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The relative entropy measure quantifying coherence, a key property of quantum system,
is proposed recently. In this note, we firstly investigate structural characterization of

maximally coherent states with respect to the relative entropy measure. It is shown
that mixed maximally coherent states do not exist and every pure maximally coherent

state has the form U |ψ〉〈ψ|U†, |ψ〉 = 1√
d

∑

d

k=1
|k〉, U is diagonal unitary. Based on the

characterization of pure maximally coherent states, for a bipartite maximally coherent

state with dA = dB , we obtain that the super-additivity equality of relative entropy
measure holds if and only if the state is a product state of its reduced states. From the
viewpoint of resource in quantum information, we find there exists a maximally coherent
state with maximal entanglement. Originated from the behaviour of quantum correlation

under the influence of quantum operations, we further classify the incoherent operations
which send maximally coherent states to themselves.
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1 Introduction

Being at the heart of interference phenomena, quantum coherence plays a central role in

physics as it enables applications that are impossible within classical mechanics or ray optics.

It provides an important resource for quantum information processing, for example, Deutsch’s

algorithm, Shor’s algorithm, teleportation, superdense coding and quantum cryptography [1].

Maximally coherent states are especially important for such quantum information processing

tasks.

Recently, it has attracted much attention to quantify the amount of quantum coherence.

In [2], the researchers establish a quantitative theory of coherence as a resource following

the approach that has been established for entanglement in [3]. They introduce a rigorous

framework for quantification of coherence by determining defining conditions for measures of

coherence and identifying classes of functionals that satisfy these conditions. The relative

entropy measure and l1-norm measure are proposed. Other potential candidates such as the

measures induced by the fidelity , l2-norm and trace norm are also discussed. It is shown

that the coherence measure induced by l2-norm is not good. Since then, a lot of further

considerations about quantum coherence are stimulated [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
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It has been shown that a good definition of coherence does not only depend on the state

of the system, but also depends on a fixed basis for the quantum system [2]. The particular

basis (of dimension d) we choose throughout this manuscript is denoted by {|k〉}dk=1. In [2],

Baumgratz etc. identify the pure state |ψ〉 := 1√
d

∑d

k=1 |k〉 as a maximally coherent state

(MCS) with respect to any measure of coherence because every state can be prepared from

|ψ〉 by a suitable incoherent operation. Two natural questions arise immediately. Under a

given coherence measurement, whether it is the unique pure state whose coherence is maximal

and whether there exists a mixed maximally coherent state? Given a coherence measure C,
we call a state ρ to be a maximally coherent state (MCS) with respect to C if C(ρ) attends

the maximal value of C.
The relative entropy measure is able to not only quantify coherence but also quantify

superposition and frameness [16, 17, 18, 19, 20, 21]. In [22], the regularized relative entropy

measure of a resource can be used to describe the optimal rate of converting (by asymptotically

resource non-generating operations) n copies of a resource state ρ into m copies of another

resource state σ. On considering the importance of the relative entropy measure, we are aimed

to characterize the structure of the maximally coherent states under the relative entropy

coherence measure. We obtain that mixed maximally coherent states do not exist and each

pure maximally coherent state has the form U |ψ〉, where |ψ〉 = 1√
d

∑d

k=1 |k〉, U is diagonal

unitary. While it does not mean maximally coherent states with respect to any coherence

measure have the form U |ψ〉. Indeed there exists a coherence measure such that maximally

coherent states with respect to this measure do not have the form U |ψ〉 (see the example after

Result 1).

Quantum correlation includes quantum entanglement and quantum discord. Both entan-

glement and discord have a common necessary condition—quantum coherence [23]. In [4], Z.

Xi etc. study the relative entropy coherence for a bipartite system in a composite Hilbert

space HAB = HA ⊗ HB . They obtain an interesting property for the relative entropy of

coherence, that is, the super-additivity,

CRE(ρ) ≥ CRE(ρA) + CRE(ρB).

