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We prove that approximating the ground energy of the antiferromagnetic XY model on
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1 Introduction

Kitaev pioneered the study of quantum constraint satisfaction problems, where the goal is to

approximate the ground energy of a Hamiltonian [1]. Many examples of such ground energy

problems are known to be complete for the complexity class QMA, a quantum analogue of

NP (see, e.g., [2]).

In this paper, we focus on computational problems defined by graphs. For example, MAX-

CUT is a classical constraint satisfaction problem defined by a graph. The goal is to find a

subset of vertices that maximizes the number of edges between that subset and its complement.

This can be rephrased as a ground energy problem: it is equivalent to minimizing the energy of

the Ising antiferromagnet on the graph, where there is a bit for every vertex and a constraint

penalizing adjacent bits that agree. Equivalently, we may consider a qubit at every vertex

and a ZZ interaction for every edge.

To obtain a genuinely quantum constraint satisfaction problem defined by a graph, we

consider interaction terms with nonzero off-diagonal matrix elements. Natural choices include

the antiferromagnetic Heisenberg model, with an XX + Y Y + ZZ interaction for each edge,

and the antiferromagnetic XY model, with an XX + Y Y interaction for each edge. The
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2 Complexity of the XY antiferromagnet at fixed magnetization

complexities of the ground energy problems for these models are unknown, although some

variants have been studied [3, 4, 5]. Recent work has established QMA-completeness for the

antiferromagnetic XY model with coefficients that vary throughout the graph and depend on

system size [6]. This result holds even when the graph is a triangular lattice in two dimensions.

Our result is incomparable because while we consider general (simple) graphs, we restrict the

coefficient for every edge to be 1. In addition, the restriction to fixed magnetization is not

present in reference [6].

Our main result concerns the antiferromagnetic XY model on a graph. For a given simple

graph G with vertex set V (G) and edge set E(G), the Hamiltonian has the form

1

2

∑

{i,j}∈E(G)

(XiXj + YiYj) (1)

where X,Y, Z denote Pauli matrices and a subscript indicates which qubit is acted on. Note

that this Hamiltonian commutes with the total magnetization operator Mz =
∑

i∈V (G) Zi,

so it decomposes into sectors for each eigenvalue of Mz. We prove that approximating the

ground energy of this Hamiltonian in a sector with fixed magnetization is a QMA-complete

problem.

Our result is a natural extension of our previous work [5]. The difference is that we previ-

ously considered Hamiltonians defined by graphs that may have self-loops. In that context we

established QMA-completeness of the ground energy problem for the Bose-Hubbard model

(at fixed particle number), a system of bosons hopping on a graph with a repulsive on-site

interaction. Then, using the relationship between hard-core bosons and spins, we also estab-

lished QMA-completeness of a ground energy problem related to the XY model, where the

Hamiltonian has an XX + Y Y term associated with each edge (as in (1)) as well as a local

magnetic field associated with each self-loop. In this paper we present a stronger result since

we consider only simple graphs and Hamiltonians of the form (1).

Our proof relies heavily on machinery and results from reference [5]. We prove QMA-

hardness of the ground energy problem for the Bose-Hubbard model on a simple graph at

fixed particle number. Our starting point is the previous QMA-completeness result [5] which

pertains to graphs G with self-loops. Counterintuitively, we begin by increasing the number

of self-loops: we modify a graph G from the previous construction to obtain a new graph GSL

in which every vertex has a self-loop. The new graph GSL is formed by taking two copies of G,

adding self-loops to each of them, and then adding some edges between the two copies. The

modification is performed in such a way that the ground spaces of the Bose-Hubbard model

on G and GSL (in the sector with a given number of particles) are simply related. Once we

have a self-loop at every vertex, we then remove all self-loops to obtain another graph GNSL

with no self-loops, which was our goal. This removal is equivalent to subtracting a term in

the Hamiltonian that is proportional to the identity. We thus obtain a graph GNSL with no

self-loops such that approximating the ground energy of the Bose-Hubbard model on GNSL is

as hard as approximating the ground energy of G, which is QMA-hard by our previous result.

Finally, we use a reduction presented in [5] showing that an instance of this ground energy

problem for the Bose-Hubbard model on a graph is equivalent to an instance of the ground

energy problem for the XY model at fixed magnetization on the same graph. Since this

reduction preserves the graph, we establish QMA-completeness for the XY model as discussed
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above.

The remainder of this paper is organized as follows. In Section 2, we provide basic def-

initions and tools used in this paper. In Section 3, we review results from reference [5]. In

Section 4, we describe a procedure that modifies graphs from the previous QMA-completeness

result so that every vertex has a self-loop. We show a relationship between the ground ener-

gies before and after the modification. Finally, we remove all the self-loops from the modified

graph, giving only a constant overall energy shift in the associated Hamiltonian. In Section 5,

we use this strategy to establish that the ground energy problem for the antiferromagnetic

XY model (on simple graphs, at fixed magnetization) is QMA-complete.

2 Preliminaries

In this paper, G denotes a graph with vertex set V (G), edge set E(G), and adjacency matrix

A(G). Later we will be interested in the case where G is a simple graph, but for now we allow

the possibility that it has at most one self-loop per vertex. In other words, A(G) can be any

symmetric 0-1 matrix.

2.1 The antiferromagnetic XY model on a graph

We define the antiferromagnetic XY model with local magnetic fields on G to be the |V (G)|-
qubit, two-local Hamiltonian

OG =
∑

A(G)ij=1, i6=j

(|01〉〈10|+ |10〉〈01|)ij +
∑

A(G)ii=1

|1〉〈1|i (2)

=
∑

A(G)ij=1, i6=j

XiXj + YiYj
2

+
∑

A(G)ii=1

1− Zi

2
. (3)

Note that the second term is only present if the graph G has self loops; this term vanishes

for simple graphs, giving the usual antiferromagnetic XY model. It is easy to see that this

Hamiltonian (either with or without the second, local magnetic field term) conserves Hamming

weight. Let

WtN = span{|z〉 : z ∈ {0, 1}|V (G)|, wt(z) = N}
be the subspace with Hamming weight N . We write θN (G) for the smallest eigenvalue of

OG within the sector with Hamming weight N (i.e., the smallest eigenvalue of the restriction

OG|WtN ).

