the input

is known to the client, and thus the protocol is not quantum-offline. We have then proven

that this is not a restriction of our approach, but rather that quantum-offline SecureNAND

protocols are impossible. This stands in contrast to protocols for secure delegated quantum

computation, where quantum-offline protocols are possible [4], while the cost of achieving that

is the necessity of the client to perform non-linear operations (beyond the XOR gate).

The motivation for the setting we consider is predominantly theoretical, and serves to

investigate the scenario in which quantum effects can help in computational problems, and,

equally importantly, how. In our setting, the client effectively exploits the additional freedom

of a single-qubit system, namely, to be in a coherent superposition of two states (achieved

in the temporal sequence of gates the client applies), to obtain the outcome of the computa-

tion. Alternatively, in the GHZ-based settings, it is the entanglement which helps achieve the

required input-output correlations obtained by measurements on three distinct qubits. This

opens up the question of what fundamental properties or resources of quantum theory allow

for the shown enhancement. Indeed our demonstration of the potential power of quantum

communication in the setting with a limited-client and untrusted-server seems to be closely

related to the work of [19] on the power of contextuality. In the latter it was shown that a nec-

essary resource for a multi-party quantum computation of any non-linear function where each

party could only perform classical linear gates (such as XOR) together with local quantum

operations is contextuality. Further work in [20] studies the optimality of non-local resources,

e.g. generalized GHZ states, in winning multi-party quantum computation games in a related

setting. We leave as a future work to explore further this connection to extend our result to

multi-party settings and for the general function evaluation.

Nonetheless, we do not preclude the possibility that the results of this work may have a

practical impact - the cost of XOR or NAND operations for a client depends on the setting.

In particular, in the case of computation over encrypted data (homomorphic encryption), the

solution for XOR-only computation is simple. In contrast, NAND-based, universal computa-

tion over encrypted data is notoriously hard. It is only recently that computationally secure

solutions have been found for this general problem (fully homomorphic encryption) [16], and

thus far, the proposed protocols are still impractical. It is thus conceivable that hybrid ap-

proaches to secure delegated computation may be possible, raising the security (or reducing

the complexity) of classical schemes, at the price of a small amount of quantum capabilities.

The possibility of this, based on the approaches we have presented in this work, is a part of

ongoing research.

References

86 Quantum-enhanced secure delegated classical computing

1. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. Found.

Secure Computation, 1978.
2. A. Childs. Secure assisted quantum computation. Quant. Inf. Comput., 5, 2005.
3. P. Arrighi and L. Salvail. Blind quantum computation. Int. J. Quant. Inf., 4, 2006.
4. A. Broadbent, J. Fitzsimons, and E. Kashefi. Universal blind quantum computing. In FOCS,

2009.
5. D. Aharonov, M. Ben-Or, and E. Eban. Interactive proofs for quantum computations. In ICS,

2010.
6. T. Morimae, V. Dunjko, and E. Kashefi. Ground state blind quantum computation on aklt state.

arXiv:1009.3486, 2011.
7. T. Morimae and K. Fujii. Blind topological measurement-based quantum computation. Nature

communications, 3, 2012.
8. V. Dunjko, E. Kashefi, and A. Leverrier. Blind quantum computing with weak coherent pulses.

Phys. Rev. Lett., 108, 2012.
9. T. Morimae and K. Fujii. Blind quantum computation for alice who does only measurements.

Phys. Rev. A, 87, 2013.
10. A. Mantri, C. Perez-Delgado, and J. Fitzsimons. Optimal blind quantum computation. Phys.

Rev. Lett., 111, 2013.
11. V. Giovannetti, L. Maccone, T. Morimae, and T. Rudolph. Efficient universal blind quantum

computation. Phys. Rev. Lett., 111, 2013.
12. B. Reichardt, F. Unger, and U. Vazirani. Classical command of quantum systems. Nature, 496,

2013.
13. K. Fisher, A. Broadbent, L. Shalm, Z. Yan, J. Lavoie, R. Prevedel, T. Jennewein, and K. Resch.

Quantum computing on encrypted data. Nature communications, 5, 2014.
14. Andrew C. Yao. Protocols for secure computations. In FOCS, 1982.
15. S. Goldwasser. Multi party computations: past and present. In PODC, 1997.
16. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.
17. J. Anders and D.E. Browne. Computational power of correlations. Phys. Rev. Lett., 102, 2009.
18. K. Loukopoulos and D. E. Browne. Secure multiparty computation with a dishonest majority via

quantum means. Phys. Rev. A, 81, 2010.
19. R. Raussendorf. Contextuality in measurement-based quantum computation. Physical Review A,

88(2), 2013.
20. M. J. Hoban, E. T. Campbell, K. Loukopoulos, and D. E. Browne. Non-adaptive measurement-

based quantum computation and multi-party bell inequalities. New Journal of Physics,
13(2):023014, 2011.

21. S. Barz, V. Dunjko, F. Schlederer, M. Moore, E. Kashefi, and I. A. Walmsley. Secure delegated
classical computing exploiting coherence. arXiv:1501.06730, 2015.

22. Janet Anders and Dan E. Browne. Computational power of correlations. Phys. Rev. Lett.,
102:050502, Feb 2009.