At the same time, they leave an open question that whether the equality holds if and only

if ρ = ρA ⊗ ρB . Using characterization of MCS with respect to relative entropy coherence

measure, we will show that this question holds true if the two subsystems have the same

dimension and ρ is a MCS. A counterexample is also given to tell us that the answer is

negative if the two subsystems have different dimension. Furthermore, we obtain that there

is a state with maximal coherence and maximal entanglement.

Coherence, as a kind of resource, enables applications that are impossible within classical

information. If an incoherent operation sends the MCSs to MCSs, we say it preserves MCSs.

Naturally, does this kind of operation reduce the resource or is it a without noise process? We

will show that an incoherent operation preserves MCSs if and only if it has the form U · U †,

U is a permutation of some diagonal unitary.

The structure of this paper is as follows. Section II recalls the axiomatic postulates for

measures of coherence, the concepts of the relative entropy measure and incoherent operations

in [2]. In section III, we focus on the structural characterization of maximally coherent states.

We apply this characterization to bipartite system to answer the question on super-additivity
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equality in section IV. The section V is devoted to the incoherent operations preserving

maximally coherent states. The paper is ended with the conclusion in section VI.

2 Preliminary

Let H be a finite dimensional Hilbert space with d = dim(H). Fixing a basis {|k〉}dk=1, we

call all density operators (quantum states) that are diagonal in this basis incoherent, and this

set of quantum states will be labelled by I, all density operators ρ ∈ I are of the form

ρ =

d
∑

k=1

λk|k〉〈k|.

Quantum operations are specified by a finite set of Kraus operators {Kn} with
∑

nK
†
nKn = I,

I is the identity operator on H. From [2], quantum operations are incoherent if they fulfil

KnρK
†
n/Tr(KnρK

†
n) ∈ I for all ρ ∈ I and for all n. This definition guarantees that in an

overall quantum operation ρ 7→ ∑

nKnρK
†
n, even if one does not have access to individual

outcomes n, no observer would conclude that coherence has been generated from an incoherent

state. Incoherent operations are of particular importance for the decoherence mechanisms

of single qubit [24, 25]. As a special case, the unitary incoherent operation has the form

ρ 7→ UρU †, here U is a permutation of a diagonal unitary.

Based on Baumgratz et al.’s suggestion [2], any proper measure of coherence C must satisfy

the following axiomatic postulates.

(i) The coherence vanishes on the set of incoherent states (faithful criterion), C(ρ) = 0 for

all ρ ∈ I;
(ii) Monotonicity under incoherent operation Φ, C(Φ(ρ)) ≤ C(ρ);
(iii) Non-increasing under mixing of quantum states (convexity),

C(
∑

n

pnρn) ≤
∑

n

pnC(ρn)

for any ensemble {pn, ρn}.
For any quantum state ρ on the Hilbert space H, the measure of relative entropy coherence

is defined as

CRE(ρ) := min
σ∈I

S(ρ||σ),

where S(ρ||σ) = Tr(ρ log2 ρ−ρ log2 σ) is relative entropy. In particular, there is a closed form

solution that makes it easy to evaluate analytical expressions [2]. For Hilbert space H with

the fixed basis {|k〉}dk=1, we write ρ =
∑

k,k′ pk,k′ |k〉〈k′| and denote ρdiag =
∑

k pkk|k〉〈k|. By
the properties of relative entropy, it is easy to obtain

CRE(ρ) = S(ρdiag)− S(ρ),

here S(·) is von Neumann entropy. Some basic properties of relative entropy coherence have

been given in [2].