2.2 The Bose-Hubbard model on a graph

We now review the Hamiltonian of the Bose-Hubbard model on a graph, as defined in [5]. We

present only the “first quantized” formulation of this model that we use in this paper; see [5]

for a broader discussion.

The Hilbert space of N distinguishable particles that live on the vertices of G is

(
C

|V (G)|)⊗N
= span{|i1i2 . . . iN 〉 : ij ∈ V (G)}.

Here each register represents the location of a particle. The Hilbert space of N indistinguish-

able bosons on G is the subspace of symmetric states

ZN (G) = span{Sym(|i1i2 . . . iN 〉) : ij ∈ V (G)}
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where

Sym(|i1i2 . . . iN 〉) = 1√
N !

∑

π∈SN

|iπ(1)iπ(2) . . . iπ(N)〉

and SN is the symmetric group on N elements.

For any operator M acting on the space C
|V (G)|, write

M (i) = 1⊗ · · · ⊗ 1
︸ ︷︷ ︸

i−1

⊗M ⊗ 1⊗ · · · ⊗ 1
︸ ︷︷ ︸

N−i

for the operator that acts on (C|V (G)|)⊗N as M on the ith register and as the identity on all

other registers. Define

HN
G =

N∑

i=1

A(G)(i) +
∑

k∈V (G)

n̂k(n̂k − 1) (4)

where

n̂k =
N∑

i=1

|k〉〈k|(i)

is an operator that counts the number of particles at vertex k. The Hamiltonian (4) acts

on the distinguishable-particle Hilbert space. Since it is symmetric under permutation of

the N registers, the bosonic space ZN (G) is an invariant subspace for HN
G . The N -particle

Bose-Hubbard model is the restriction of this Hamiltonian to the bosonic subspace

H̄N
G = HN

G

∣
∣
ZN (G)

.

Looking at equation (4), we see that the first term (the movement, or hopping, term) has

smallest eigenvalue equal to N times the smallest eigenvalue of A(G), which we denote µ(G),

while the second term (the interaction term) is positive semidefinite. Hence the smallest

eigenvalue of H̄N
G is at least that of HN

G , which is at least Nµ(G).

It is convenient to subtract this constant to make the Hamiltonian positive semidefinite.

Define

H(G,N) = H̄N
G −Nµ(G),

and write λ1N (G) ≥ 0 for its smallest eigenvalue. When λ1N (G) = 0 the N -particle ground

space minimizes the energy of both terms (movement and interaction) separately, and we say

the Hamiltonian is frustration free.

There is a connection between the Bose-Hubbard model on a graph and the XY model

on the same graph. Consider the subspace of bosonic N -particle states that have zero energy

for the second (interaction) term in (4). (For example, any frustration-free state lives in this

subspace.) States in this subspace have no support on basis states where more than one

particle occupies any vertex of the graph. This is the subspace of hard-core bosons. Since

every vertex can be occupied by at most one particle, this subspace can be identified with

the Hamming weight N subspace of |V (G)| qubits (each qubit represents a vertex, with basis

states |0〉, |1〉 representing unoccupied and occupied states, respectively). Thus the action of

the Bose-Hubbard model in the subspace of hard-core bosons is equivalent to a spin model.

In fact, as discussed in [5], the restriction of (4) to the subspace of hard-core bosons is exactly

equal to the restriction of OG (given by (3)) to the Hamming weight N space WtN .
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2.3 Gate graphs

The QMA-completeness construction from reference [5] uses a class of graphs called gate

graphs that we now review.

2.3.1 The graph g0

A 128-vertex simple graph denoted g0 plays a central role in the construction. The graph g0
is defined explicitly in reference [5] by specifying its adjacency matrix A(g0); here we only

describe the properties that we use in this paper. The vertices of g0 are labeled by tuples

(z, t, j) : z ∈ {0, 1}, t ∈ [8], j ∈ {0, . . . , 7}

where [n] = {1, . . . , n}. The adjacency matrix A(g0) acts on the Hilbert space

span{|z〉|t〉|j〉 : z ∈ {0, 1}, t ∈ [8], j ∈ {0, . . . , 7}}.

The smallest eigenvalue of A(g0) is e1 = −1 − 3
√
2. The corresponding eigenspace has an

orthonormal basis given by the four states

|ψz,0〉 =
1√
8

(
|z〉(|1〉+ |3〉+ |5〉+ |7〉) +H|z〉(|2〉+ |8〉) +HT |z〉(|4〉+ |6〉)

)
|ω〉 (5)

|ψz,1〉 = |ψz,0〉∗ (6)

where z ∈ {0, 1},
H =

1√
2

(
1 1
1 −1

)

T =

(
1 0
0 ei

π
4

)

and

|ω〉 = 1√
8

7∑

j=0

e−iπ
4
j |j〉.

Note that, depending on the value of t in the second register, the first register of the state

|ψz,0〉 contains the output of a single-qubit computation where either the identity, Hadamard,

or HT gate is applied to the state |z〉. (The state of the third register is in a product state

with the first two, and is somewhat uninteresting; this register exists for technical reasons.)

2.3.2 Gate graphs and gate diagrams

A gate diagram is a schematic representation of a gate graph. To define gate graphs, we first

define gate diagrams and then describe how a graph is associated with each of them.

