
Quantum Information and Computation, Vol. 15, No. 15&16 (2015) 1307–1316
c© Rinton Press

COHERENCE MEASURES AND OPTIMAL CONVERSION

FOR COHERENT STATES

SHUANPING DU a

School of Mathematical Sciences, Xiamen University

Xiamen, Fujian 361000, China

ZHAOFANG BAI b

School of Mathematical Sciences, Xiamen University

Xiamen, Fujian 361000, China

XIAOFEI QI c

Department of Mathematics, Shanxi University

Taiyuan, Shanxi 030006, China

Received April 16, 2015

Revised July 28, 2015

We discuss a general strategy to construct coherence measures. One can build an im-
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1 Introduction

Superposition is a critical property of quantum system resulting in quantum coherence and

quantum entanglement. Quantum coherence and also entanglement provide the important

resource for quantum information processing, for example, Deutschs algorithm, Shors algo-

rithm, teleportation, superdense coding and quantum cryptography [1].

As with any such resource, there arises naturally the question of how it can be quantified

and manipulated. Attempts have been made to find meaningful measures of entanglement

[2, 3, 4, 5, 6, 7], and also to uncover the fundamental laws of its behavior under local quantum

operations and classical communication (LOCC) [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Recently, it has attracted much attention to quantify the amount of quantum coherence.

In [13], the researchers established a quantitative theory of coherence as a resource following

the approach that has been established for entanglement in [6]. They introduced a rigorous

framework for quantification of coherence and proposed several measures of coherence, which
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1308 Coherence measures and optimal conversion for coherent states

are based on the well-behaved metrics including the lp-norm, relative entropy, trace norm and

fidelity. Additional progress in this direction has been reported recently in [14, 15, 16, 17, 18,

19, 20, 21].

However, as far as a finite number of coherence measures are considered, the quantifi-

cation of coherence is still in early stages. This work is intended to contribute to a better

understanding of coherence. It presents a tool for build infinitely many coherence measures.

Our recipes shows how to build all possible coherence measures for pure states (see sec. III).

By the tool of building coherence measures, we give the answer of the question: suppose

there is a pure coherent state |ψ〉 = ∑d
i=1 ψi|i〉 and we would like to convert it into another

pure coherent state |φ〉 = ∑d
i=1 φi|i〉 by incoherent operations. Which is the greatest prob-

ability of success in such a conversion? In [13], the authors provide a specific set of Kraus

operators that allow us–with finite probability–to transform a pure state into another. There,

they remarked that this protocol may not be optimal. In sec. IV, we provide a computation

formula for the greatest probability and construct explicitly an incoherent operation achieving

the greatest probability, i.e., the optimal protocol.

2 Preliminary

Let H be a finite dimensional Hilbert space with d = dim(H). Fixing a particular basis

{|i〉}di=1, we call all density operators (quantum states) that are diagonal in this basis inco-

herent, and this set of quantum states will be labelled by I, all density operators ρ ∈ I are

of the form

ρ =
d∑

i=1

λi|i〉〈i|.

Incoherent operation— A quantum operation Φ is a trace-preserving completely positive

linear map. By the classical Kraus representation theorem, the quantum operation Φ can be

represented in an elegant form known as the operator-sum representation. That is, Φ is an

operation if and only if there exist finite bounded linear operatorsKn satisfying
∑
nK

†
nKn = I

and Φ(ρ) =
∑
nKnρK

†
n, I is the identity operator on H. From [13], the quantum operation

Φ is incoherent if it fulfils KnρK
†
n/Tr(KnρK

†
n) ∈ I for all ρ ∈ I and for all n. This definition

guarantees that in an overall quantum operation ρ 7→ ∑
nKnρK

†
n, even if one does not

have access to individual outcomes n, no observer would conclude that coherence has been

generated from an incoherent state. It is easy to see that a quantum operation is incoherent

if and only if every column of Kn in the fixed basis {|i〉}di=1 has at most one nonzero entry.

Based on Baumgratz et al.’s suggestion [13], any proper measure of coherence C must

satisfy the following axiomatic postulates.