Throughout the paper, if not specified, ρ is a maximally coherent state (MCS) means that

it is with respect to CRE . As we mention in introduction, |ψ〉 := 1√
d

∑d

k=1 |k〉 is a maximally

coherent state. That is, CRE(|ψ〉〈ψ|) = log2 d is the maximal value of CRE . The structural

characterization of MCS plays a key role in section IV and V. An incoherent operation Φ

preserves MCSs means that Φ(ρ) is a MCS if ρ is a MCS.
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3 Maximally coherent states on H
Result 1: ρ is a MCS if and only if ρ = U |ψ〉〈ψ|U †, where |ψ〉 = 1√

d

∑d
k=1 |k〉 and U is a

diagonal unitary.

Proof: It is easy to see, for every diagonal unitary element U , ρ 7→ UρU † is an incoherent

operation. From the monotonicity under incoherent operations, it follows that U |ψ〉〈ψ|U † is

a MCS.

For if part, we firstly prove that ρ is pure. Note that the maximal value of CRE is log2 d.

For every pure state ensemble ρ =
∑

i piρi. If CRE(ρ) = log2 d, then

log2 d = CRE(ρ) ≤
∑

i

piCRE(ρi) ≤ log2 d.

Thus CRE(ρ) =
∑

i piCRE(ρi) and CRE(ρi) = log2 d. Let CRE(ρi) = S(ρi ‖ σi) and σ =
∑

i piσi. By the jointly convex of relative entropy,

log2 d ≤ S(ρ||σ) ≤
∑

i

piS(ρi||σi) = log2 d.

This implies S(ρ||σ) = ∑

i piS(ρi||σi). From [26, Theorem 10], it follows that ρi = ρj and so

ρ is a pure state.

Now, we write ρ = |φ〉〈φ| and |φ〉 = ∑d
k=1 αk|k〉. By the property of relative entropy,

CRE(ρ) = S(ρdiag) = −
d

∑

k=1

|αk|2 log2(|αk|2).

A direct computation shows that CRE(ρ) = log2(d) implies that |αk|2 = 1/d. One can write

αk = 1√
d
eiθk , then |φ〉 = ∑d

k=1
1√
d
eiθk |k〉. Let U = diag(eiθ1 , eiθ2 , ..., eiθd), so |φ〉 = U |ψ〉.

In [2], it is mentioned that if D is distance measure satisfying contracting under CPTP

maps and jointly convex, i.e., satisfying

D(ρ, σ) ≥ D(ΦCPTP (ρ),ΦCPTP (σ))

and

D(
∑

n

pnρn,
∑

n

pnσn) ≤
∑

n

pnD(ρn, σn),

then one may define a coherence measure by

CD(ρ) = min
σ∈I

D(ρ, σ).

From the proof of Result 1, it is easy to see that if D possesses the property that the equality

of jointly convex holds true implies ρn = ρm, then the MCSs with respect to the coherence

measure induced by D are pure. It is known that l1-norm [2] and quantum skew divergence

[27] are with such property.

Here we remark that Result 1 does not hold true for any coherence measure. The following

is a counter example.
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Example. Let d = 4 and Ω = {x = (x1, x2, x3, x4)
t | ∑4

i=1 xi = 1 and xi ≥ 0}, here
(x1, x2, x3, x4)

t denotes the transpose of row vector (x1, x2, x3, x4). Assume

f(x) =

{

−
∑4

i=1 xi log2 xi, x↓4 = 0

log2 3, x↓4 6= 0
,

here x↓4 is the least element in (x1, x2, x3, x4)
t. By [15, Theorem 1], it is easy to check

that the nonnegative function f can derive a coherence measure Cf . It is clear that both

|ψ〉 = ∑4
k=1

√
xk|k〉, x↓4 6= 0 and |φ〉 = ∑3

k=1

√

1
3 |k〉 are maximally coherent under Cf .

4 Maximally coherent states on HA ⊗HB

Consider a bipartite system in a composite Hilbert space HAB = HA ⊗HB of d = dA × dB
dimension, here dA = dim(HA) and dB = dim(HB). Let {|k〉A}dA

k=1 and {|j〉B}dB

j=1 be the

orthogonal basis for the Hilbert space HA and HB , respectively. Given a quantum state ρAB

which could be shared between two parties, Alice and Bob, and let ρA and ρB be the reduced

density operator for each party.