The simplest gate diagrams are shown in Figure 1. These three basic gate diagrams are

also called diagram elements. The diagram elements each represent the same gate graph which

is just the 128-vertex graph g0 described above. Each diagram element has a unitary label

which is either 1, H, or HT , as well as a set of eight circles that we call nodes. A node labeled

(z, t) is associated with the eight vertices of g0 labeled (z, t, j) with j ∈ {0, . . . , 7}. Note that

only half of the 16 possible nodes (z, t) appear in a given diagram element. Moreover, the

half that does appear depends on the unitary label 1, H, or HT .

A gate diagram is constructed by taking a set of diagram elements and adding edges

between some pairs of nodes and self-loops to other nodes. Each node may have a self loop

or an incident edge but never both (and never more than one edge or self-loop). If the
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(0, 1)
(0, 3)

(0, 2)
(0, 8)

(1, 1)
(1, 3)

(1, 2)
(1, 8)

H

(a)

(0, 1)
(0, 3)

(0, 4)
(0, 6)

(1, 1)
(1, 3)

(1, 4)
(1, 6)

HT

(b)

(0, 1)
(0, 3)

(0, 5)
(0, 7)

(1, 1)
(1, 3)

(1, 5)
(1, 7)

1

(c)

Fig. 1. Diagram elements.

gate diagram has R diagram elements, then each node can be labeled (q, z, t) with q ∈ [R],

z ∈ {0, 1} and t ∈ [8]. We write S for the set of nodes (q, z, t) that have self-loops attached

and we write E for the set of pairs of nodes {(q, z, t), (q′, z′, t′)} that are connected by an edge.

A gate diagram with R diagram elements, self-loop set S, and edge set E is associated with

a gate graph G as follows. The vertex set of G is just R copies of the vertex set of g0, with

vertices labeled (q, z, t, j) with q ∈ [R], z ∈ {0, 1}, t ∈ [8], and j ∈ {0, . . . , 7}. The adjacency

matrix A(G) acts on the Hilbert space

span{|q〉|z〉|t〉|j〉 : q ∈ [R], z ∈ {0, 1}, t ∈ [8], j ∈ {0, . . . , 7}}

and is defined by

A(G) = 1q ⊗A(g0) + hS + hE (7)

hS =
∑

(q,z,t)∈S
|q, z, t〉〈q, z, t| ⊗ 1j (8)

hE =
∑

{(q,z,t),(q′,z′,t′)}∈E
(|q, z, t〉+ |q′, z′, t′〉)(〈q, z, t|+ 〈q′, z′, t′|)⊗ 1j (9)

where we write 1q and 1j for the identity operators on the first and fourth registers, respec-

tively. Note that hS and hE are always positive semidefinite, so the smallest eigenvalue of

A(G) is lower bounded by e1, the smallest eigenvalue of A(g0). When these quantities are

equal, we say G is an e1-gate graph.

Definition 1. A gate graph G is an e1-gate graph if its smallest eigenvalue is e1 = −1−3
√
2.

Suppose |χ〉 is a ground state of the adjacency matrix of an e1-gate graph G. For each

q ∈ [R], define

|ψq
z,a〉 = |q〉|ψz,a〉

(where the states |ψz,a〉 are defined in (5)–(6)) and note (from equation (7)) that |χ〉 ∈ Y,

where

Y = span{|ψq
z,a〉 : q ∈ [R], z, a ∈ {0, 1}} (10)

and hS |χ〉 = hE |χ〉 = 0.

2.4 Spectral bounds for positive semidefinite matrices

Throughout our proof, we bound eigenvalue gaps of positive semidefinite matrices. For a

positive semidefinite matrix A, let γ(A) denote the smallest nonzero eigenvalue.

Fact 1. Let HA and HB be positive semidefinite matrices. Let HA have nonempty nullspace

S. Then γ(HA +HB) ≤ γ(HB |S).
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Proof. Let |η〉 be an eigenvector of HB |S with eigenvalue γ(HB |S).
Suppose first that the nullspace of HA + HB is nonempty. In this case the nullspace of

HA+HB is equal to the nullspace of HB |S (since both HA and HB are positive semidefinite),

and hence |η〉 is orthogonal to this space. Thus

γ(HA +HB) ≤ 〈η|HA +HB |η〉 = 〈η|HB |η〉 = γ(HB |S).

If instead the nullspace of HA+HB is empty, then γ(HA+HB) is the smallest eigenvalue

of HA + HB and again is variationally upper bounded by 〈η|HA + HB |η〉 = 〈η|HB |η〉 =

γ(HB |S).

A version of the following lemma was used but not explicitly stated in reference [7]. We

gave a proof of this “Nullspace Projection Lemma” in [5] and used it extensively in that work.

We recently became aware of another work [8] that proves a slightly stronger bound than the

one from [5]. We quote the better bound here.

Lemma 1 (Nullspace Projection Lemma [8]). Let HA, HB ≥ 0. Suppose the nullspace

S of HA is nonempty and

γ(HB |S) ≥ c > 0 and γ(HA) ≥ d > 0.

Then

γ(HA +HB) ≥
cd

d+ ‖HB‖
. (11)

3 Previous results

In this Section we summarize results from reference [5] that are used in this paper.

In [5] we considered the problem of approximating the ground energy of the Bose-Hubbard

model on a graph at fixed particle number. We also considered a special case of this problem

where the goal is to determine whether the Hamiltonian is close to being frustration free

(recall that in our setting, frustration freeness means λ1N (G) = 0).

Problem 1 (α-Frustration-Free Bose-Hubbard Hamiltonian). We are given

a K-vertex graph G, a number of particles N ≤ K, and a precision parameter ǫ = 1
T

.

The integer T ≥ 4K is provided in unary; the graph is specified by its adjacency

matrix, which can be any K×K symmetric 0-1 matrix. We are promised that either

λ1N (G) ≤ ǫα (yes instance) or λ1N (G) ≥ ǫ + ǫα (no instance) and we are asked to

decide which is the case.