(C1) The coherence measure vanishes on the set of incoherent states, C(ρ) = 0 for all

ρ ∈ I;
(C2a) Monotonicity under incoherent operation Φ, C(Φ(ρ)) ≤ C(ρ),
or (C2b) Monotonicity under selective measurements on average:

∑
n pnC(ρn) ≤ C(ρ),

where pn = tr(KnρK
†
n), ρn = 1

pn
KnρK

†
n, for all {Kn} with

∑
nK

†
nKn = I and

KnρK
†
n/Tr(KnρK

†
n) ∈ I for all ρ ∈ I;
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(C3) Non-increasing under mixing of quantum states (convexity),

C(
∑

n

pnρn) ≤
∑

n

pnC(ρn)

for any ensemble {pn, ρn}.
We remark that conditions (C2b) and (C3) imply condition (C2a). And it has been

recently shown that the coherence measure induced by the fidelity satisfies (C2a), violates

(C2b) [14]. For the coherence measure induced by the trace norm, it is still not known

whether it satisfies criterion (C2b).

3 Building coherence measures

The following focuses on coherent measures for pure states and extends these coherent mea-

sures over the whole set of quantum states. Our idea is originated from [7] which is devoted

to entanglement monotone. Similarly, we define coherence monotone to be any magnitude

satisfying conditions (C2b) and (C3). From the following Theorem 1 and Theorem 2, readers

familiar with entanglement theory will see, in the case of pure states, the f considered in

[7] can derive a coherence monotone. While the converse is not true. The key lies in that

the entanglement monotone is local unitary invariant, but the coherence monotone is only

invariant under some special unitary transformation (the permutation of a diagonal unitary).

Let Ω = {x = (x1, x2, · · · , xd)t | ∑d
i=1 xi = 1 and xi ≥ 0}, here (x1, x2, · · · , xd)t de-

notes the transpose of row vector (x1, x2, · · · , xd). And let π be an arbitrary permutation

of {1, 2, · · · , d}, Pπ be the permutation matrix corresponding to π which is obtained by per-

muting the rows of a d × d identity matrix according to π. Given any nonnegative function

f : Ω 7→ R+ such that it is

•
f(Pπ(1, 0, · · · , 0)t) = 0, (1)

for every permutation π,

• invariant under any permutation transformation Pπ, i.e.

f(Pπx) = f(x) for every x ∈ Ω, (2)

• concave, i.e.

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y) (3)

for any λ ∈ [0, 1] and x,y ∈ Ω.

A coherence measure can be derived by defining it for pure states (normalized vectors

|ψ〉 = (ψ1, ψ2, · · · , ψd)t in the fixed basis {|i〉}di=1 ) as

Cf (|ψ〉〈ψ|) = f((|ψ1|2, |ψ2|2, · · · , |ψd|2)t), (4)

and by extending it over the whole set of density matrices as

Cf (ρ) = min
pj ,ρj

∑

j

pjCf (ρj), (5)
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where the minimization is to be performed over all the pure-state ensembles of ρ, i.e., ρ =∑
j pjρj .

Theorem 1. Any function Cf satisfying (1)-(5) is a coherence measure, i.e.,

Eqs. (1)− (5) ⇒ C1, C2b, C3. (6)

Proof: For any ρ ∈ I and ρ =
∑
i pi|i〉〈i|. From the definition of Cf and Eq.(1), it follows

that Cf (ρ) ≤
∑
i piCf (|i〉〈i|) = 0.

To verify C2b, we assume firstly that ρ is a pure state |ψ〉〈ψ|. Here, it is needed to use

the technique to deal with the acting of incoherent operations on pure states developed in the

proof of only if part of Theorem 1 [20]. Considering that there is some subtle difference and the

completeness of the proof, we write it in detail. This technique allows us to consider only the

three dimensional case, other cases can be treated similarly. Suppose |ψ〉 = (ψ1, ψ2, ψ3)
t and

there is an incoherent operation Φ with Kraus operators Kn. Since, for arbitrary permutation

matrix Pπ, {KnPπ} can define an incoherent operation, we assume

|ψ1| ≥ |ψ2| ≥ |ψ3| (7)

without loss of generality. Denote pn = ‖Kn|ψ〉‖2 and ρn = 1
pn
Kn|ψ〉〈ψ|K†

n. Let k
(n)
j (j =

1, 2, 3) be the nonzero element of Kn at j− th column (if there is no nonzero element in j− th
column, then k