In [4], Xi etc. show the supper-additivity of the relative entropy coherence:

CRE(ρAB) ≥ CRE(ρA) + CRE(ρB). (1)

They leave an question that whether the equality holds if and only if ρ = ρA ⊗ ρB . In the

following, we will show that the answer is affirmative if dA = dB and ρAB is a MSC. If

dA 6= dB , then the answer is negative. This implies that, in the case of dA = dB , there is

a correlation between the two subsystems, this leads to the increase of the coherence on the

bipartite system.

Result 2: If dA = dB and ρAB is a MCS, then the equality in (1) holds if and only if

ρAB = ρA ⊗ ρB .

Proof: Let {|i〉A}dA

i=1 and {|j〉B}dB

j=1 be the orthogonal basis for the Hilbert space HA and

HB , respectively. Let ρAB = |φ〉〈φ| with |φ〉 = 1√
d

∑dA,dB

i,j=1 eiθij |iAjB〉. Then

ρ =
1

d

∑

i,j,s,t

ei(θij−θst))|iA〉〈sA| ⊗ |jB〉〈tB |, (2)

ρA =
1

d

∑

i,s

(
∑

j

ei(θij−θsj))|iA〉〈sA|

and

ρB =
1

d

∑

j,t

(
∑

i

ei(θij−θit))|jB〉〈tB |.

Note that CRE(ρAB) = CRE(ρA) + CRE(ρB) ⇔ ρA, ρB are MCSs ⇔ |∑i e
i(θij−θit)| = dA and

|∑j e
i(θij−θsj)| = dB . The latter equivalence follows from Result 1. By a direct computation,

we have

θij − θit = θi′j − θi′t and θij − θsj = θij′ − θsj′ . (3)
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On the other hand,

ρA ⊗ ρB =
1

d

∑

i,j,s,t

αijst|iA〉〈sA| ⊗ |jB〉〈tB |, (4)

here αijst = 1
d
(
∑

j e
i(θij−θsj))(

∑

i e
i(θij−θit)). From Equations (2),(3) and (4), we finish the

proof.

What will happen if dA 6= dB? The following counterexample shows the answer is negative

in this case.

Assume dA = 2 and dB = 3. Let

|φ〉 = 1√
6
(|1〉+ eiθ|2〉+ e2iθ|3〉+ e3iθ|4〉+ e4iθ|5〉+ e5iθ|6〉),

θ ∈ (0, 2π). Clearly, ρ = |φ〉〈φ| is a MCS. By an elementary computation,

ρ =
1

6

















1 e−iθ e−2iθ e−3iθ e−4iθ e−5iθ

eiθ 1 e−iθ e−2iθ e−3iθ e−4iθ

e2iθ eiθ 1 e−iθ e−2iθ e−3iθ

e3iθ e2iθ eiθ 1 e−iθ e−2iθ

e4iθ e3iθ e2iθ eiθ 1 e−iθ

e5iθ e4iθ e3iθ e2iθ eiθ 1

















.

ρA =
1

2

(

1 e−3iθ

e3iθ 1

)

,

ρB =
1

3





1 e−iθ e−2iθ

eiθ 1 e−iθ

e2iθ eiθ 1



 .

It is evident that both ρA and ρB are MCSs and CRE(ρAB) = CRE(ρA) + CRE(ρB), however

ρ 6= ρA ⊗ ρB .

It is wellknown that both coherence and entanglement are considered as resource in quan-

tum information. Whether is there a state which is not only maximally coherent but also

maximally entangle? We will discuss this important question at the end of this section.

Result 3: There is a MCS ρ which is maximal entanglement.

Proof: Let ρ = |φ〉〈φ| with

|φ〉 = 1√
d

dA,dB
∑

i,j=1

eiθij |iAjB〉.