Here T is given in unary so that the input size scales linearly with T . An algorithm for

this problem is considered efficient if it uses resources polynomial in 1
ǫ
= T .

The positive integer α in the above definition parameterizes how close to frustration free

the Hamiltonian is in the yes case. This definition slightly generalizes one presented in [5]; the

definition of the “Frustration-Free Bose-Hubbard Hamiltonian” problem given in that paper

corresponds to the choice α = 3. Here it is convenient to explicitly define computational

problems for each positive integer α. The proof of QMA-completeness presented in reference

[5] applies to each α (as noted on page 11 of [5]).

Theorem 1 ([5]). For any positive integer α, the problem α-Frustration-Free Bose-Hubbard

Hamiltonian is QMA-complete.
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In fact, the results of reference [5] can be used to show that each of these problems is

QMA-hard when restricted to a certain subset of instances. In particular,

Corollary 1. For any positive integer α, the problem α-Frustration-free Bose-Hubbard Hamil-

tonian remains QMA-hard if we additionally promise that the graph G is an e1-gate graph

described by a gate diagram with R diagram elements, satisfying

γ(A(G)− e1) ≥
C0

R3
(12)

where C0 is an absolute constant.

In Appendix 1 we prove this Corollary using the results of [5].

Using a reduction based on the connection between spins and hard-core bosons, we estab-

lished QMA-completeness of the following problem.

Problem 2 (XY Hamiltonian with local magnetic fields). We are given a

K-vertex graph G, an integer N ≤ K, a real number c, and a precision parameter

ǫ = 1
T

. The positive integer T is provided in unary; the graph is specified by its

adjacency matrix, which can be any K×K symmetric 0-1 matrix. We are promised

that either θN (G) ≤ c (yes instance) or else θN (G) ≥ c+ ǫ (no instance) and we are

asked to decide which is the case.

Theorem 2 ([5]). XY Hamiltonian with local magnetic fields is QMA-complete. Moreover,

there is a direct reduction that maps an instance of 3-Frustration-Free Bose-Hubbard Hamil-

tonian specified by G, N , and ǫ, to an instance of XY Hamiltonian specified by G, N , ǫ′ = ǫ
4 ,

and c = Nµ(G) + ǫ
4 , with the same solution.

This reduction is presented in Appendix B of [5]. For our purposes it is crucial that the

reduction does not change the underlying interaction graph. In this paper we show that the

α-Frustration-Free Bose-Hubbard Hamiltonian on simple graphs is QMA-complete, and then

we use the above reduction to show that the XY model (on simple graphs, i.e., without local

magnetic fields) is QMA-complete.

4 Adding Self-Loops

In general, a gate graph is not a simple graph since it may have self-loops. From equations

(8) and (9), we see that self-loops in the gate graph G arise from both self-loops and edges in

its gate diagram. An edge or a self-loop in the gate diagram is associated with 16 self-loops

or 8 self-loops in G, respectively. In this Section we describe a mapping from any e1-gate

graph G to a modified graph GSL. The graph GSL is not a gate graph. It is designed so that

it has a self-loop on each of its vertices. We prove that certain properties of GSL are related

to those of G. Ultimately our goal is to establish a relationship between the ground energies

of the Bose-Hubbard models on these graphs.

4.1 Definition of GSL

Consider an e1-gate graph G described by a gate diagram with R diagram elements and edge

and self-loop sets E and S, respectively.

Define N to be the set of vertices without self-loops in G, i.e.,

N = {(q, z, t, j) : j ∈ {0, . . . , 7}, (q, z, t) /∈ S, and ∀(q′, z′, t′), {(q, z, t), (q′, z′, t′)} /∈ E}. (13)
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Note that N contains (q, z, t, j) if and only if it contains (q, z, t, i) for all i ∈ [8], and further

that for each q, there exists some t⋆ such that (q, z, t⋆, j) ∈ N for all z ∈ {0, 1} and j ∈
{0, . . . , 7}.

The vertex set of GSL is two copies of the vertex set of G. We label the vertices of GSL as

V (GSL) = {(q, z, t, j, d) : q ∈ [R], t ∈ [8], j ∈ {0, . . . , 7}, z, d ∈ {0, 1}}.

We define GSL by its adjacency matrix

A(GSL) = A(G)⊗ 1d + 2ΠN ⊗Π+ (14)

where

ΠN =
∑

v∈N
|v〉〈v| Π+ = |+〉〈+| = 1

2
(|0〉+ |1〉)(〈0|+ 〈1|).

The first term of (14) is just two copies of G; the second term adds edges between the two

copies as well as self-loops to both copies. Note that every vertex of GSL has a self-loop.

4.2 Relationship between the adjacency matrices of G and GSL

Since A(GSL) commutes with 1q ⊗ 1z ⊗ 1t ⊗ 1j ⊗Π+, there is an eigenbasis for A(GSL) where

each vector is of the form |φ〉 |+〉 or |φ〉 |−〉. For states of the latter form, the second term in

(14) vanishes. From this we see that, if |ψ〉 is in the ground space of A(G), then |ψ〉 |−〉 is in

the ground space of A(GSL) and its ground energy is e1. We now prove that these states are

a basis for the ground space.

Lemma 2. Let G be an e1-gate graph and let F be the ground space of A(G). Let

F± = {|α〉|±〉 : |α〉 ∈ F}. (15)

Then the ground space of A(GSL) is F−, and furthermore,

(2ΠN ⊗Π+)
∣
∣
F+

≥ 1

4
. (16)

Proof. To prove (15) it suffices to show that no state of the form |β〉 |+〉 is in the ground

space of A(GSL) (since A(GSL) commutes with 1q ⊗ 1z ⊗ 1t ⊗ 1j ⊗Π+).