(n)
j = 0). Suppose k

(n)
j locates fn(j) − th row. Here, fn(j) is a function that

maps {2, 3} to {1, 2, 3} with the property that 1 ≤ fn(j) ≤ j. Let δs,t =

{
1, s = t
0, s 6= t

. Then

there is a permutation πn such that

Kn = Pπn




k
(n)
1 δ1,fn(2)k

(n)
2 δ1,fn(3)k

(n)
3

0 δ2,fn(2)k
(n)
2 δ2,fn(3)k

(n)
3

0 0 δ3,fn(3)k
(n)
3


 . (8)

From
∑
nK

†
nKn = I, we get that





∑
n |k

(n)
j |2 = 1, (j = 1, 2, 3),

∑
n k

(n)
1 δ1,fn(2)k

(n)
2 = 0,

∑
n k

(n)
1 δ1,fn(3)k

(n)
3 = 0,

∑
n(δ1,fn(2)δ1,fn(3) + δ2,fn(2)δ2,fn(3))k

(n)
2 k

(n)
3 = 0.

(9)

For |ψ〉 = (ψ1, ψ2, ψ3)
t, by a direct computation, one can get

Kn|ψ〉 = Pπn




φ
(n)
1

φ
(n)
2

φ
(n)
3


 , (10)

here 



φ
(n)
1 = k

(n)
1 ψ1 + δ1,fn(2)k

(n)
2 ψ2 + δ1,fn(3)k

(n)
3 ψ3,

φ
(n)
2 = δ2,fn(2)k

(n)
2 ψ2 + δ2,fn(3)k

(n)
3 ψ3,

φ
(n)
3 = δ3,fn(3)k

(n)
3 ψ3.

(11)
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Applying
∑
n | · |2 to above equations, we have





|ψ1|2 +
∑
n δ1,fn(2)|k

(n)
2 |2|ψ2|2

+
∑
n δ1,fn(3)|k

(n)
3 |2|ψ3|2 =

∑
n |φ

(n)
1 |2,∑

n δ2,fn(2)|k
(n)
2 |2|ψ2|2

+
∑
n δ2,fn(3)|k

(n)
3 |2|ψ3|2 =

∑
n |φ

(n)
2 |2,∑

n δ3,fn(3)|k
(n)
3 |2|ψ3|2 =

∑
n |φ

(n)
3 |2.

(12)

Together with Eqs.(7) and (9), (12) implies that

((|ψ1|2, |ψ2|2, |ψ3|2)t
≺ (

∑
n |φ

(n)
1 |2,∑n |φ

(n)
2 |2,∑n |φ

(n)
3 |2)t. (13)

Here “≺” is the majorization relation between vectors, the definition and properties of which

can be found in [22]. From Eqs.(2) and (3), it follows that

∑
n pnCf (ρn)

=
∑
n pnf(Pπn

(
|φ(n)

1 |2
pn

,
|φ(n)

2 |2
pn

,
|φ(n)

3 |2
pn

)t)

=
∑
n pnf((

|φ(n)
1 |2
pn

,
|φ(n)

2 |2
pn

,
|φ(n)

3 |2
pn

)t)

≤ f((
∑
n |φ

(n)
1 |2,∑n |φ

(n)
2 |2,∑n |φ

(n)
3 |2)t)

≤ f((|ψ1|2, |ψ2|2, |ψ3|2)t) = Cf (ρ).

(14)

The last inequality is from [22, Theorem II.3.3], that is, any symmetric concave function is

Schur-concave, i.e., f(x) ≥ f(y) if x ≺ y.

Suppose now that ρ is any mixed state. Let ρ =
∑
i qiσi is an optimal pure-state ensemble

with Cf (ρ) =
∑
i qiCf (σi). Then

∑
n pnCf (ρn) =

∑
n pnCf (

∑
i
qiKnσiK

†
n

pn
)

≤ ∑
n pn

∑
i qi

tr(KnσiK
†
n)

pn
Cf (

KnσiK
†
n

tr(KnσiK
†
n)
)

=
∑
i qi(

∑
n tr(KnσiK

†
n)Cf (

KnσiK
†
n

tr(KnσiK
†
n)
))

≤ ∑
i qiCf (σi) = Cf (ρ).

(15)

Two inequalities follow from Eq.(5) and Eq.(14), respectively.