Then ρA = 1
d

∑

i,s(
∑

j e
i(θij−θsj))|iA〉〈sA|. Recall that ρ is maximally entangled if and only

if ρA = I
dA

. Therefore
∑

j

ei(θij−θsj) = 0 for every pair i 6= s (5)

implies that ρ is a maximally entangle state. Note that The equation (5) has a solution. In

order to understand the solution, we list an example in the case of dA = dB = 3. θ11 = θ12 =

θ13 = 0, θ21 = 0, θ22 = − 2π
3 , θ23 = − 4π

3 , θ31 = 0, θ32 = − 4π
3 , and θ33 = − 2π

3 .
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5 Incoherent operations preserving MCS

It is an interesting area to study the behavior of quantum correlation under the influence of

quantum operations [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. For example,

local operations that cannot create QD is investigated in [34, 37, 39], local operations that

preserve the state with vanished MIN is characterized in [38] and local operations that preserve

the maximally entangled states is explored in [40]. The goal of this chapter is to discuss when

an incoherent operation preserves MCSs. Here is our main result in this section.

Result 4: An incoherent operation Φ preserves MCSs if and only if Φ(ρ) = UρU † for every

quantum state ρ, here U is a permutation of a diagonal unitary.

From Result 4, every incoherent operation preserving MCSs does not reduce the resource

and is noiseless. Although this result is not surprising, the proof is not trivial. Let Φ be

specified by a set of Kraus operators {Kn}, the main step of our proof is to show that each

Kn = anΠn after some reduction, an is a complex number with
∑

n |an|2 = 1 and Πn is a

permutation of I. The reduction process is not trivial because we need to prove Φ is unital

which is based on an interesting property that identity operator can be described as a sum of

d MCSs.

Proof: The if part can be obtained directly from the Result 1.

Now we check the only if part. We firstly claim that I can be written as
∑d

k=1 |φk〉〈φk|
with all of |φk〉 are MCSs. Choose |φj〉 = 1√

d

∑d

k=1 e
iαj,k |k〉, all of αj,k are real numbers.

Denote M =
∑d

j=1 |φj〉〈φj |, then M has the matrix form











1 1
d

∑d

j=1 e
i(αj,1−αj,2) · · · 1

d

∑d

j=1 e
i(αj,1−αj,d)

1
d

∑d

j=1 e
i(αj,2−αj,1) 1 · · · 1

d

∑d

j=1 e
i(αj,2−αj,d)

· · · · · · · · · · · ·
1
d

∑d
j=1 e

i(αj,d−αj,1) 1
d

∑d
j=1 e

i(αj,d−αj,2) · · · 1











.

If αj,k satisfy

αj+1,k − αj+1,l = αj,k − αj,l +
2(k − l)

d
π,

then
∑d

j=1 e
i(αj,k−αj,l) = 0 (j, k, l = 1, . . . , d, k 6= l). SoM = I. There exist solutions of these

equations, for example αj,k = 2
d
(k − 1)(j − 1)π.

In the following, we show that Φ preserving MCS is unital, that is Φ(I) = I. Note that

Φ is incoherent, we have Φ(I) is diagonal. From the Result 1 in section III, Φ(|φk〉〈φk|) =

Uk|ψ〉〈ψ|U †
k , Uk is diagonal unitary. Then (Φ(|φk〉〈φk|))diag = I

d
, here (Φ(|φk〉〈φk|))diag

denotes the state obtained from Φ(|φk〉〈φk|) by deleting all off-diagonal elements. This implies

that

Φ(I) = Φ(I)diag =
d

∑

k=1

(Φ(|φk〉〈φk|))diag = I.