Suppose (to reach a contradiction) that |β〉 |+〉 is in the ground space. Since the ground

energy of A(GSL) is equal to e1, we must have

〈β| 〈+|A(GSL) |β〉 |+〉 = 〈β|A(G) |β〉 = e1

and hence

〈β|ΠN |β〉 = 0. (17)

Now, since |β〉 is in the e1-energy ground space of A(G), it is contained in the space Y defined

in equation (10). We now show that

ΠN
∣
∣
Y ≥ 1

8
, (18)

which contradicts (17); this will show that no such state |β〉 |+〉 exists. It also establishes

(16).
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To establish (18), first observe that for q 6= s we have 〈ψs
x,b|ΠN |ψq

z,a〉 = 0, so the operator

ΠN |Y is block diagonal with a block for each q ∈ [R] (each block is a 4×4 principal submatrix

corresponding to the subspace spanned by the states |ψq
z,a〉 with z, a ∈ {0, 1}). It is therefore

sufficient to establish (18) for each block individually.

Focus on the block labeled by some q0 ∈ [R]. Now we use the fact about N that is noted in

the text following equation (13), namely, that there exists some t⋆ such that (q0, z, t
⋆, j) ∈ N

for all z ∈ {0, 1} and j ∈ {0, . . . , 7}. Using this fact we can write

ΠN = |q0〉〈q0| ⊗ 1z ⊗ |t⋆〉〈t⋆| ⊗ 1j +B

for some positive semidefinite operator B. To finish the proof of equation (18), we show that

the first term on the right-hand side is strictly positive within the block labeled by q0, which

follows from

〈ψq0
x,b|
(
|q0〉〈q0| ⊗ 1z ⊗ |t⋆〉〈t⋆| ⊗ 1j

)
|ψq0

z,a〉 = 〈ψx,b|1z ⊗ |t⋆〉〈t⋆| ⊗ 1j |ψz,a〉 =
1

8
δz,xδa,b,

where in the last equality we used equations (5) and (6).

Lemma 3. Let G be an e1-gate graph. Then

γ(A(GSL)− e1) ≥ C γ(A(G)− e1)

where C is an absolute constant.

Proof. We use the Nullspace Projection Lemma. Write A(GSL)− e1 = HA +HB as a sum of

two positive semidefinite operators

HA = A(G)⊗ 1− e1 HB = 2ΠN ⊗Π+.

Note that ‖HB‖ = 2 since ΠN ⊗ Π+ is a projector. We will also need a bound on γ(HB |S)
where S is the nullspace of HA. Note that S = F++F− where F± is defined in equation (15).

By Lemma 2, the nullspace of HB |S is F−. Using this fact, we see that γ(HB |S) is equal to

the smallest eigenvalue of HB within the space F+, which we bound using equation (16):

γ(HB |S) ≥
1

4
.

Now applying the Nullspace Projection Lemma, we get

γ(A(GSL)− e1) ≥
1
4γ(A(G)⊗ 1− e1)

γ(A(G)⊗ 1− e1) + 2
≥

1
4γ(A(G)⊗ 1− e1)

‖A(G)‖+ |e1|+ 2
. (19)

To complete the proof, we show that ‖A(G)‖ is upper bounded by an absolute constant.

Looking at the general expression (7) for the adjacency matrix of a gate graph, we see that

‖A(G)‖ ≤ ‖A(g0)‖+ ‖hS‖+ ‖hE‖ ≤ ‖A(g0)‖+ 1 + 2.

This completes the proof: the right-hand side of this expression is an absolute constant since

g0 is a fixed 128-vertex graph.
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4.3 Relationship between the Bose-Hubbard models on G and GSL

We begin by defining a linear map from the Hilbert space (C|V (G)|)⊗N of N distinguishable

particles on G to the corresponding space (C|V (GSL)|)⊗N for GSL. This map is defined by its

action on basis states as follows:

|i1〉|i2〉 . . . |iN 〉 7→ |i1,−〉|i2,−〉 . . . |iN ,−〉

where |v,−〉 = 1√
2
(|v, 0〉− |v, 1〉) is a superposition of the two vertices (v, 0) and (v, 1) of GSL

that are associated with vertex v ∈ V (G).

For a state |φ〉 ∈ (C|V (G)|)⊗N we write |φ〉 for its image under this mapping, i.e.,

|φ〉 =
∑

x∈V (G)N

αx|x1〉|x2〉 . . . |xN 〉 7→ |φ〉 =
∑

x∈V (G)N

αx|x1,−〉|x2,−〉 . . . |xN ,−〉.

Clearly, if |φ〉 is normalized then so is |φ〉. Furthermore, if |φ〉 ∈ ZN (G) (i.e., if it is symmetric

under permutations of the N registers) then |φ〉 ∈ ZN (GSL).

Lemma 4. Let |φ〉, |ψ〉 ∈ (C|V (G)|)⊗N . Then

〈φ|
(

∑

w∈V (GSL)

n̂w(n̂w − 1)

)

|ψ〉 = 1

2
〈φ|
(
∑

v∈V (G)

n̂v(n̂v − 1)

)

|ψ〉.

Proof. Writing (v, 0) and (v, 1) for the two vertices of V (GSL) corresponding to a vertex

v ∈ V (G), we have

∑

w∈V (GSL)

n̂w(n̂w − 1) =
∑

v∈V (G),d∈{0,1}
n̂v,d(n̂v,d − 1) n̂v,d =

N∑

i=1

|v, d〉〈v, d|(i) .

We can then rewrite each term in the sum as

n̂v,d(n̂v,d − 1) =
∑

j 6=j′

(

|v, d〉〈v, d|(j)
)(

|v, d〉〈v, d|(j
′)
)

.

Using this expression (and a similar expression for n̂v(n̂v − 1)), we see that

〈φ|n̂v,d(n̂v,d − 1)|ψ〉 = 〈φ|
∑

j 6=j′

(

|v, d〉〈v, d|(j)
)(

|v, d〉〈v, d|(j
′)
)

|ψ〉

=
(
〈−|d〉〈d|−〉

)2〈φ|
∑

j 6=j′

(

|v〉〈v|(j)
)(

|v〉〈v|(j
′)
)

|ψ〉

=
1

4
〈φ|n̂v(n̂v − 1)|ψ〉.