Now we prove C3 holds true. Let ρ =
∑
i piρi be any ensemble of ρ. And let ρi =

∑
j qijρij

be an optimal pure-state ensemble of ρi, i.e., Cf (ρi) =
∑
j qijCf (ρij). Then

Cf (ρ) = Cf (
∑
i pi

∑
j qijρij)

= Cf (
∑
ij piqijρij) ≤

∑
ij piqijCf (ρij)

=
∑
i piCf (ρi).

(16)

The inequality follows from Eq.(5).

As examples of coherence measures built using Theorem 1 consider, for any nonnegative

function f̂(x) concave in the interval x ∈ [0, 1] with f̂(0) = f̂(1) = 0, the function f : Rd →
R+ defined by f((x1, x2, · · · , xd)t) =

∑
i f̂(xi). Then f satisfies Eqs.(1)-(3). Taking

f̂(x) = −x log2 x, (17)
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we can induce the coherence measure Cf which is identical with the relative entropy coherence

measure [13] on pure states. Generally speaking, they are different on mixed states. Choosing

f((x1, x2, · · · , xd)t) = (

d∑

i=1

√
xi)

2 − 1, (18)

we can easily check that the coherence measure Cf is identical with l1-norm coherence measure

[13] on pure states. They are indeed different on mixed states. It is well known that α-entropy

are used to measure the uncertainty. We can also define α-entropy coherence measure. Let

f((x1, x2, · · · , xd)t) =
1

1− α
log2

d∑

i=1

xαi , 0 < α < 1. (19)

It follows from the fact that the logarithm is a concave, non-decreasing function and therefore

preserves concavity, that the α-entropy is a concave function. The Eqs.(1)(2) are easy to

check. Consequently, Theorem 1 can be applied directly to prove that the α-entropy can

derive a coherence measure.

In the following, we will show that one can construct any coherence measure for pure

states by our strategy.

Theorem 2. The restriction of any coherence measure (satisfying C1,C2b and C3) to

pure states can be derived by a function f : Ω → R+ satisfying Eqs.(1)-(3).

Proof: Let µ be an arbitrary coherence measure and let U be a diagonal unitary matrix.

From the monotonicity of coherence measures under incoherent operations, it is evident that

µ(UρU †) ≤ µ(ρ). Symmetrically, one can see that µ(ρ) = µ(U †(UρU †)U) ≤ µ(UρU †). So

µ(UρU †) = µ(ρ). Define f : Ω → R+ by f((x1, x2, · · · , xd)t) = µ(|ψ〉〈ψ|), where |ψ〉 =∑d
i=1

√
xi|i〉. For any pure state |ψ〉 = ∑

i ψi|i〉, there exists diagonal unitary matrix U such

that U |ψ〉 = ∑
i |ψi||i〉. It follows that

µ(|ψ〉〈ψ|) = µ(U |ψ〉〈ψ|U †) = f((|ψ1|2, |ψ2|2, · · · , |ψd|2)t). (20)

In the following, we will check that f satisfies Eqs.(1)-(3). The Eq.(1) follows from C1.

Let π be a permutation of {1, 2, · · · , d}, by the definition of f , we have

f((xπ(1), xπ(2), · · · , xπ(d))t) = µ(Pπ|ψ〉〈ψ|Pπ). (21)

By the same argument as the diagonal unitary matrix case, one can obtain

µ(Pπ|ψ〉〈ψ|Pπ) = µ(|ψ〉〈ψ|). (22)

This implies that f is invariant under any permutation transformation. To prove Eq.(3), for

x = (x1, x2, · · · , xd)t,

y = (y1, y2, · · · , yd)t ∈ Ω

and λ ∈ [0, 1], we define

K1 = diag(
√
λx1√

λx1+(1−λ)y1
,

√
λx2√

λx2+(1−λ)y2
,

· · · ,
√
λxd√

λxd+(1−λ)yd
),
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K2 = diag(

√
(1−λ)y1√

λx1+(1−λ)y1
,

√
(1−λ)y2√

λx2+(1−λ)y2
,

· · · ,
√

(1−λ)yd√
λxd+(1−λ)yd

).

It is easy to check that Φ(·) = K1 ·K†
1 +K2 ·K†

2 is an incoherent operation. And

K1

∑

i

√
λxi + (1− λ)yi|i〉 =

√
λ
∑

i

√
xi|i〉, (23)

K2

∑

i

√
λxi + (1− λ)yi|i〉 =

√
1− λ

∑

i

√
yi|i〉. (24)

From (C2b), we get that

λµ(
∑
i

√
xi|i〉) + (1− λ)µ(

∑
i

√
yi|i〉)

≤ µ(
∑
i

√
λxi + (1− λ)yi|i〉).