Let Kn be the Kraus operators of Φ, we obtain
∑

nKnK
†
n =

∑

nK
†
nKn = I. From Φ

is incoherent, we also have that every column of Kn is with at most 1 nonzero entry. From

Result 1, for every diagonal unitary U , there is a diagonal unitary VU depending on U such

that Φ(U |ψ〉〈ψ|U †) = VU |ψ〉〈ψ|V †
U . That is |ψ〉〈ψ| is a fixed point of V †

UΦ(U · U †)VU . This
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implies

V †
UKnU |ψ〉〈ψ| = |ψ〉〈ψ|V †

UKnU.

So V †
UKnU |ψ〉 = λn,U |ψ〉 for some scalar λn,U depending on U and n. We assert that λn,I 6= 0.

Otherwise, Kn is singular and so there is a row of Kn in which all entries are zero. Note that

|ψ〉 = 1√
d

∑d

k=1 |k〉, therefore all λn,U equal zero and so KnU |ψ| = 0. Since I can be written

as a sum of MCSs, we have Kn = 0. From λn,I 6= 0, there exists a nonzero element of each

row of Kn. Combining this and each column of Kn is with at most one nonzero element,

we get that there is one and only one nonzero entry in every row and column of Kn. Note

that V †
I ΦVI possesses the same properties as Φ, without loss of generality, we may assume

Φ(|ψ〉〈ψ|) = |ψ〉〈ψ|. So Kn|ψ〉 = λn,I |ψ〉. This implies the entries of Kn are equal. Therefore

Kn = anΠn, an is a complex number with
∑

n |an|2 = 1 and Πn is a permutation of I.

From Result 1, for arbitrary d real numbers θ1, · · · , θd, |φ〉 =
∑

k
1√
d
eiθk |k〉 is a MCS. By a

direct computation, Kn|φ〉 = an√
d

∑

k e
iαkn |k〉, (α1n, · · · , αdn) = Πn(θ1, · · · , θd). Furthermore,

Kn|φ〉〈φ|K†
n is the matrix

|an|2
d









1 ei(α1n−α2n) · · · ei(α1n−αdn)

ei(α2n−α1n) 1 · · · ei(α2n−αdn)

· · · · · · · · · · · ·
ei(αdn−α1n) ei(αdn−α2n) · · · 1









.

And Φ(|φ〉〈φ|) equals

1

d









∑

n |an|2
∑

n |an|2ei(α1n−α2n) · · ·
∑

n |an|2ei(α1n−αdn)
∑

n |an|2ei(α2n−α1n)
∑

n |an|2 · · · ∑

n |an|2ei(α2n−αdn)

· · · · · · · · · · · ·
∑

n |an|2ei(αdn−α1n)
∑

n |an|2ei(αdn−α2n) · · · ∑

n |an|2









.

By our assumption, it is a MCS. So

|
∑

n

|an|2ei(αjn−αkn)| = 1

for j, k = 1, 2, · · · , d. The arbitrariness of αjn and αkn implies n = 1. Therefore Φ has the

desired form.

6 Conclusion

In this paper, we firstly investigate the maximally coherent states with respect to the relative

entropy measure of coherence. We find that there does not exist a mixed maximally coherent

state and each pure maximally coherent states have the form U |ψ〉, where U is a diagonal

unitary and |ψ〉 := 1√
d

∑d

k=1 |k〉. Applying this structural characterization of maximally

coherent states to bipartite system, we answer the question left in [4] whether CRE(ρAB) =

CRE(ρA) + CRE(ρB) if and only ρ = ρA ⊗ ρB . It is shown that the answer is affirmative if

dA = dB and ρAB is a MSC. If dA 6= dB , then the answer is negative. From the viewpoint of

resource of quantum information, we show that there exists a state which is not only maximally

coherent but also maximally entangled. By using the form of pure maximally coherent states,

we obtain the structural characterization of incoherent operations sending maximally coherent
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states into maximally coherent states. That is, an incoherent operation Φ preserves MCSs if

and only if Φ(ρ) = UρU † for every quantum state ρ, here U is a permutation of a diagonal

unitary.
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