Summing both sides over d ∈ {0, 1} and v ∈ V (G) gives the claimed result.

Lemma 5. Let G be an e1-gate graph. Then

λ1N (G) ≤ a =⇒ λ1N (GSL) ≤ 3

2
a. (20)
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If in addition G is described by a gate diagram with R diagram elements and satisfies γ(A(G)−
e1) ≥ C0

R3 for some absolute constant C0, then

λ1N (G) ≥ b > 0 =⇒ λ1N (GSL) ≥ C0C1

R3N2
b (21)

where C1 is an absolute constant.

Proof. Let |φ〉 ∈ ZN (G) be a normalized state with minimal energy for H(G,N), i.e.,

〈φ|H(G,N)|φ〉 = λ1N (G). The normalized state |φ〉 ∈ ZN (GSL) satisfies

A(GSL)(i)|φ〉 = (A(G)⊗ 1d + 2ΠN ⊗Π+)
(i)|φ〉 = (A(G)⊗ 1d)

(i)|φ〉

for each i ∈ [N ], so

〈φ|
N∑

i=1

(A(GSL)− e1)
(i)|φ〉 = 〈φ|

N∑

i=1

(A(G)⊗ 1d − e1)
(i)|φ〉

= 〈φ|
N∑

i=1

(A(G)− e1)
(i)|φ〉

≤ 〈φ|
(

N∑

i=1

(A(G)− e1)
(i) +

∑

v∈V (G)

n̂v(n̂v − 1)

)

|φ〉

= a

where in going from the second to the third line we used the fact that n̂v(n̂v − 1) is positive

semidefinite. Using this inequality and Lemma 4, we have

λ1N (GSL) ≤ 〈φ|H(GSL, N)|φ〉
≤ a+ 〈φ|

∑

w∈V (GSL)

n̂w(n̂w − 1)|φ〉

= a+
1

2
〈φ|

∑

v∈V (G)

n̂v(n̂v − 1)|φ〉

≤ a+
1

2
〈φ|H(G,N)|φ〉

≤ 3

2
a,

which establishes equation (20).

Now suppose λ1N (G) ≥ b > 0 and γ(A(G)− e1) ≥ C0

R3 and consider the second part of the

Lemma. Note that in this case H(G,N) has no nullspace, so λ1N (G) = γ(H(G,N)). We write

H(GSL, N) = HA +HB with positive semidefinite operators

HA =
N∑

i=1

(A(GSL)− e1)
(i)
∣
∣
∣
ZN (GSL)

HB =
∑

w∈V (GSL)

n̂w(n̂w − 1)
∣
∣
ZN (GSL)

and we use the Nullspace Projection Lemma.
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To get a bound on γ(HA), first note that every eigenvalue of HA is also an eigenvalue of

the operator
N∑

i=1

(A(GSL)− e1)
(i) (22)

(without the restriction to ZN (GSL)), since this operator is permutation symmetric and pre-

serves the symmetric subspace. Hence the smallest nonzero eigenvalue of HA is at least that

of (22) and

γ(HA) ≥ γ

(
N∑

i=1

(A(GSL)− e1)
(i)

)

= γ(A(GSL)− e1) ≥ Cγ(A(G)− e1) ≥
CC0

R3
(23)

where C is an absolute constant (in the second step we used the fact that γ(M⊗1+1⊗M) =

γ(M) for any Hermitian matrix M with smallest eigenvalue zero, and in the third step we

used Lemma 3).

We also need a bound on γ(HB |S), where S is the nullspace of HA. Letting T be the

nullspace of
N∑

i=1

(A(G)− e1)
(i)
∣
∣
∣
ZN (G)

and using Lemma 2, we see that S is equal to the image of T under the mapping |φ〉 7→ |φ〉.
Using this fact and Lemma 4, we get

HB |S =
1

2

∑

v∈V (G)

n̂v(n̂v − 1)
∣
∣
T
.

Since H(G,N) has no nullspace, neither does the operator on the right-hand side of this

equation. Hence HB |S > 0 and λ1N (GSL) = γ(H(GSL, N)). Furthermore

γ(HB |S) =
1

2
γ

(
∑

v∈V (G)

n̂v(n̂v − 1)
∣
∣
T

)

≥ 1

2
γ(H(G,N)) ≥ b

2
(24)

where in the first inequality we used Fact 1.

Now using the bounds (23) and (24) along with the fact that ‖HB‖ ≤ N2 and applying

the Nullspace Projection Lemma, we get

λ1N (GSL) = γ(H(GSL, N)) ≥
CC0b
2R3

CC0

R3 +N2
≥

CC0b
2R3

(CC0 + 1)N2
.

Thus the result follows with C1 = C
2CC0+2 .

5 Removing self-loops

Our goal is to consider simple graphs, but so far we have described a method for mapping an

e1-gate graph G to a graph GSL with self-loops on every vertex. We now remove all the self

loops from GSL to obtain a simple graph GNSL. The adjacency matrix of this graph is

A(GNSL) = A(GSL)− 1
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and it has smallest eigenvalue µ(GNSL) = µ(GSL)− 1.

Now consider the N -particle Bose-Hubbard model on GNSL. We have

HN
GNSL =

N∑

i=1

A(GNSL)(i) +
∑

k∈V (GNSL)

n̂k(n̂k − 1) = HN
GSL −N,

so

H(GNSL, N) = H̄N
GNSL −Nµ(GNSL) =

(
H̄N

GSL −N
)
−N

(
µ(GSL)− 1

)
= H(GSL, N).