(25)

That is f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y), i.e., f is concave.

4 Optimal conversion for coherent states

The section is devoted to the optimal conversion probability in a single-copy scenario. In [9],

an optimal local conversion strategy between any two pure entangled states of a bipartite

system is presented . In [23], Brandão and Gour have proposed a general framework to

analyse the conversion in the asymptotic limit and shown that a quantum resource theory is

asymptotically reversible if its set of allowed operations is maximal.

For pure states |ψ〉 = ∑d
i=1 ψi|i〉, |φ〉 =

∑d
i=1 φi|i〉, we can assume that |ψ1| ≥ |ψ2| ≥ · · · ≥

|ψd| and |φ1| ≥ |φ2| ≥ · · · ≥ |φd|. Indeed, in general case, there exist two permutations π, σ

of {1, 2, · · · , d} such that |ψπ(1)| ≥ |ψπ(2)| ≥ · · · ≥ |ψπ(d)| and |φσ(1)| ≥ |φσ(2)| ≥ · · · ≥ |φσ(d)|.
Let U = Pπ and V = Pσ, here Pπ and Pσ are permutation matrices corresponding to π and σ,

respectively. Note that U |ψ〉 ICO−→ V |φ〉 ⇔ |ψ〉 ICO−→ |φ〉, here |ψ〉 ICO−→ |φ〉 indicates that |ψ〉〈ψ|
is transformed to |φ〉〈φ| by an incoherent operation. Therefore we can replace |ψ〉 and |φ〉
by U |ψ〉 and V |φ〉. Furthermore, P (|ψ〉 ICO−→ |φ〉) = P (U |ψ〉 ICO−→ |V φ〉). Here P (|ψ〉 ICO−→ |φ〉)
denotes the greatest probability of success under incoherent operations transferring |ψ〉 to |φ〉.

Theorem 3. P (|ψ〉 ICO−→ |φ〉) = minl∈[1,d]

∑
d

i=l
|ψi|2∑

d

i=l
|φi|2

.

Proof: We will show the equation by verifying that P (|ψ〉 ICO−→ |φ〉) ≤
∑

d

i=l
|ψi|2∑

d

i=l
|φi|2

for each

l and giving an optimal incoherent operation.

In the case of l = 1, it is trivial, since P (|ψ〉 ICO−→ |φ〉) ≤ 1 =

∑
d

i=1
|ψi|2∑

d

i=1
|φi|2

. For the case

of l 6= 1, define fl : Ω → R+ by fl((x1, x2, · · · , xd)t) =
∑d
i=l x

↓
i , here (x↓1, x

↓
2, · · · , x↓d)t is the

vector obtained by rearranging the coordinates of (x1, x2, · · · , xd)t in the decreasing order.

We firstly check that fl satisfies Eqs.(1-3). Since l ≥ 2, fl((1, 0, · · · , 0)t) =
∑d
i=l 0 = 0. By

the definition of fl, it is clear that fl is invariant under any permutation transformation. fl
is a concave function follows from the Ky Fan’s maximum principle [22, Page 24].

From Theorem 1, it follows that it can derive a coherence measure Cfl . From the C2b

and neglecting positive contributions coming from unsuccessful conversions, it follows that

P (|ψ〉 ICO−→ |φ〉)Cfl(|φ〉〈φ|) ≤ Cfl(|ψ〉〈ψ|). (26)
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Now we give the optimal incoherent operation. The strategy is borrowed from [9] which

consider similar problem in the frame of entanglement. The key difference lies in replacing the

Nielsen Theorem by the corresponding part about coherent transformation which is recently

proposed in [20]. For the convenience of readers, we also provide the details.

We divide into two steps. In the first, by using the result in [20], we will show that

an incoherent operation transfer the initial state |ψ〉 into a temporary pure state |γ〉 with

certainty. Secondly, |γ〉 is transfered into |φ〉 by mean of incoherent operation with the

probability minl∈[1,d]

∑
d

i=l
|ψi|2∑

d

i=l
|φi|2

.