In particular, the smallest eigenvalues of these two Hamiltonians are equal:

λ1N (GNSL) = λ1N (GSL). (25)

We now use this relationship to show that the following problem is QMA-complete.

Problem 3 (α-Frustration-Free Bose-Hubbard Hamiltonian on simple

graphs). We are given a K-vertex simple graph G, a number of particles N ≤ K,

and a precision parameter ǫ = 1
T

. The integer T ≥ 4K is provided in unary. We are

promised that either λ1N (G) ≤ ǫα (yes instance) or λ1N (G) ≥ ǫ + ǫα (no instance)

and we are asked to decide which is the case.

Theorem 3. For any positive integer α, the problem α-Frustration-Free Bose-Hubbard Hamil-

tonian on simple graphs is QMA-complete.

Proof. Let α be a fixed positive integer. The problem is clearly contained in QMA since it is

a special case of the QMA-complete problem α-Frustration-Free Bose-Hubbard Hamiltonian.

To show that it is QMA-hard, we reduce from another QMA-hard problem. Let β = 8α and

define “Problem A” to be the special case of β-Frustration-Free Bose-Hubbard Hamiltonian

where the graph G is promised to be an e1-gate graph satisfying (12). Corollary 1 implies

that Problem A is QMA-hard. We provide a reduction from Problem A to α-Frustration-Free

Bose-Hubbard Hamiltonian on simple graphs.

Let an instance of Problem A be given, specified by G, N , and ǫ. We assume that ǫ

is smaller than some absolute constant C. We show that any such instance of Problem A

has the same solution as the instance of α-Frustration-Free Bose-Hubbard Hamiltonian on

the simple graph GNSL, with number of particles N and precision parameter ǫ′ = ǫ7. This is

sufficient to prove QMA-hardness of α-Frustration-Free Bose-Hubbard Hamiltonian on simple

graphs since there are only finitely many instances of Problem A (and of β-Frustration-Free

Bose-Hubbard Hamiltonian) with ǫ lower bounded by a constant.

First we check that GNSL, N , and ǫ′ satisfy the conditions in the definition of the problem,

i.e., that they specify a valid instance of α-Frustration-Free Bose-Hubbard Hamiltonian. Let

K = |V (G)| and K ′ = |V (GNSL)|. Then K ′ = 2K, and since ǫ = 1
T
≤ 1

4K , we have

ǫ′ = ǫ7 =
1

T ′

with T ′ = T 7 ≥ 8K = 4K ′. Furthermore, N ≤ K ≤ K ′. Therefore GNSL, N , and ǫ′ specify a

valid instance.
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Next we show that, provided ǫ is smaller than some constant C, the instance of α-

Frustration-Free Bose-Hubbard Hamiltonian defined by GNSL, N , and ǫ′ has the same solution

as the instance of Problem A defined by G, N , and ǫ.

Suppose first that the instance of Problem A is a yes instance. Then λ1N (G) ≤ ǫβ . Applying

the first part of Lemma 5 and using (25), we get

λ1N (GNSL) ≤ 3

2
ǫβ =

3

2
ǫ8α ≤ ǫ7α = (ǫ′)α

where in the second-to-last inequality we used the fact that 3
2ǫ

α ≤ 3
2ǫ ≤ 1, which follows from

the fact that ǫ−1 is an integer greater than 1. So in this case GNSL, N , and ǫ′ specify a yes

instance of α-Frustration-Free Bose-Hubbard Hamiltonian.

Next suppose that the instance of Problem A is a no instance, so λ1N (G) ≥ ǫ+ǫβ . Applying

the second part of Lemma 5 and using (25), we get

λ1N (GNSL) ≥ D

R3N2
(ǫ+ ǫβ)

where D is an absolute constant and R is the number of diagram elements in G. Noting that

R ≤ K, N ≤ K, and ǫ ≤ 1
4K , we see that

λ1N (GNSL) ≥ D′(ǫ6 + ǫ5+β)

where D′ is another absolute constant. Now, provided 2ǫ ≤ D′ (which holds for sufficiently

large problem size K), we have

λ1N (GNSL) ≥ 2ǫ7 ≥ ǫ7 + (ǫ7)α = ǫ′ + (ǫ′)α,

which shows that GNSL, N , and ǫ′ specify a no instance of α-Frustration-Free Bose-Hubbard

Hamiltonian.

Finally, we apply this result to the XY Hamiltonian problem.

Problem 4 (XY Hamiltonian on simple graphs). We are given a K-vertex

simple graph G, an integer N ≤ K, a real number c, and a precision parameter

ǫ = 1
T

. The positive integer T is provided in unary. We are promised that either

θN (G) ≤ c (yes instance) or else θN (G) ≥ c + ǫ (no instance) and we are asked to

decide which is the case.

QMA-hardness of this problem now follows directly from the fact that 3-Frustration-

Free Bose-Hubbard Hamiltonian on simple graphs is QMA-hard (from Theorem 3) and the

reduction from Theorem 2.

Theorem 4. XY Hamiltonian on simple graphs is QMA-complete.
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Appendix 1 Proof of Corollary 1

The strategy used in [5] to establish QMA-hardness is to reduce quantum circuit satisfiability

to Frustration-Free Bose-Hubbard Hamiltonian using two steps. First, starting from a QMA

verification circuit CX for an instance X of a problem in QMA, it was shown how to construct

an e1-gate graph GX . (The explicit construction of GX is detailed in Section 6.2 of [5], and the

fact that it is an e1-gate graph is proven in Lemma 11 of that paper.) Second, the graph GX

(along with some extra information encoding “occupancy constraints”) is used to construct

another e1-gate graph G�
X (this construction is detailed in Appendix C of [5]). The class of

instances of Frustration-Free Bose-Hubbard Hamiltonian that are shown to be QMA-hard all

use graphs G�
X of this form. Thus, to prove Corollary 1, it suffices to show that

γ
(
A(G�

X)− e1
)
≥ C0

R3
(26)

where R is the number of diagram elements in G�
X and C0 is an absolute constant.

To prove the following results, we rely on some facts established in [5] (in particular, see

Sections 5, 6.2, 7.1, and Appendix E.4). In this appendix we analyze the spectral gaps of GX

and G�
X and thereby establish (A.1).
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Lemma 6. γ(A(GX)− e1) ≥ D, where D is an absolute constant.

Proof. Section 6.2 of [5] describes in detail how the graph GX is constructed from the verifi-

cation circuit. Its adjacency matrix can be written

A(GX) = A(G1) + hE′ + hS′

where G1 is an e1-gate graph with many components, each of constant size. Here hE′ and hS′

are of the form given in equations (8) and (9), but in this case, E ′ and S ′ are subsets all the

edges and self-loops, respectively, in the gate diagram for GX . In particular, the gate diagram

for G1 contains some of the edges and self-loops in the gate diagram for GX , and the rest are

included in the sets E ′ and S ′.
Note that in reference [5] the terms we refer to as hE′ and hS′ above are denoted by

hE′ + hS′ = h1 + h2 +
n∑

i=nin+1

hin,i + hout. (27)

Each of the terms on the right-hand side corresponds to a subset of the edges or self-loops in

the gate diagram for GX ; in reference [5] it was convenient to further subdivide the sets E ′

and S ′, but it will not be necessary to review the details of this here.

Every component of A(G1) is one of 5 fixed graphs, each with a constant number of vertices

(four of these 5 possible graphs are called two-qubit gate gadgets and the fifth is called the

boundary gadget–see Figures 5.2-5.3 of [5]). The smallest nonzero eigenvalue satisfies

γ(A(G1)− e1) ≥ c, (28)

where c is an absolute constant equal to the smallest nonzero eigenvalue of one of these 5

graphs.

A basis for the e1-energy ground space of A(G1), which we denote by S in the following,

is given by the set of states {|ρLz,a〉 : L ∈ L} defined before Lemma 11 in [5]. In this basis for

S one can compute the matrix elements of the operator

(hE′ + hS′)
∣
∣
S
. (29)

These matrix elements are computed in reference [5]. Specifically (referring to the decom-

position on the right-hand side of equation (A.2)), the matrix elements of h1|S are given

in equations (E29)–(E34), those of h2|S are given in equations (E39)–(E40), those of hin,i|S
appear in the equation preceding before (E45), and those of hout|S are given in the second

equation of Section E.4.4.

Here we use the following fact about the operator (A.4), which follows from the equations

of reference [5] listed above: it is block diagonal in the basis {|ρLz,a〉 : L ∈ L} with blocks of

size at most two. Furthermore, each of these blocks is one of a fixed set of 2 × 2 (or 1 × 1)

matrices, and therefore the smallest nonzero eigenvalue of (A.4), equal to the smallest nonzero

eigenvalue of one of these blocks, is lower bounded by a fixed constant that we denote c̃. Now

we apply the Nullspace Projection Lemma using this fact, equation (A.3), and the fact that

‖hE′ + hS′‖ ≤ ‖hE′‖+ ‖hS′‖ ≤ 2 + 1.
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We get

γ(A(GX)− e1) ≥
cc̃

c+ 3
,

which completes the proof.

The following lemma uses a construction from Appendix C.3 of [5].

Lemma 7. γ(A(G�
X) − e1) ≥ C0

R3 , where R is the number of diagram elements in the gate

diagram for G�
X and C0 is an absolute constant.

Proof. The adjacency matrix of the graph G�
X can be written

A(G�
X) = A(G△

X) + hE0
+ hS0

,

where G△
X is an e1-gate graph (it is described in equation (C.8) of [5] and is used to enforce

the occupancy constraints, although we will not need its explicit form) and hE0
and hS0

are

of the form in equations (9) and (8), respectively, for some set of edges and self-loops in the

gate diagram for G�
X . States with low energy for the graph G△

X are related to those with low

energy for GX in the following way.

Since GX is an e1-gate graph, its adjacency matrix can also be written as

A(GX) = 1q ⊗A(g0) + hE + hS .

Let Q be the e1-energy ground space of the first term in the above equation (i.e., 1q ⊗A(g0)),
and let Q△ be the e1-energy ground space of A(G△). The graph G△

X is constructed so that

these two spaces have the same dimension, and furthermore

(hE0
+ hS0

)
∣
∣
Q△

= (hE + hS)
∣
∣
Q
·
{

1
3R′+2 R′ odd

1
3R′−1 R′ even

where R′ is the number of diagram elements in the gate diagram for GX (this is equation

C.51 of [5]). It is also proven in Lemma 19 of [5] that

γ
(
A(G△

X)− e1
)
≥ 1

(30R′)2
. (30)

Using this equation, we get

γ
(

(hE0
+ hS0

)
∣
∣
Q△

)

≥ 1

4R′ γ
(

(hE + hS)
∣
∣
Q

)
≥ 1

4R′ γ(A(GX)− e1) ≥
D

4R′ (31)

where in the second inequality we used Fact 1 and where D is the absolute constant from

Lemma 6.

We now apply the Nullspace Projection Lemma with the decomposition A(G�
X) − e1 =

HA+HB , where HA = A(G△
X)−e1 and HB = hE0

+hS0
. Note that ‖HB‖ ≤ ‖hE‖+‖hS‖ ≤ 3.

Applying the Nullspace Projection Lemma and using (A.6) and (A.5), we get

γ
(
A(G�

X)− e1
)
≥

D
4R′(30R′)2

1
(30R′)2 + 3

≥ C0

R′3

where C0 is an absolute constant. To complete the proof, we use the fact that R (the number

of diagram elements in G�
X) is greater than or equal to R′ (the number of diagram elements

in GX), which is a general property of the mapping G 7→ G� as described in Appendix C of

[5].
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