Let l1 be the smallest integer in [1, d] such that
∑d
i=l1

|ψi|2
∑d
i=l1

|φi|2
= min
l∈[1,d]

∑d
i=l |ψi|2∑d
i=l |φi|2

≡ r1. (27)

It may happen that l1 = r1 = 1. If not, it follows from the equivalence

a

b
<
a+ c

b+ d
⇔ a

b
<
c

d
(a, b, c, d > 0) (28)

that for any integer k ∈ [1, l1 − 1] such that

∑
l1−1

i=k
|ψi|2∑

l1−1

i=k
|φi|2

> r1. Let us then define l2 as the

smallest integer ∈ [1, l1 − 1] such that

r2 =

∑l1−1
i=l2

|ψi|2
∑l1−1
i=l2

|φi|2
= min
l∈[1,l1−1]

∑l1−1
i=l |ψi|2∑l1−1
i=l |φi|2

(> r1). (29)

Repeating this process until lk = 1 for some k, we obtain s series of k + 1 integers l0 > l1 >

l2 > · · · lk (l0 = d+1), and k positive numbers 0 < r1 < r2 < · · · < rk, by the means of which

we define our temporary (normalized) state

|γ〉 = ∑d
i=1 γi|i〉, where

γi =
√
rjφi if i ∈ [lj , lj−1 − 1], 1 ≤ j ≤ k

(30)

i.e.,

−→γ =




√
rk




φlk
...

φlk−1−1




...

√
r2




φl2
...

φl1−1




√
r1




φl1
...

φl0−1







(31)

From the construction, it follows that

d∑

i=k

|ψi|2 ≥
d∑

i=k

|γi|2 ∀k ∈ [1, d], (32)
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which is equivalent that
∑k
i=1 |ψi|2 ≤ ∑k

i=1 |γi|2 ∀k ∈ [1, d]. By [20, Theorem 1], there

exists an incoherent operation transferring |ψ〉 into |γ〉 with certainty.

Define the positive operator M : Cd → Cd by

M =




Mk

. . .

M2

M1


 , (33)

where

Mj =

√
r1
rj
I[lj−1−lj ], j = 1, 2, · · · , k, (34)

is proportional to the identity in (lj−1− lj)-dimensional subspace of Cd. So that M,
√
I −M2

define an incoherent operation satisfying M |γ〉 = √
r1|φ〉.

At the end of the section, we consider two alternative scenarios where Theorem 3 can

be applied. At first, we consider the greatest probability of copies of state |φ〉 transferred

from |ψ〉, denote it by mmax
|ψ〉→|φ〉, i.e., mmax

|ψ〉→|φ〉 = maxn P (|ψ〉 ICO−→ |φ〉⊗n). In general,

this cannot be obtained by Theorem 3 directly. However, there are circumstances in which

mmax
|ψ〉→|φ〉 = P (|ψ〉 ICO−→ |φ〉). Indeed, let n|ψ〉 denote the number of nonvanishing coefficients

of the entangled state |ψ〉, and recall that n|ψ〉⊗N = nN|ψ〉. Then,

n|ψ〉 < n2|φ〉 ⇒ P (|ψ〉 ICO−→ |φ〉⊗N ) = 0 N ≥ 2 (35)

implies that mmax
|ψ〉→|φ〉 = P (|ψ〉 ICO−→ |φ〉) when n|ψ〉 < n2|φ〉. Secondly, from Theorem 3, we also

get that one can often extract more coherence from two copies of a given state |ψ〉, i.e., |ψ〉⊗2,

than twice what they can obtain from one single copy |ψ〉. For example, |ψ〉 = ( 1√
2
)(|1〉+ |2〉)

and |φ〉 = ( 1√
3
)(|1〉+ |2〉+ |3〉). Then 1 = P (|ψ〉⊗2 ICO−→ |φ〉) > P (|ψ〉 ICO−→ |φ〉) = 0.

5 Conclusion

This paper is focused on quantification of coherence. We have provided a tool to build an

important class of coherence measures which cover the relative entropy measure for pure

states, the l1-norm measure for pure states, and the α-entropy measure. Furthermore, any

coherence measure on pure coherent states can be constructed in this way. Using a set of

coherence measure and constructing the optimal conversion, we give the explicit expression

of the greatest probability P (|ψ〉 ICO−→ |φ〉) of success in the conversion of given states |ψ〉 and
|φ〉 under incoherent operations.
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